llvm-project/mlir/lib/Transforms/Utils/DialectConversion.cpp

3412 lines
130 KiB
C++

//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Iterators.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Rewrite/PatternApplicator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include <optional>
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
/// Helper function that computes an insertion point where the given value is
/// defined and can be used without a dominance violation.
static OpBuilder::InsertPoint computeInsertPoint(Value value) {
Block *insertBlock = value.getParentBlock();
Block::iterator insertPt = insertBlock->begin();
if (OpResult inputRes = dyn_cast<OpResult>(value))
insertPt = ++inputRes.getOwner()->getIterator();
return OpBuilder::InsertPoint(insertBlock, insertPt);
}
//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//
/// A list of replacement SSA values. Optimized for the common case of a single
/// SSA value.
using ReplacementValues = SmallVector<Value, 1>;
namespace {
/// This class wraps a IRMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup the most recently mapped value with the desired type in the
/// mapping.
///
/// Special cases:
/// - If the desired type is "null", simply return the most recently mapped
/// value.
/// - If there is no mapping to the desired type, also return the most
/// recently mapped value.
/// - If there is no mapping for the given value at all, return the given
/// value.
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
/// Lookup a mapped value within the map, or return null if a mapping does not
/// exist. If a mapping exists, this follows the same behavior of
/// `lookupOrDefault`.
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) {
LLVM_DEBUG({
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
assert(it != oldVal && "inserting cyclic mapping");
});
mapping.map(oldVal, newVal);
}
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
/// Returns the inverse raw value mapping (without recursive query support).
DenseMap<Value, SmallVector<Value>> getInverse() const {
DenseMap<Value, SmallVector<Value>> inverse;
for (auto &it : mapping.getValueMap())
inverse[it.second].push_back(it.first);
return inverse;
}
private:
/// Current value mappings.
IRMapping mapping;
};
} // namespace
Value ConversionValueMapping::lookupOrDefault(Value from,
Type desiredType) const {
// Try to find the deepest value that has the desired type. If there is no
// such value, simply return the deepest value.
Value desiredValue;
do {
if (!desiredType || from.getType() == desiredType)
desiredValue = from;
Value mappedValue = mapping.lookupOrNull(from);
if (!mappedValue)
break;
from = mappedValue;
} while (true);
// If the desired value was found use it, otherwise default to the leaf value.
return desiredValue ? desiredValue : from;
}
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
Value result = lookupOrDefault(from, desiredType);
if (result == from || (desiredType && result.getType() != desiredType))
return nullptr;
return result;
}
//===----------------------------------------------------------------------===//
// Rewriter and Translation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numRewrites, unsigned numIgnoredOperations,
unsigned numReplacedOps)
: numRewrites(numRewrites), numIgnoredOperations(numIgnoredOperations),
numReplacedOps(numReplacedOps) {}
/// The current number of rewrites performed.
unsigned numRewrites;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of replaced ops that are scheduled for erasure.
unsigned numReplacedOps;
};
//===----------------------------------------------------------------------===//
// IR rewrites
//===----------------------------------------------------------------------===//
/// An IR rewrite that can be committed (upon success) or rolled back (upon
/// failure).
///
/// The dialect conversion keeps track of IR modifications (requested by the
/// user through the rewriter API) in `IRRewrite` objects. Some kind of rewrites
/// are directly applied to the IR as the rewriter API is used, some are applied
/// partially, and some are delayed until the `IRRewrite` objects are committed.
class IRRewrite {
public:
/// The kind of the rewrite. Rewrites can be undone if the conversion fails.
/// Enum values are ordered, so that they can be used in `classof`: first all
/// block rewrites, then all operation rewrites.
enum class Kind {
// Block rewrites
CreateBlock,
EraseBlock,
InlineBlock,
MoveBlock,
BlockTypeConversion,
ReplaceBlockArg,
// Operation rewrites
MoveOperation,
ModifyOperation,
ReplaceOperation,
CreateOperation,
UnresolvedMaterialization
};
virtual ~IRRewrite() = default;
/// Roll back the rewrite. Operations may be erased during rollback.
virtual void rollback() = 0;
/// Commit the rewrite. At this point, it is certain that the dialect
/// conversion will succeed. All IR modifications, except for operation/block
/// erasure, must be performed through the given rewriter.
///
/// Instead of erasing operations/blocks, they should merely be unlinked
/// commit phase and finally be erased during the cleanup phase. This is
/// because internal dialect conversion state (such as `mapping`) may still
/// be using them.
