
Following #90184, this patch emits vp.merge intrinsic, which is used to set the inactive lanes in a select operation to the RHS instead of undef. Currently, it is applied to out-loop reduction for EVL vectorization. This patch performs transformation to convert select(header_mask, LHS, RHS) into vp.merge(all-true, LHS, RHS, EVL) And always use the predicated reduction select to set the incoming value of the reduction phi to support out-loop reduction when using tail folding with EVL. TODO: Postpone the adjustment of the predicated reduction select to VPlanTransform. The current adjustment might be too early, which could lead to a situation where the predicated reduction select is adjusted, but the EVL recipes cannot be successfully generated during VPlanTransform.
1799 lines
73 KiB
C++
1799 lines
73 KiB
C++
//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements a set of utility VPlan to VPlan transformations.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanTransforms.h"
|
|
#include "VPRecipeBuilder.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanAnalysis.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "VPlanPatternMatch.h"
|
|
#include "VPlanUtils.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
|
|
using namespace llvm;
|
|
|
|
void VPlanTransforms::VPInstructionsToVPRecipes(
|
|
VPlanPtr &Plan,
|
|
function_ref<const InductionDescriptor *(PHINode *)>
|
|
GetIntOrFpInductionDescriptor,
|
|
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
|
|
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan->getVectorLoopRegion());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
|
|
// Skip blocks outside region
|
|
if (!VPBB->getParent())
|
|
break;
|
|
VPRecipeBase *Term = VPBB->getTerminator();
|
|
auto EndIter = Term ? Term->getIterator() : VPBB->end();
|
|
// Introduce each ingredient into VPlan.
|
|
for (VPRecipeBase &Ingredient :
|
|
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
|
|
|
|
VPValue *VPV = Ingredient.getVPSingleValue();
|
|
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
|
|
|
|
VPRecipeBase *NewRecipe = nullptr;
|
|
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
|
|
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
|
|
const auto *II = GetIntOrFpInductionDescriptor(Phi);
|
|
if (!II)
|
|
continue;
|
|
|
|
VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
|
|
VPValue *Step =
|
|
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
|
|
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step,
|
|
&Plan->getVF(), *II);
|
|
} else {
|
|
assert(isa<VPInstruction>(&Ingredient) &&
|
|
"only VPInstructions expected here");
|
|
assert(!isa<PHINode>(Inst) && "phis should be handled above");
|
|
// Create VPWidenMemoryRecipe for loads and stores.
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
NewRecipe = new VPWidenLoadRecipe(
|
|
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
|
|
false /*Consecutive*/, false /*Reverse*/,
|
|
Ingredient.getDebugLoc());
|
|
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
NewRecipe = new VPWidenStoreRecipe(
|
|
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
|
|
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
|
|
Ingredient.getDebugLoc());
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
|
|
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
|
|
NewRecipe = new VPWidenIntrinsicRecipe(
|
|
*CI, getVectorIntrinsicIDForCall(CI, &TLI),
|
|
{Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
|
|
CI->getDebugLoc());
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
|
|
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
|
|
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
|
|
NewRecipe = new VPWidenCastRecipe(
|
|
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
|
|
} else {
|
|
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
|
|
}
|
|
}
|
|
|
|
NewRecipe->insertBefore(&Ingredient);
|
|
if (NewRecipe->getNumDefinedValues() == 1)
|
|
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
|
|
else
|
|
assert(NewRecipe->getNumDefinedValues() == 0 &&
|
|
"Only recpies with zero or one defined values expected");
|
|
Ingredient.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool sinkScalarOperands(VPlan &Plan) {
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
bool Changed = false;
|
|
// First, collect the operands of all recipes in replicate blocks as seeds for
|
|
// sinking.
|
|
SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
|
|
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
|
|
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
|
|
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
|
|
continue;
|
|
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
|
|
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
|
|
continue;
|
|
for (auto &Recipe : *VPBB) {
|
|
for (VPValue *Op : Recipe.operands())
|
|
if (auto *Def =
|
|
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
|
|
WorkList.insert(std::make_pair(VPBB, Def));
|
|
}
|
|
}
|
|
|
|
bool ScalarVFOnly = Plan.hasScalarVFOnly();
|
|
// Try to sink each replicate or scalar IV steps recipe in the worklist.
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPBasicBlock *SinkTo;
|
|
VPSingleDefRecipe *SinkCandidate;
|
|
std::tie(SinkTo, SinkCandidate) = WorkList[I];
|
|
if (SinkCandidate->getParent() == SinkTo ||
|
|
SinkCandidate->mayHaveSideEffects() ||
|
|
SinkCandidate->mayReadOrWriteMemory())
|
|
continue;
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
|
|
if (!ScalarVFOnly && RepR->isUniform())
|
|
continue;
|
|
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
|
|
continue;
|
|
|
|
bool NeedsDuplicating = false;
|
|
// All recipe users of the sink candidate must be in the same block SinkTo
|
|
// or all users outside of SinkTo must be uniform-after-vectorization (
|
|
// i.e., only first lane is used) . In the latter case, we need to duplicate
|
|
// SinkCandidate.
|
|
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
|
|
SinkCandidate](VPUser *U) {
|
|
auto *UI = cast<VPRecipeBase>(U);
|
|
if (UI->getParent() == SinkTo)
|
|
return true;
|
|
NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
|
|
// We only know how to duplicate VPRecipeRecipes for now.
|
|
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
|
|
};
|
|
if (!all_of(SinkCandidate->users(), CanSinkWithUser))
|
|
continue;
|
|
|
|
if (NeedsDuplicating) {
|
|
if (ScalarVFOnly)
|
|
continue;
|
|
Instruction *I = SinkCandidate->getUnderlyingInstr();
|
|
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
|
|
// TODO: add ".cloned" suffix to name of Clone's VPValue.
|
|
|
|
Clone->insertBefore(SinkCandidate);
|
|
SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
|
|
return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
|
|
});
|
|
}
|
|
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
|
|
for (VPValue *Op : SinkCandidate->operands())
|
|
if (auto *Def =
|
|
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
|
|
WorkList.insert(std::make_pair(SinkTo, Def));
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
|
|
/// the mask.
|
|
VPValue *getPredicatedMask(VPRegionBlock *R) {
|
|
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
|
|
if (!EntryBB || EntryBB->size() != 1 ||
|
|
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
|
|
return nullptr;
|
|
|
|
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
|
|
}
|
|
|
|
/// If \p R is a triangle region, return the 'then' block of the triangle.
|
|
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
|
|
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
|
|
if (EntryBB->getNumSuccessors() != 2)
|
|
return nullptr;
|
|
|
|
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
|
|
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
|
|
if (!Succ0 || !Succ1)
|
|
return nullptr;
|
|
|
|
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
if (Succ0->getSingleSuccessor() == Succ1)
|
|
return Succ0;
|
|
if (Succ1->getSingleSuccessor() == Succ0)
|
|
return Succ1;
|
|
return nullptr;
|
|
}
|
|
|
|
// Merge replicate regions in their successor region, if a replicate region
|
|
// is connected to a successor replicate region with the same predicate by a
|
|
// single, empty VPBasicBlock.
|
|
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
|
|
SetVector<VPRegionBlock *> DeletedRegions;
|
|
|
|
// Collect replicate regions followed by an empty block, followed by another
|
|
// replicate region with matching masks to process front. This is to avoid
|
|
// iterator invalidation issues while merging regions.
|
|
SmallVector<VPRegionBlock *, 8> WorkList;
|
|
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
if (!Region1->isReplicator())
|
|
continue;
|
|
auto *MiddleBasicBlock =
|
|
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
|
|
continue;
|
|
|
|
auto *Region2 =
|
|
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
if (!Region2 || !Region2->isReplicator())
|
|
continue;
|
|
|
|
VPValue *Mask1 = getPredicatedMask(Region1);
|
|
VPValue *Mask2 = getPredicatedMask(Region2);
|
|
if (!Mask1 || Mask1 != Mask2)
|
|
continue;
|
|
|
|
assert(Mask1 && Mask2 && "both region must have conditions");
|
|
WorkList.push_back(Region1);
|
|
}
|
|
|
|
// Move recipes from Region1 to its successor region, if both are triangles.