///
/// Any IR modification that was already performed before the commit phase
/// (e.g., insertion of an op) must be communicated to the listener that may
/// be attached to the given rewriter.
virtual void commit(RewriterBase &rewriter) {}
/// Cleanup operations/blocks. Cleanup is called after commit.
virtual void cleanup(RewriterBase &rewriter) {}
Kind getKind() const { return kind; }
static bool classof(const IRRewrite *rewrite) { return true; }
protected:
IRRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl)
: kind(kind), rewriterImpl(rewriterImpl) {}
const ConversionConfig &getConfig() const;
const Kind kind;
ConversionPatternRewriterImpl &rewriterImpl;
};
/// A block rewrite.
class BlockRewrite : public IRRewrite {
public:
/// Return the block that this rewrite operates on.
Block *getBlock() const { return block; }
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() >= Kind::CreateBlock &&
rewrite->getKind() <= Kind::ReplaceBlockArg;
}
protected:
BlockRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
Block *block)
: IRRewrite(kind, rewriterImpl), block(block) {}
// The block that this rewrite operates on.
Block *block;
};
/// Creation of a block. Block creations are immediately reflected in the IR.
/// There is no extra work to commit the rewrite. During rollback, the newly
/// created block is erased.
class CreateBlockRewrite : public BlockRewrite {
public:
CreateBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
: BlockRewrite(Kind::CreateBlock, rewriterImpl, block) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::CreateBlock;
}
void commit(RewriterBase &rewriter) override {
// The block was already created and inserted. Just inform the listener.
if (auto *listener = rewriter.getListener())
listener->notifyBlockInserted(block, /*previous=*/{}, /*previousIt=*/{});
}
void rollback() override {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
block->dropAllUses();
if (block->getParent())
block->erase();
else
delete block;
}
};
/// Erasure of a block. Block erasures are partially reflected in the IR. Erased
/// blocks are immediately unlinked, but only erased during cleanup. This makes
/// it easier to rollback a block erasure: the block is simply inserted into its
/// original location.
class EraseBlockRewrite : public BlockRewrite {
public:
EraseBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
: BlockRewrite(Kind::EraseBlock, rewriterImpl, block),
region(block->getParent()), insertBeforeBlock(block->getNextNode()) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::EraseBlock;
}
~EraseBlockRewrite() override {
assert(!block &&
"rewrite was neither rolled back nor committed/cleaned up");
}
void rollback() override {
// The block (owned by this rewrite) was not actually erased yet. It was
// just unlinked. Put it back into its original position.
assert(block && "expected block");
auto &blockList = region->getBlocks();
Region::iterator before = insertBeforeBlock
? Region::iterator(insertBeforeBlock)
: blockList.end();
blockList.insert(before, block);
block = nullptr;
}
void commit(RewriterBase &rewriter) override {
// Erase the block.
assert(block && "expected block");
assert(block->empty() && "expected empty block");
// Notify the listener that the block is about to be erased.
if (auto *listener =
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
listener->notifyBlockErased(block);
}
void cleanup(RewriterBase &rewriter) override {
// Erase the block.
block->dropAllDefinedValueUses();
delete block;
block = nullptr;
}
private:
// The region in which this block was previously contained.
Region *region;
// The original successor of this block before it was unlinked. "nullptr" if
// this block was the only block in the region.
Block *insertBeforeBlock;
};
/// Inlining of a block. This rewrite is immediately reflected in the IR.
/// Note: This rewrite represents only the inlining of the operations. The
/// erasure of the inlined block is a separate rewrite.
class InlineBlockRewrite : public BlockRewrite {
public:
InlineBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Block *sourceBlock, Block::iterator before)
: BlockRewrite(Kind::InlineBlock, rewriterImpl, block),
sourceBlock(sourceBlock),
firstInlinedInst(sourceBlock->empty() ? nullptr
: &sourceBlock->front()),
lastInlinedInst(sourceBlock->empty() ? nullptr : &sourceBlock->back()) {
// If a listener is attached to the dialect conversion, ops must be moved
// one-by-one. When they are moved in bulk, notifications cannot be sent
// because the ops that used to be in the source block at the time of the
// inlining (before the "commit" phase) are unknown at the time when
// notifications are sent (which is during the "commit" phase).
assert(!getConfig().listener &&
"InlineBlockRewrite not supported if listener is attached");
}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::InlineBlock;
}
void rollback() override {
// Put the operations from the destination block (owned by the rewrite)
// back into the source block.
if (firstInlinedInst) {
assert(lastInlinedInst && "expected operation");
sourceBlock->getOperations().splice(sourceBlock->begin(),
block->getOperations(),
Block::iterator(firstInlinedInst),
++Block::iterator(lastInlinedInst));
}
}
private:
// The block that originally contained the operations.