|
|
for (VPRegionBlock *Region1 : WorkList) {
|
|
if (DeletedRegions.contains(Region1))
|
|
continue;
|
|
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
|
|
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
|
|
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
|
|
if (!Then1 || !Then2)
|
|
continue;
|
|
|
|
// Note: No fusion-preventing memory dependencies are expected in either
|
|
// region. Such dependencies should be rejected during earlier dependence
|
|
// checks, which guarantee accesses can be re-ordered for vectorization.
|
|
//
|
|
// Move recipes to the successor region.
|
|
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
|
|
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
|
|
|
|
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
|
|
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
|
|
|
|
// Move VPPredInstPHIRecipes from the merge block to the successor region's
|
|
// merge block. Update all users inside the successor region to use the
|
|
// original values.
|
|
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
|
|
VPValue *PredInst1 =
|
|
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
|
|
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
|
|
Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
|
|
return cast<VPRecipeBase>(&U)->getParent() == Then2;
|
|
});
|
|
|
|
// Remove phi recipes that are unused after merging the regions.
|
|
if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
|
|
Phi1ToMove.eraseFromParent();
|
|
continue;
|
|
}
|
|
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
|
|
}
|
|
|
|
// Finally, remove the first region.
|
|
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
|
|
VPBlockUtils::disconnectBlocks(Pred, Region1);
|
|
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
|
|
}
|
|
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
|
|
DeletedRegions.insert(Region1);
|
|
}
|
|
|
|
for (VPRegionBlock *ToDelete : DeletedRegions)
|
|
delete ToDelete;
|
|
return !DeletedRegions.empty();
|
|
}
|
|
|
|
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
|
|
VPlan &Plan) {
|
|
Instruction *Instr = PredRecipe->getUnderlyingInstr();
|
|
// Build the triangular if-then region.
|
|
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
|
|
assert(Instr->getParent() && "Predicated instruction not in any basic block");
|
|
auto *BlockInMask = PredRecipe->getMask();
|
|
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
|
|
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
|
|
|
|
// Replace predicated replicate recipe with a replicate recipe without a
|
|
// mask but in the replicate region.
|
|
auto *RecipeWithoutMask = new VPReplicateRecipe(
|
|
PredRecipe->getUnderlyingInstr(),
|
|
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
|
|
PredRecipe->isUniform());
|
|
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
|
|
|
|
VPPredInstPHIRecipe *PHIRecipe = nullptr;
|
|
if (PredRecipe->getNumUsers() != 0) {
|
|
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
|
|
PredRecipe->replaceAllUsesWith(PHIRecipe);
|
|
PHIRecipe->setOperand(0, RecipeWithoutMask);
|
|
}
|
|
PredRecipe->eraseFromParent();
|
|
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
|
|
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
|
|
|
|
// Note: first set Entry as region entry and then connect successors starting
|
|
// from it in order, to propagate the "parent" of each VPBasicBlock.
|
|
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
|
|
VPBlockUtils::connectBlocks(Pred, Exiting);
|
|
|
|
return Region;
|
|
}
|
|
|
|
static void addReplicateRegions(VPlan &Plan) {
|
|
SmallVector<VPReplicateRecipe *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
for (VPRecipeBase &R : *VPBB)
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
|
|
if (RepR->isPredicated())
|
|
WorkList.push_back(RepR);
|
|
}
|
|
}
|
|
|
|
unsigned BBNum = 0;
|
|
for (VPReplicateRecipe *RepR : WorkList) {
|
|
VPBasicBlock *CurrentBlock = RepR->getParent();
|
|
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
|
|
|
|
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
|
|
SplitBlock->setName(
|
|
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
|
|
// Record predicated instructions for above packing optimizations.
|
|
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
|
|
Region->setParent(CurrentBlock->getParent());
|
|
VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
|
|
VPBlockUtils::connectBlocks(CurrentBlock, Region);
|
|
VPBlockUtils::connectBlocks(Region, SplitBlock);
|
|
}
|
|
}
|
|
|
|
/// Remove redundant VPBasicBlocks by merging them into their predecessor if
|
|
/// the predecessor has a single successor.
|
|
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
|
|
SmallVector<VPBasicBlock *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
// Don't fold the blocks in the skeleton of the Plan into their single
|
|
// predecessors for now.
|
|
// TODO: Remove restriction once more of the skeleton is modeled in VPlan.
|
|
if (!VPBB->getParent())
|
|
continue;
|
|
auto *PredVPBB =
|
|
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
if (!PredVPBB || PredVPBB->getNumSuccessors() != 1)
|
|
continue;
|
|
WorkList.push_back(VPBB);
|
|
}
|
|
|
|
for (VPBasicBlock *VPBB : WorkList) {
|
|
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
|
|
R.moveBefore(*PredVPBB, PredVPBB->end());
|
|
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
|
|
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
|
|
if (ParentRegion && ParentRegion->getExiting() == VPBB)
|
|
ParentRegion->setExiting(PredVPBB);
|
|
for (auto *Succ : to_vector(VPBB->successors())) {
|
|
VPBlockUtils::disconnectBlocks(VPBB, Succ);
|
|
VPBlockUtils::connectBlocks(PredVPBB, Succ);
|
|
}
|
|
delete VPBB;
|
|
}
|
|
return !WorkList.empty();
|
|
}
|
|
|
|
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
|
|
// Convert masked VPReplicateRecipes to if-then region blocks.
|
|
addReplicateRegions(Plan);
|
|
|
|
bool ShouldSimplify = true;
|
|
while (ShouldSimplify) {
|
|
ShouldSimplify = sinkScalarOperands(Plan);
|
|
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
|
|
ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
|
|
}
|
|
}
|
|
|
|
/// Remove redundant casts of inductions.
|
|
///
|
|
/// Such redundant casts are casts of induction variables that can be ignored,
|
|
/// because we already proved that the casted phi is equal to the uncasted phi
|
|
/// in the vectorized loop. There is no need to vectorize the cast - the same
|
|
/// value can be used for both the phi and casts in the vector loop.
|
|
static void removeRedundantInductionCasts(VPlan &Plan) {
|
|
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!IV || IV->getTruncInst())
|
|
continue;
|
|
|
|
// A sequence of IR Casts has potentially been recorded for IV, which
|
|
// *must be bypassed* when the IV is vectorized, because the vectorized IV
|
|
// will produce the desired casted value. This sequence forms a def-use
|
|
// chain and is provided in reverse order, ending with the cast that uses
|
|
// the IV phi. Search for the recipe of the last cast in the chain and
|
|
// replace it with the original IV. Note that only the final cast is
|
|
// expected to have users outside the cast-chain and the dead casts left
|
|
// over will be cleaned up later.
|
|
auto &Casts = IV->getInductionDescriptor().getCastInsts();
|
|
VPValue *FindMyCast = IV;
|
|
for (Instruction *IRCast : reverse(Casts)) {
|
|
VPSingleDefRecipe *FoundUserCast = nullptr;
|
|
for (auto *U : FindMyCast->users()) {
|
|
auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
|
|
if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
|
|
FoundUserCast = UserCast;
|
|
break;
|
|
}
|
|
}
|
|
FindMyCast = FoundUserCast;
|
|
}
|
|
FindMyCast->replaceAllUsesWith(IV);
|
|
}
|
|
}
|
|
|
|
/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
|
|
/// recipe, if it exists.
|
|
static void removeRedundantCanonicalIVs(VPlan &Plan) {
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
|
|
for (VPUser *U : CanonicalIV->users()) {
|
|
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
|
|
if (WidenNewIV)
|
|
break;
|
|
}
|
|
|
|
if (!WidenNewIV)
|
|
return;
|
|
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
|
|
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
|
|
continue;
|
|
|
|
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
|
|
// everything WidenNewIV's users need. That is, WidenOriginalIV will
|
|
// generate a vector phi or all users of WidenNewIV demand the first lane
|
|
// only.
|
|
if (any_of(WidenOriginalIV->users(),
|
|
[WidenOriginalIV](VPUser *U) {
|
|
return !U->usesScalars(WidenOriginalIV);
|
|
}) ||
|
|
vputils::onlyFirstLaneUsed(WidenNewIV)) {
|
|
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
|
|
WidenNewIV->eraseFromParent();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if \p R is dead and can be removed.
|
|
static bool isDeadRecipe(VPRecipeBase &R) {
|
|
using namespace llvm::PatternMatch;
|
|
// Do remove conditional assume instructions as their conditions may be
|
|
// flattened.
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
|
|
bool IsConditionalAssume =
|
|
RepR && RepR->isPredicated() &&
|
|
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
|
|
if (IsConditionalAssume)
|
|
return true;
|
|
|
|
if (R.mayHaveSideEffects())
|
|
return false;
|
|
|
|
// Recipe is dead if no user keeps the recipe alive.
|
|
return all_of(R.definedValues(),
|
|
[](VPValue *V) { return V->getNumUsers() == 0; });
|
|
}
|
|
|
|
void VPlanTransforms::removeDeadRecipes(VPlan &Plan) {
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan.getEntry());
|
|
|
|
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
|
|
// The recipes in the block are processed in reverse order, to catch chains
|
|
// of dead recipes.
|
|
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
|
|
if (isDeadRecipe(R))
|
|
R.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static VPScalarIVStepsRecipe *
|
|
createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind,
|
|
Instruction::BinaryOps InductionOpcode,
|
|
FPMathOperator *FPBinOp, Instruction *TruncI,
|
|
VPValue *StartV, VPValue *Step, VPBuilder &Builder) {
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
VPSingleDefRecipe *BaseIV = CanonicalIV;
|
|
if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
|
|
BaseIV = Builder.createDerivedIV(Kind, FPBinOp, StartV, CanonicalIV, Step);
|
|
}
|
|
|
|
// Truncate base induction if needed.
|
|
Type *CanonicalIVType = CanonicalIV->getScalarType();
|
|
VPTypeAnalysis TypeInfo(CanonicalIVType);
|
|
Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
|
|
if (TruncI) {
|
|
Type *TruncTy = TruncI->getType();
|
|
assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
|
|
"Not truncating.");
|
|
assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
|
|
BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy);
|
|
ResultTy = TruncTy;
|
|
}
|
|
|
|
// Truncate step if needed.
|
|
Type *StepTy = TypeInfo.inferScalarType(Step);
|
|
if (ResultTy != StepTy) {
|
|
assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
|
|
"Not truncating.");
|
|
assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
|
|
auto *VecPreheader =
|
|
cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
|
|
VPBuilder::InsertPointGuard Guard(Builder);
|
|
Builder.setInsertPoint(VecPreheader);
|
|
Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy);
|
|
}
|
|
return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step);
|
|
}
|
|
|
|
/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
|
|
/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
|
|
/// VPWidenPointerInductionRecipe will generate vectors only. If some users
|
|
/// require vectors while other require scalars, the scalar uses need to extract
|
|
/// the scalars from the generated vectors (Note that this is different to how
|
|
/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
|
|
/// if any of its users needs scalar values, by providing them scalar steps
|
|
/// built on the canonical scalar IV and update the original IV's users. This is
|
|
/// an optional optimization to reduce the needs of vector extracts.
|
|
static void legalizeAndOptimizeInductions(VPlan &Plan) {
|
|
SmallVector<VPRecipeBase *> ToRemove;
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
|
|
VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
// Replace wide pointer inductions which have only their scalars used by
|
|
// PtrAdd(IndStart, ScalarIVSteps (0, Step)).
|
|
if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
|
|
if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
|
|
continue;
|
|
|
|
const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
|
|
VPValue *StartV =
|
|
Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
|
|
VPValue *StepV = PtrIV->getOperand(1);
|
|
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
|
|
Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
|
|
nullptr, StartV, StepV, Builder);
|
|
|
|
VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
|
|
PtrIV->getDebugLoc(), "next.gep");
|
|
|
|
PtrIV->replaceAllUsesWith(PtrAdd);
|
|
continue;
|
|
}
|
|
|
|
// Replace widened induction with scalar steps for users that only use
|
|
// scalars.
|
|
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!WideIV)
|
|
continue;
|
|
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
|
|
return U->usesScalars(WideIV);
|
|
}))
|
|
continue;
|
|
|
|
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
|
|
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
|
|
Plan, ID.getKind(), ID.getInductionOpcode(),
|
|
dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
|
|
WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
|
|
Builder);
|
|
|
|
// Update scalar users of IV to use Step instead.
|
|
if (!HasOnlyVectorVFs)
|
|
WideIV->replaceAllUsesWith(Steps);
|
|
else
|
|
WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
|
|
return U.usesScalars(WideIV);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
|
|
/// them with already existing recipes expanding the same SCEV expression.
|
|
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
|
|
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
|
|
|
|
for (VPRecipeBase &R :
|
|
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
|
|
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
|
|
if (!ExpR)
|
|
continue;
|
|
|
|
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
|
|
if (I.second)
|
|
continue;
|
|
ExpR->replaceAllUsesWith(I.first->second);
|
|
ExpR->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void recursivelyDeleteDeadRecipes(VPValue *V) {
|
|
SmallVector<VPValue *> WorkList;
|
|
SmallPtrSet<VPValue *, 8> Seen;
|
|
WorkList.push_back(V);
|
|
|
|
while (!WorkList.empty()) {
|
|
VPValue *Cur = WorkList.pop_back_val();
|
|
if (!Seen.insert(Cur).second)
|
|
continue;
|
|
VPRecipeBase *R = Cur->getDefiningRecipe();
|
|
if (!R)
|
|
continue;
|
|
if (!isDeadRecipe(*R))
|
|
continue;
|
|
WorkList.append(R->op_begin(), R->op_end());
|
|
R->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
|
|
unsigned BestUF,
|
|
PredicatedScalarEvolution &PSE) {
|
|
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
|
|
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
|
|
VPBasicBlock *ExitingVPBB =
|
|
Plan.getVectorLoopRegion()->getExitingBasicBlock();
|
|
auto *Term = &ExitingVPBB->back();
|
|
// Try to simplify the branch condition if TC <= VF * UF when preparing to
|
|
// execute the plan for the main vector loop. We only do this if the
|
|
// terminator is:
|
|
// 1. BranchOnCount, or
|
|
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
|
|
using namespace llvm::VPlanPatternMatch;
|
|
if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
|
|
!match(Term,
|
|
m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
|
|
return;
|
|
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
const SCEV *TripCount =
|
|
vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
|
|
assert(!isa<SCEVCouldNotCompute>(TripCount) &&
|
|
"Trip count SCEV must be computable");
|
|
ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
|
|
const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
|
|
if (TripCount->isZero() ||
|
|
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
|
|
return;
|
|
|
|
LLVMContext &Ctx = SE.getContext();
|
|
auto *BOC =
|
|
new VPInstruction(VPInstruction::BranchOnCond,
|
|
{Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))});
|
|
|
|
SmallVector<VPValue *> PossiblyDead(Term->operands());
|
|
Term->eraseFromParent();
|
|
for (VPValue *Op : PossiblyDead)
|
|
recursivelyDeleteDeadRecipes(Op);
|
|
ExitingVPBB->appendRecipe(BOC);
|
|
Plan.setVF(BestVF);
|
|
Plan.setUF(BestUF);
|
|
// TODO: Further simplifications are possible
|
|
// 1. Replace inductions with constants.
|
|
// 2. Replace vector loop region with VPBasicBlock.
|
|
}
|
|
|
|
/// Sink users of \p FOR after the recipe defining the previous value \p
|
|
/// Previous of the recurrence. \returns true if all users of \p FOR could be
|
|
/// re-arranged as needed or false if it is not possible.
|
|
static bool
|
|
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
|
|
VPRecipeBase *Previous,
|
|
VPDominatorTree &VPDT) {
|
|
// Collect recipes that need sinking.
|
|
SmallVector<VPRecipeBase *> WorkList;
|
|
SmallPtrSet<VPRecipeBase *, 8> Seen;
|
|
Seen.insert(Previous);
|
|
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
|
|
// The previous value must not depend on the users of the recurrence phi. In
|
|
// that case, FOR is not a fixed order recurrence.
|
|
if (SinkCandidate == Previous)
|
|
return false;
|
|
|
|
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
|
|
!Seen.insert(SinkCandidate).second ||
|
|
VPDT.properlyDominates(Previous, SinkCandidate))
|
|
return true;
|
|
|
|
if (SinkCandidate->mayHaveSideEffects())
|
|
return false;
|
|
|
|
WorkList.push_back(SinkCandidate);
|
|
return true;
|
|
};
|
|
|
|
// Recursively sink users of FOR after Previous.
|
|
WorkList.push_back(FOR);
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPRecipeBase *Current = WorkList[I];
|
|
assert(Current->getNumDefinedValues() == 1 &&
|
|
"only recipes with a single defined value expected");
|
|
|
|
for (VPUser *User : Current->getVPSingleValue()->users()) {
|
|
if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Keep recipes to sink ordered by dominance so earlier instructions are
|
|
// processed first.
|
|
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
return VPDT.properlyDominates(A, B);
|
|
});
|
|
|
|
for (VPRecipeBase *SinkCandidate : WorkList) {
|
|
if (SinkCandidate == FOR)
|
|
continue;
|
|
|
|
SinkCandidate->moveAfter(Previous);
|
|
Previous = SinkCandidate;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to hoist \p Previous and its operands before all users of \p FOR.
|
|
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR,
|
|
VPRecipeBase *Previous,
|
|
VPDominatorTree &VPDT) {
|
|
if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
|
|
return false;
|
|
|
|
// Collect recipes that need hoisting.
|
|
SmallVector<VPRecipeBase *> HoistCandidates;
|
|
SmallPtrSet<VPRecipeBase *, 8> Visited;
|
|
VPRecipeBase *HoistPoint = nullptr;
|
|
// Find the closest hoist point by looking at all users of FOR and selecting
|
|
// the recipe dominating all other users.
|
|
for (VPUser *U : FOR->users()) {
|
|
auto *R = cast<VPRecipeBase>(U);
|
|
if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
|
|
HoistPoint = R;
|
|
}
|
|
assert(all_of(FOR->users(),
|
|
[&VPDT, HoistPoint](VPUser *U) {
|
|
auto *R = cast<VPRecipeBase>(U);
|
|
return HoistPoint == R ||
|
|
VPDT.properlyDominates(HoistPoint, R);
|
|
}) &&
|
|
"HoistPoint must dominate all users of FOR");
|
|
|
|
auto NeedsHoisting = [HoistPoint, &VPDT,
|
|
&Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
|
|
VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
|
|
if (!HoistCandidate)
|
|
return nullptr;
|
|
VPRegionBlock *EnclosingLoopRegion =
|
|
HoistCandidate->getParent()->getEnclosingLoopRegion();
|
|
assert((!HoistCandidate->getParent()->getParent() ||
|
|
HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
|
|
"CFG in VPlan should still be flat, without replicate regions");
|
|
// Hoist candidate was already visited, no need to hoist.
|
|
if (!Visited.insert(HoistCandidate).second)
|
|
return nullptr;
|
|
|
|
// Candidate is outside loop region or a header phi, dominates FOR users w/o
|
|
// hoisting.
|
|
if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
|
|
return nullptr;
|
|
|
|
// If we reached a recipe that dominates HoistPoint, we don't need to
|
|
// hoist the recipe.
|
|
if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
|
|
return nullptr;
|
|
return HoistCandidate;
|
|
};
|
|
auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
|
|
// Avoid hoisting candidates with side-effects, as we do not yet analyze
|
|
// associated dependencies.
|
|
return !HoistCandidate->mayHaveSideEffects();
|
|
};
|
|
|
|
if (!NeedsHoisting(Previous->getVPSingleValue()))
|
|
return true;
|
|
|
|
// Recursively try to hoist Previous and its operands before all users of FOR.
|
|
HoistCandidates.push_back(Previous);
|
|
|
|
for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
|
|
VPRecipeBase *Current = HoistCandidates[I];
|
|
assert(Current->getNumDefinedValues() == 1 &&
|
|
"only recipes with a single defined value expected");
|
|
if (!CanHoist(Current))
|
|
return false;
|
|
|
|
for (VPValue *Op : Current->operands()) {
|
|
// If we reach FOR, it means the original Previous depends on some other
|
|
// recurrence that in turn depends on FOR. If that is the case, we would
|
|
// also need to hoist recipes involving the other FOR, which may break
|
|
// dependencies.
|
|
if (Op == FOR)
|
|
return false;
|
|
|
|
if (auto *R = NeedsHoisting(Op))
|
|
HoistCandidates.push_back(R);
|
|
}
|
|
}
|
|
|
|
// Order recipes to hoist by dominance so earlier instructions are processed
|
|
// first.
|
|
sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
return VPDT.properlyDominates(A, B);
|
|
});
|
|
|
|
for (VPRecipeBase *HoistCandidate : HoistCandidates) {
|
|
HoistCandidate->moveBefore(*HoistPoint->getParent(),
|
|
HoistPoint->getIterator());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
|
|
VPBuilder &LoopBuilder) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
|
|
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
|
|
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
|
|
RecurrencePhis.push_back(FOR);
|
|
|
|
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
|
|
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
|
|
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
|
|
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
|
|
// to terminate.
|
|
while (auto *PrevPhi =
|
|
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
|
|
assert(PrevPhi->getParent() == FOR->getParent());
|
|
assert(SeenPhis.insert(PrevPhi).second);
|
|
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
|
|
}
|
|
|
|
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
|
|
!hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
|
|
return false;
|
|
|
|
// Introduce a recipe to combine the incoming and previous values of a
|
|
// fixed-order recurrence.
|
|
VPBasicBlock *InsertBlock = Previous->getParent();
|
|
if (isa<VPHeaderPHIRecipe>(Previous))
|
|
LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
|
|
else
|
|
LoopBuilder.setInsertPoint(InsertBlock,
|
|
std::next(Previous->getIterator()));
|
|
|
|
auto *RecurSplice = cast<VPInstruction>(
|
|
LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
|
|
{FOR, FOR->getBackedgeValue()}));
|
|
|
|
FOR->replaceAllUsesWith(RecurSplice);
|
|
// Set the first operand of RecurSplice to FOR again, after replacing
|
|
// all users.
|
|
RecurSplice->setOperand(0, FOR);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) {
|
|
SetVector<VPUser *> Users(V->user_begin(), V->user_end());
|
|
for (unsigned I = 0; I != Users.size(); ++I) {
|
|
VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]);
|
|
if (isa<VPHeaderPHIRecipe>(Cur))
|
|
continue;
|
|
for (VPValue *V : Cur->definedValues())
|
|
Users.insert(V->user_begin(), V->user_end());
|
|
}
|
|
return Users.takeVector();
|
|
}
|
|
|
|
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!PhiR)
|
|
continue;
|
|
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
|
|
RecurKind RK = RdxDesc.getRecurrenceKind();
|
|
if (RK != RecurKind::Add && RK != RecurKind::Mul)
|
|
continue;
|
|
|
|
for (VPUser *U : collectUsersRecursively(PhiR))
|
|
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Try to simplify recipe \p R.
|
|
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
|
|
using namespace llvm::VPlanPatternMatch;
|
|
|
|
if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
|
|
// Try to remove redundant blend recipes.
|
|
SmallPtrSet<VPValue *, 4> UniqueValues;
|
|
if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
|
|
UniqueValues.insert(Blend->getIncomingValue(0));
|
|
for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
|
|
if (!match(Blend->getMask(I), m_False()))
|
|
UniqueValues.insert(Blend->getIncomingValue(I));
|
|
|
|
if (UniqueValues.size() == 1) {
|
|
Blend->replaceAllUsesWith(*UniqueValues.begin());
|
|
Blend->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
if (Blend->isNormalized())
|
|
return;
|
|
|
|
// Normalize the blend so its first incoming value is used as the initial
|
|
// value with the others blended into it.
|
|
|
|
unsigned StartIndex = 0;
|
|
for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
|
|
// If a value's mask is used only by the blend then is can be deadcoded.
|
|
// TODO: Find the most expensive mask that can be deadcoded, or a mask
|
|
// that's used by multiple blends where it can be removed from them all.
|
|
VPValue *Mask = Blend->getMask(I);
|
|
if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
|
|
StartIndex = I;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<VPValue *, 4> OperandsWithMask;
|
|
OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
|
|
|
|
for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
|
|
if (I == StartIndex)
|
|
continue;
|
|
OperandsWithMask.push_back(Blend->getIncomingValue(I));
|
|
OperandsWithMask.push_back(Blend->getMask(I));
|
|
}
|
|
|
|
auto *NewBlend = new VPBlendRecipe(
|
|
cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask);
|
|
NewBlend->insertBefore(&R);
|
|
|
|
VPValue *DeadMask = Blend->getMask(StartIndex);
|
|
Blend->replaceAllUsesWith(NewBlend);
|
|
Blend->eraseFromParent();
|
|
recursivelyDeleteDeadRecipes(DeadMask);
|
|
return;
|
|
}
|
|
|
|
VPValue *A;
|
|
if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
|
|
VPValue *Trunc = R.getVPSingleValue();
|
|
Type *TruncTy = TypeInfo.inferScalarType(Trunc);
|
|
Type *ATy = TypeInfo.inferScalarType(A);
|
|
if (TruncTy == ATy) {
|
|
Trunc->replaceAllUsesWith(A);
|
|
} else {
|
|
// Don't replace a scalarizing recipe with a widened cast.
|
|
if (isa<VPReplicateRecipe>(&R))
|
|
return;
|
|
if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
|
|
|
|
unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
|
|
? Instruction::SExt
|
|
: Instruction::ZExt;
|
|
auto *VPC =
|
|
new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
|
|
if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
|
|
// UnderlyingExt has distinct return type, used to retain legacy cost.
|
|
VPC->setUnderlyingValue(UnderlyingExt);
|
|
}
|
|
VPC->insertBefore(&R);
|
|
Trunc->replaceAllUsesWith(VPC);
|
|
} else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
|
|
auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
|
|
VPC->insertBefore(&R);
|
|
Trunc->replaceAllUsesWith(VPC);
|
|
}
|
|
}
|
|
#ifndef NDEBUG
|
|
// Verify that the cached type info is for both A and its users is still
|
|
// accurate by comparing it to freshly computed types.
|
|
VPTypeAnalysis TypeInfo2(
|
|
R.getParent()->getPlan()->getCanonicalIV()->getScalarType());
|
|
assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
|
|
for (VPUser *U : A->users()) {
|
|
auto *R = cast<VPRecipeBase>(U);
|
|
for (VPValue *VPV : R->definedValues())
|
|
assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Simplify (X && Y) || (X && !Y) -> X.
|
|
// TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
|
|
// && (Y || Z) and (X || !X) into true. This requires queuing newly created
|
|
// recipes to be visited during simplification.
|
|
VPValue *X, *Y, *X1, *Y1;
|
|
if (match(&R,
|
|
m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
|
|
m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
|
|
X == X1 && Y == Y1) {
|
|
R.getVPSingleValue()->replaceAllUsesWith(X);
|
|
R.eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
|
|
return R.getVPSingleValue()->replaceAllUsesWith(A);
|
|
}
|
|
|
|
/// Move loop-invariant recipes out of the vector loop region in \p Plan.
|
|
static void licm(VPlan &Plan) {
|
|
VPBasicBlock *Preheader = Plan.getVectorPreheader();
|
|
|
|
// Return true if we do not know how to (mechanically) hoist a given recipe
|
|
// out of a loop region. Does not address legality concerns such as aliasing
|
|
// or speculation safety.
|
|
auto CannotHoistRecipe = [](VPRecipeBase &R) {
|
|
// Allocas cannot be hoisted.
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
|
|
return RepR && RepR->getOpcode() == Instruction::Alloca;
|
|
};
|
|
|
|
// Hoist any loop invariant recipes from the vector loop region to the
|
|
// preheader. Preform a shallow traversal of the vector loop region, to
|
|
// exclude recipes in replicate regions.
|
|
VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_shallow(LoopRegion->getEntry()))) {
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
|
|
if (CannotHoistRecipe(R))
|
|
continue;
|
|
// TODO: Relax checks in the future, e.g. we could also hoist reads, if
|
|
// their memory location is not modified in the vector loop.
|
|
if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
|
|
any_of(R.operands(), [](VPValue *Op) {
|
|
return !Op->isDefinedOutsideLoopRegions();
|
|
}))
|
|
continue;
|
|
R.moveBefore(*Preheader, Preheader->end());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Try to simplify the recipes in \p Plan.
|
|
static void simplifyRecipes(VPlan &Plan) {
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan.getEntry());
|
|
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
|
|
VPTypeAnalysis TypeInfo(CanonicalIVType);
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
|
|
simplifyRecipe(R, TypeInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::truncateToMinimalBitwidths(
|
|
VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
|
|
#ifndef NDEBUG
|
|
// Count the processed recipes and cross check the count later with MinBWs
|
|
// size, to make sure all entries in MinBWs have been handled.
|
|
unsigned NumProcessedRecipes = 0;
|
|
#endif
|
|
// Keep track of created truncates, so they can be re-used. Note that we
|
|
// cannot use RAUW after creating a new truncate, as this would could make
|
|
// other uses have different types for their operands, making them invalidly
|
|
// typed.
|
|
DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
|
|
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
|
|
VPTypeAnalysis TypeInfo(CanonicalIVType);
|
|
VPBasicBlock *PH = Plan.getVectorPreheader();
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
|
|
if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
|
|
VPWidenSelectRecipe, VPWidenLoadRecipe>(&R))
|
|
continue;
|
|
|
|
VPValue *ResultVPV = R.getVPSingleValue();
|
|
auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
|
|
unsigned NewResSizeInBits = MinBWs.lookup(UI);
|
|
if (!NewResSizeInBits)
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
NumProcessedRecipes++;
|
|
#endif
|
|
// If the value wasn't vectorized, we must maintain the original scalar
|
|
// type. Skip those here, after incrementing NumProcessedRecipes. Also
|
|
// skip casts which do not need to be handled explicitly here, as
|
|
// redundant casts will be removed during recipe simplification.
|
|
if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
|
|
#ifndef NDEBUG
|
|
// If any of the operands is a live-in and not used by VPWidenRecipe or
|
|
// VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
|
|
// processed as well. When MinBWs is currently constructed, there is no
|
|
// information about whether recipes are widened or replicated and in
|
|
// case they are reciplicated the operands are not truncated. Counting
|
|
// them them here ensures we do not miss any recipes in MinBWs.
|
|
// TODO: Remove once the analysis is done on VPlan.
|
|
for (VPValue *Op : R.operands()) {
|
|
if (!Op->isLiveIn())
|
|
continue;
|
|
auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
|
|
if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
|
|
all_of(Op->users(), [](VPUser *U) {
|
|
return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
|
|
})) {
|
|
// Add an entry to ProcessedTruncs to avoid counting the same
|
|
// operand multiple times.
|
|
ProcessedTruncs[Op] = nullptr;
|
|
NumProcessedRecipes += 1;
|
|
}
|
|
}
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
|
|
unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
|
|
assert(OldResTy->isIntegerTy() && "only integer types supported");
|
|
(void)OldResSizeInBits;
|
|
|
|
LLVMContext &Ctx = CanonicalIVType->getContext();
|
|
auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
|
|
|
|
// Any wrapping introduced by shrinking this operation shouldn't be
|
|
// considered undefined behavior. So, we can't unconditionally copy
|
|
// arithmetic wrapping flags to VPW.
|
|
if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
|
|
VPW->dropPoisonGeneratingFlags();
|
|
|
|
using namespace llvm::VPlanPatternMatch;
|
|
if (OldResSizeInBits != NewResSizeInBits &&
|
|
!match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
|
|
// Extend result to original width.
|
|
auto *Ext =
|
|
new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
|
|
Ext->insertAfter(&R);
|
|
ResultVPV->replaceAllUsesWith(Ext);
|
|
Ext->setOperand(0, ResultVPV);
|
|
assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
|
|
} else {
|
|
assert(
|
|
match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
|
|
"Only ICmps should not need extending the result.");
|
|
}
|
|
|
|
assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
|
|
if (isa<VPWidenLoadRecipe>(&R))
|
|
continue;
|
|
|
|
// Shrink operands by introducing truncates as needed.
|
|
unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
|
|
for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
|
|
auto *Op = R.getOperand(Idx);
|
|
unsigned OpSizeInBits =
|
|
TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
|
|
if (OpSizeInBits == NewResSizeInBits)
|
|
continue;
|
|
assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
|
|
auto [ProcessedIter, IterIsEmpty] =
|
|
ProcessedTruncs.insert({Op, nullptr});
|
|
VPWidenCastRecipe *NewOp =
|
|
IterIsEmpty
|
|
? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
|
|
: ProcessedIter->second;
|
|
R.setOperand(Idx, NewOp);
|
|
if (!IterIsEmpty)
|
|
continue;
|
|
ProcessedIter->second = NewOp;
|
|
if (!Op->isLiveIn()) {
|
|
NewOp->insertBefore(&R);
|
|
} else {
|
|
PH->appendRecipe(NewOp);
|
|
#ifndef NDEBUG
|
|
auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
|
|
bool IsContained = MinBWs.contains(OpInst);
|
|
NumProcessedRecipes += IsContained;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
assert(MinBWs.size() == NumProcessedRecipes &&
|
|
"some entries in MinBWs haven't been processed");
|
|
}
|
|
|
|
void VPlanTransforms::optimize(VPlan &Plan) {
|
|
removeRedundantCanonicalIVs(Plan);
|
|
removeRedundantInductionCasts(Plan);
|
|
|
|
simplifyRecipes(Plan);
|
|
legalizeAndOptimizeInductions(Plan);
|
|
removeDeadRecipes(Plan);
|
|
|
|
createAndOptimizeReplicateRegions(Plan);
|
|
|
|
removeRedundantExpandSCEVRecipes(Plan);
|
|
mergeBlocksIntoPredecessors(Plan);
|
|
licm(Plan);
|
|
}
|
|
|
|
// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
|
|
// the loop terminator with a branch-on-cond recipe with the negated
|
|
// active-lane-mask as operand. Note that this turns the loop into an
|
|
// uncountable one. Only the existing terminator is replaced, all other existing
|
|
// recipes/users remain unchanged, except for poison-generating flags being
|
|
// dropped from the canonical IV increment. Return the created
|
|
// VPActiveLaneMaskPHIRecipe.
|
|
//
|
|
// The function uses the following definitions:
|
|
//
|
|
// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
|
|
// calculate-trip-count-minus-VF (original TC) : original TC
|
|
// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
|
|
// CanonicalIVPhi : CanonicalIVIncrement
|
|
// %StartV is the canonical induction start value.
|
|
//
|
|
// The function adds the following recipes:
|
|
//
|
|
// vector.ph:
|
|
// %TripCount = calculate-trip-count-minus-VF (original TC)
|
|
// [if DataWithControlFlowWithoutRuntimeCheck]
|
|
// %EntryInc = canonical-iv-increment-for-part %StartV
|
|
// %EntryALM = active-lane-mask %EntryInc, %TripCount
|
|
//
|
|
// vector.body:
|
|
// ...
|
|
// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
|
|
// ...
|
|
// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
|
|
// %ALM = active-lane-mask %InLoopInc, TripCount
|
|
// %Negated = Not %ALM
|
|
// branch-on-cond %Negated
|
|
//
|
|
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
|
|
VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
|
|
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
|
|
auto *CanonicalIVPHI = Plan.getCanonicalIV();
|
|
VPValue *StartV = CanonicalIVPHI->getStartValue();
|
|
|
|
auto *CanonicalIVIncrement =
|
|
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
|
|
// TODO: Check if dropping the flags is needed if
|
|
// !DataAndControlFlowWithoutRuntimeCheck.
|
|
CanonicalIVIncrement->dropPoisonGeneratingFlags();
|
|
DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
|
|
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
|
|
// we have to take unrolling into account. Each part needs to start at
|
|
// Part * VF
|
|
auto *VecPreheader = Plan.getVectorPreheader();
|
|
VPBuilder Builder(VecPreheader);
|
|
|
|
// Create the ActiveLaneMask instruction using the correct start values.
|
|
VPValue *TC = Plan.getTripCount();
|
|
|
|
VPValue *TripCount, *IncrementValue;
|
|
if (!DataAndControlFlowWithoutRuntimeCheck) {
|
|
// When the loop is guarded by a runtime overflow check for the loop
|
|
// induction variable increment by VF, we can increment the value before
|
|
// the get.active.lane mask and use the unmodified tripcount.
|
|
IncrementValue = CanonicalIVIncrement;
|
|
TripCount = TC;
|
|
} else {
|
|
// When avoiding a runtime check, the active.lane.mask inside the loop
|
|
// uses a modified trip count and the induction variable increment is
|
|
// done after the active.lane.mask intrinsic is called.
|
|
IncrementValue = CanonicalIVPHI;
|
|
TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
|
|
{TC}, DL);
|
|
}
|
|
auto *EntryIncrement = Builder.createOverflowingOp(
|
|
VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
|
|
"index.part.next");
|
|
|
|
// Create the active lane mask instruction in the VPlan preheader.
|
|
auto *EntryALM =
|
|
Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
|
|
DL, "active.lane.mask.entry");
|
|
|
|
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
|
|
// preheader ActiveLaneMask instruction.
|
|
auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
|
|
LaneMaskPhi->insertAfter(CanonicalIVPHI);
|
|
|
|
// Create the active lane mask for the next iteration of the loop before the
|
|
// original terminator.
|
|
VPRecipeBase *OriginalTerminator = EB->getTerminator();
|
|
Builder.setInsertPoint(OriginalTerminator);
|
|
auto *InLoopIncrement =
|
|
Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
|
|
{IncrementValue}, {false, false}, DL);
|
|
auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
|
|
{InLoopIncrement, TripCount}, DL,
|
|
"active.lane.mask.next");
|
|
LaneMaskPhi->addOperand(ALM);
|
|
|
|
// Replace the original terminator with BranchOnCond. We have to invert the
|
|
// mask here because a true condition means jumping to the exit block.
|
|
auto *NotMask = Builder.createNot(ALM, DL);
|
|
Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
|
|
OriginalTerminator->eraseFromParent();
|
|
return LaneMaskPhi;
|
|
}
|
|
|
|
/// Collect all VPValues representing a header mask through the (ICMP_ULE,
|
|
/// WideCanonicalIV, backedge-taken-count) pattern.
|
|
/// TODO: Introduce explicit recipe for header-mask instead of searching
|
|
/// for the header-mask pattern manually.
|
|
static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) {
|
|
SmallVector<VPValue *> WideCanonicalIVs;
|
|
auto *FoundWidenCanonicalIVUser =
|
|
find_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
|
|
assert(count_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
|
|
1 &&
|
|
"Must have at most one VPWideCanonicalIVRecipe");
|
|
if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
|
|
auto *WideCanonicalIV =
|
|
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
|
|
WideCanonicalIVs.push_back(WideCanonicalIV);
|
|
}
|
|
|
|
// Also include VPWidenIntOrFpInductionRecipes that represent a widened
|
|
// version of the canonical induction.
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (WidenOriginalIV && WidenOriginalIV->isCanonical())
|
|
WideCanonicalIVs.push_back(WidenOriginalIV);
|
|
}
|
|
|
|
// Walk users of wide canonical IVs and collect to all compares of the form
|
|
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
|
|
SmallVector<VPValue *> HeaderMasks;
|
|
for (auto *Wide : WideCanonicalIVs) {
|
|
for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
|
|
auto *HeaderMask = dyn_cast<VPInstruction>(U);
|
|
if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan))
|
|
continue;
|
|
|
|
assert(HeaderMask->getOperand(0) == Wide &&
|
|
"WidenCanonicalIV must be the first operand of the compare");
|
|
HeaderMasks.push_back(HeaderMask);
|
|
}
|
|
}
|
|
return HeaderMasks;
|
|
}
|
|
|
|
void VPlanTransforms::addActiveLaneMask(
|
|
VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
|
|
bool DataAndControlFlowWithoutRuntimeCheck) {
|
|
assert((!DataAndControlFlowWithoutRuntimeCheck ||
|
|
UseActiveLaneMaskForControlFlow) &&
|
|
"DataAndControlFlowWithoutRuntimeCheck implies "
|
|
"UseActiveLaneMaskForControlFlow");
|
|
|
|
auto *FoundWidenCanonicalIVUser =
|
|
find_if(Plan.getCanonicalIV()->users(),
|
|
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
|
|
assert(FoundWidenCanonicalIVUser &&
|
|
"Must have widened canonical IV when tail folding!");
|
|
auto *WideCanonicalIV =
|
|
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
|
|
VPSingleDefRecipe *LaneMask;
|
|
if (UseActiveLaneMaskForControlFlow) {
|
|
LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
|
|
Plan, DataAndControlFlowWithoutRuntimeCheck);
|
|
} else {
|
|
VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
|
|
LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
|
|
{WideCanonicalIV, Plan.getTripCount()}, nullptr,
|
|
"active.lane.mask");
|
|
}
|
|
|
|
// Walk users of WideCanonicalIV and replace all compares of the form
|
|
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
|
|
// active-lane-mask.
|
|
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
|
|
HeaderMask->replaceAllUsesWith(LaneMask);
|
|
}
|
|
|
|
/// Replace recipes with their EVL variants.
|
|
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) {
|
|
using namespace llvm::VPlanPatternMatch;
|
|
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
|
|
VPTypeAnalysis TypeInfo(CanonicalIVType);
|
|
LLVMContext &Ctx = CanonicalIVType->getContext();
|
|
SmallVector<VPValue *> HeaderMasks = collectAllHeaderMasks(Plan);
|
|
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
|
|
for (VPUser *U : collectUsersRecursively(HeaderMask)) {
|
|
auto *CurRecipe = cast<VPRecipeBase>(U);
|
|
auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
|
|
assert(OrigMask && "Unmasked recipe when folding tail");
|
|
return HeaderMask == OrigMask ? nullptr : OrigMask;
|
|
};
|
|
|
|
VPRecipeBase *NewRecipe =
|
|
TypeSwitch<VPRecipeBase *, VPRecipeBase *>(CurRecipe)
|
|
.Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) {
|
|
VPValue *NewMask = GetNewMask(L->getMask());
|
|
return new VPWidenLoadEVLRecipe(*L, EVL, NewMask);
|
|
})
|
|
.Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
|
|
VPValue *NewMask = GetNewMask(S->getMask());
|
|
return new VPWidenStoreEVLRecipe(*S, EVL, NewMask);
|
|
})
|
|
.Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * {
|
|
unsigned Opcode = W->getOpcode();
|
|
if (!Instruction::isBinaryOp(Opcode) &&
|
|
!Instruction::isUnaryOp(Opcode))
|
|
return nullptr;
|
|
return new VPWidenEVLRecipe(*W, EVL);
|
|
})
|
|
.Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
|
|
VPValue *NewMask = GetNewMask(Red->getCondOp());
|
|
return new VPReductionEVLRecipe(*Red, EVL, NewMask);
|
|
})
|
|
.Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) {
|
|
SmallVector<VPValue *> Ops(Sel->operands());
|
|
Ops.push_back(&EVL);
|
|
return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops,
|
|
TypeInfo.inferScalarType(Sel),
|
|
Sel->getDebugLoc());
|
|
})
|
|
.Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
|
|
VPValue *LHS, *RHS;
|
|
// Transform select with a header mask condition
|
|
// select(header_mask, LHS, RHS)
|
|
// into vector predication merge.
|
|
// vp.merge(all-true, LHS, RHS, EVL)
|
|
if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
|
|
m_VPValue(RHS))))
|
|
return nullptr;
|
|
// Use all true as the condition because this transformation is
|
|
// limited to selects whose condition is a header mask.
|
|
VPValue *AllTrue =
|
|
Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx));
|
|
return new VPWidenIntrinsicRecipe(
|
|
Intrinsic::vp_merge, {AllTrue, LHS, RHS, &EVL},
|
|
TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
|
|
})
|
|
.Default([&](VPRecipeBase *R) { return nullptr; });
|
|
|
|
if (!NewRecipe)
|
|
continue;
|
|
|
|
[[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues();
|
|
assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
|
|
"New recipe must define the same number of values as the "
|
|
"original.");
|
|
assert(
|
|
NumDefVal <= 1 &&
|
|
"Only supports recipes with a single definition or without users.");
|
|
NewRecipe->insertBefore(CurRecipe);
|
|
if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) {
|
|
VPValue *CurVPV = CurRecipe->getVPSingleValue();
|
|
CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
|
|
}
|
|
CurRecipe->eraseFromParent();
|
|
}
|
|
recursivelyDeleteDeadRecipes(HeaderMask);
|
|
}
|
|
}
|
|
|
|
/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
|
|
/// replaces all uses except the canonical IV increment of
|
|
/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
|
|
/// is used only for loop iterations counting after this transformation.
|
|
///
|
|
/// The function uses the following definitions:
|
|
/// %StartV is the canonical induction start value.
|
|
///
|
|
/// The function adds the following recipes:
|
|
///
|
|
/// vector.ph:
|
|
/// ...
|
|
///
|
|
/// vector.body:
|
|
/// ...
|
|
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
|
|
/// [ %NextEVLIV, %vector.body ]
|
|
/// %AVL = sub original TC, %EVLPhi
|
|
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
|
|
/// ...
|
|
/// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
|
|
/// ...
|
|
///
|
|
/// If MaxSafeElements is provided, the function adds the following recipes:
|
|
/// vector.ph:
|
|
/// ...
|
|
///
|
|
/// vector.body:
|
|
/// ...
|
|
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
|
|
/// [ %NextEVLIV, %vector.body ]
|
|
/// %AVL = sub original TC, %EVLPhi
|
|
/// %cmp = cmp ult %AVL, MaxSafeElements
|
|
/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
|
|
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
|
|
/// ...
|
|
/// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi
|
|
/// ...
|
|
///
|
|
bool VPlanTransforms::tryAddExplicitVectorLength(
|
|
VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
|
|
VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
// The transform updates all users of inductions to work based on EVL, instead
|
|
// of the VF directly. At the moment, widened inductions cannot be updated, so
|
|
// bail out if the plan contains any.
|
|
bool ContainsWidenInductions = any_of(Header->phis(), [](VPRecipeBase &Phi) {
|
|
return isa<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>(
|
|
&Phi);
|
|
});
|
|
if (ContainsWidenInductions)
|
|
return false;
|
|
|
|
auto *CanonicalIVPHI = Plan.getCanonicalIV();
|
|
VPValue *StartV = CanonicalIVPHI->getStartValue();
|
|
|
|
// Create the ExplicitVectorLengthPhi recipe in the main loop.
|
|
auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
|
|
EVLPhi->insertAfter(CanonicalIVPHI);
|
|
VPBuilder Builder(Header, Header->getFirstNonPhi());
|
|
// Compute original TC - IV as the AVL (application vector length).
|
|
VPValue *AVL = Builder.createNaryOp(
|
|
Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl");
|
|
if (MaxSafeElements) {
|
|
// Support for MaxSafeDist for correct loop emission.
|
|
VPValue *AVLSafe = Plan.getOrAddLiveIn(
|
|
ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements));
|
|
VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
|
|
AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl");
|
|
}
|
|
auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
|
|
DebugLoc());
|
|
|
|
auto *CanonicalIVIncrement =
|
|
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
|
|
VPSingleDefRecipe *OpVPEVL = VPEVL;
|
|
if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
|
|
IVSize != 32) {
|
|
OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc
|
|
: Instruction::ZExt,
|
|
OpVPEVL, CanonicalIVPHI->getScalarType());
|
|
OpVPEVL->insertBefore(CanonicalIVIncrement);
|
|
}
|
|
auto *NextEVLIV =
|
|
new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
|
|
{CanonicalIVIncrement->hasNoUnsignedWrap(),
|
|
CanonicalIVIncrement->hasNoSignedWrap()},
|
|
CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
|
|
NextEVLIV->insertBefore(CanonicalIVIncrement);
|
|
EVLPhi->addOperand(NextEVLIV);
|
|
|
|
transformRecipestoEVLRecipes(Plan, *VPEVL);
|
|
|
|
// Replace all uses of VPCanonicalIVPHIRecipe by
|
|
// VPEVLBasedIVPHIRecipe except for the canonical IV increment.
|
|
CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
|
|
CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
|
|
// TODO: support unroll factor > 1.
|
|
Plan.setUF(1);
|
|
return true;
|
|
}
|
|
|
|
void VPlanTransforms::dropPoisonGeneratingRecipes(
|
|
VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
|
|
// Collect recipes in the backward slice of `Root` that may generate a poison
|
|
// value that is used after vectorization.
|
|
SmallPtrSet<VPRecipeBase *, 16> Visited;
|
|
auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
|
|
SmallVector<VPRecipeBase *, 16> Worklist;
|
|
Worklist.push_back(Root);
|
|
|
|
// Traverse the backward slice of Root through its use-def chain.
|
|
while (!Worklist.empty()) {
|
|
VPRecipeBase *CurRec = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(CurRec).second)
|
|
continue;
|
|
|
|
// Prune search if we find another recipe generating a widen memory
|
|
// instruction. Widen memory instructions involved in address computation
|
|
// will lead to gather/scatter instructions, which don't need to be
|
|
// handled.
|
|
if (isa<VPWidenMemoryRecipe>(CurRec) || isa<VPInterleaveRecipe>(CurRec) ||
|
|
isa<VPScalarIVStepsRecipe>(CurRec) || isa<VPHeaderPHIRecipe>(CurRec))
|
|
continue;
|
|
|
|
// This recipe contributes to the address computation of a widen
|
|
// load/store. If the underlying instruction has poison-generating flags,
|
|
// drop them directly.
|
|
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
|
|
VPValue *A, *B;
|
|
using namespace llvm::VPlanPatternMatch;
|
|
// Dropping disjoint from an OR may yield incorrect results, as some
|
|
// analysis may have converted it to an Add implicitly (e.g. SCEV used
|
|
// for dependence analysis). Instead, replace it with an equivalent Add.
|
|
// This is possible as all users of the disjoint OR only access lanes
|
|
// where the operands are disjoint or poison otherwise.
|
|
if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
|
|
RecWithFlags->isDisjoint()) {
|
|
VPBuilder Builder(RecWithFlags);
|
|
VPInstruction *New = Builder.createOverflowingOp(
|
|
Instruction::Add, {A, B}, {false, false},
|
|
RecWithFlags->getDebugLoc());
|
|
New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
|
|
RecWithFlags->replaceAllUsesWith(New);
|
|
RecWithFlags->eraseFromParent();
|
|
CurRec = New;
|
|
} else
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
} else {
|
|
Instruction *Instr = dyn_cast_or_null<Instruction>(
|
|
CurRec->getVPSingleValue()->getUnderlyingValue());
|
|
(void)Instr;
|
|
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
|
|
"found instruction with poison generating flags not covered by "
|
|
"VPRecipeWithIRFlags");
|
|
}
|
|
|
|
// Add new definitions to the worklist.
|
|
for (VPValue *Operand : CurRec->operands())
|
|
if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
|
|
Worklist.push_back(OpDef);
|
|
}
|
|
});
|
|
|
|
// Traverse all the recipes in the VPlan and collect the poison-generating
|
|
// recipes in the backward slice starting at the address of a VPWidenRecipe or
|
|
// VPInterleaveRecipe.
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
|
|
for (VPRecipeBase &Recipe : *VPBB) {
|
|
if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
|
|
Instruction &UnderlyingInstr = WidenRec->getIngredient();
|
|
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef && WidenRec->isConsecutive() &&
|
|
BlockNeedsPredication(UnderlyingInstr.getParent()))
|
|
CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
|
|
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef) {
|
|
// Check if any member of the interleave group needs predication.
|
|
const InterleaveGroup<Instruction> *InterGroup =
|
|
InterleaveRec->getInterleaveGroup();
|
|
bool NeedPredication = false;
|
|
for (int I = 0, NumMembers = InterGroup->getNumMembers();
|
|
I < NumMembers; ++I) {
|
|
Instruction *Member = InterGroup->getMember(I);
|
|
if (Member)
|
|
NeedPredication |= BlockNeedsPredication(Member->getParent());
|
|
}
|
|
|
|
if (NeedPredication)
|
|
CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::createInterleaveGroups(
|
|
VPlan &Plan,
|
|
const SmallPtrSetImpl<const InterleaveGroup<Instruction> *>
|
|
&InterleaveGroups,
|
|
VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) {
|
|
if (InterleaveGroups.empty())
|
|
return;
|
|
|
|
// Interleave memory: for each Interleave Group we marked earlier as relevant
|
|
// for this VPlan, replace the Recipes widening its memory instructions with a
|
|
// single VPInterleaveRecipe at its insertion point.
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
for (const auto *IG : InterleaveGroups) {
|
|
SmallVector<VPValue *, 4> StoredValues;
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
|
|
auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI));
|
|
StoredValues.push_back(StoreR->getStoredValue());
|
|
}
|
|
|
|
bool NeedsMaskForGaps =
|
|
IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed;
|
|
|
|
Instruction *IRInsertPos = IG->getInsertPos();
|
|
auto *InsertPos =
|
|
cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
|
|
|
|
// Get or create the start address for the interleave group.
|
|
auto *Start =
|
|
cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
|
|
VPValue *Addr = Start->getAddr();
|
|
VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
|
|
if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
|
|
// TODO: Hoist Addr's defining recipe (and any operands as needed) to
|
|
// InsertPos or sink loads above zero members to join it.
|
|
bool InBounds = false;
|
|
if (auto *Gep = dyn_cast<GetElementPtrInst>(
|
|
getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
|
|
InBounds = Gep->isInBounds();
|
|
|
|
// We cannot re-use the address of member zero because it does not
|
|
// dominate the insert position. Instead, use the address of the insert
|
|
// position and create a PtrAdd adjusting it to the address of member
|
|
// zero.
|
|
assert(IG->getIndex(IRInsertPos) != 0 &&
|
|
"index of insert position shouldn't be zero");
|
|
auto &DL = IRInsertPos->getDataLayout();
|
|
APInt Offset(32,
|
|
DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
|
|
IG->getIndex(IRInsertPos),
|
|
/*IsSigned=*/true);
|
|
VPValue *OffsetVPV = Plan.getOrAddLiveIn(
|
|
ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset));
|
|
VPBuilder B(InsertPos);
|
|
Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV)
|
|
: B.createPtrAdd(InsertPos->getAddr(), OffsetVPV);
|
|
}
|
|
auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
|
|
InsertPos->getMask(), NeedsMaskForGaps);
|
|
VPIG->insertBefore(InsertPos);
|
|
|
|
unsigned J = 0;
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (Instruction *Member = IG->getMember(i)) {
|
|
VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
|
|
if (!Member->getType()->isVoidTy()) {
|
|
VPValue *OriginalV = MemberR->getVPSingleValue();
|
|
OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
|
|
J++;
|
|
}
|
|
MemberR->eraseFromParent();
|
|
}
|
|
}
|
|
}
|