Block *sourceBlock;
// The first inlined operation.
Operation *firstInlinedInst;
// The last inlined operation.
Operation *lastInlinedInst;
};
/// Moving of a block. This rewrite is immediately reflected in the IR.
class MoveBlockRewrite : public BlockRewrite {
public:
MoveBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Region *region, Block *insertBeforeBlock)
: BlockRewrite(Kind::MoveBlock, rewriterImpl, block), region(region),
insertBeforeBlock(insertBeforeBlock) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::MoveBlock;
}
void commit(RewriterBase &rewriter) override {
// The block was already moved. Just inform the listener.
if (auto *listener = rewriter.getListener()) {
// Note: `previousIt` cannot be passed because this is a delayed
// notification and iterators into past IR state cannot be represented.
listener->notifyBlockInserted(block, /*previous=*/region,
/*previousIt=*/{});
}
}
void rollback() override {
// Move the block back to its original position.
Region::iterator before =
insertBeforeBlock ? Region::iterator(insertBeforeBlock) : region->end();
region->getBlocks().splice(before, block->getParent()->getBlocks(), block);
}
private:
// The region in which this block was previously contained.
Region *region;
// The original successor of this block before it was moved. "nullptr" if
// this block was the only block in the region.
Block *insertBeforeBlock;
};
/// Block type conversion. This rewrite is partially reflected in the IR.
class BlockTypeConversionRewrite : public BlockRewrite {
public:
BlockTypeConversionRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Block *block, Block *origBlock,
const TypeConverter *converter)
: BlockRewrite(Kind::BlockTypeConversion, rewriterImpl, block),
origBlock(origBlock), converter(converter) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::BlockTypeConversion;
}
Block *getOrigBlock() const { return origBlock; }
const TypeConverter *getConverter() const { return converter; }
void commit(RewriterBase &rewriter) override;
void rollback() override;
private:
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The type converter used to convert the arguments.
const TypeConverter *converter;
};
/// Replacing a block argument. This rewrite is not immediately reflected in the
/// IR. An internal IR mapping is updated, but the actual replacement is delayed
/// until the rewrite is committed.
class ReplaceBlockArgRewrite : public BlockRewrite {
public:
ReplaceBlockArgRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Block *block, BlockArgument arg)
: BlockRewrite(Kind::ReplaceBlockArg, rewriterImpl, block), arg(arg) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ReplaceBlockArg;
}
void commit(RewriterBase &rewriter) override;
void rollback() override;
private:
BlockArgument arg;
};
/// An operation rewrite.
class OperationRewrite : public IRRewrite {
public:
/// Return the operation that this rewrite operates on.
Operation *getOperation() const { return op; }
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() >= Kind::MoveOperation &&
rewrite->getKind() <= Kind::UnresolvedMaterialization;
}
protected:
OperationRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: IRRewrite(kind, rewriterImpl), op(op) {}
// The operation that this rewrite operates on.
Operation *op;
};
/// Moving of an operation. This rewrite is immediately reflected in the IR.
class MoveOperationRewrite : public OperationRewrite {
public:
MoveOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op, Block *block, Operation *insertBeforeOp)
: OperationRewrite(Kind::MoveOperation, rewriterImpl, op), block(block),
insertBeforeOp(insertBeforeOp) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::MoveOperation;
}
void commit(RewriterBase &rewriter) override {
// The operation was already moved. Just inform the listener.
if (auto *listener = rewriter.getListener()) {
// Note: `previousIt` cannot be passed because this is a delayed
// notification and iterators into past IR state cannot be represented.
listener->notifyOperationInserted(
op, /*previous=*/OpBuilder::InsertPoint(/*insertBlock=*/block,
/*insertPt=*/{}));
}
}
void rollback() override {
// Move the operation back to its original position.
Block::iterator before =
insertBeforeOp ? Block::iterator(insertBeforeOp) : block->end();
block->getOperations().splice(before, op->getBlock()->getOperations(), op);
}
private:
// The block in which this operation was previously contained.
Block *block;
// The original successor of this operation before it was moved. "nullptr"
// if this operation was the only operation in the region.
Operation *insertBeforeOp;
};
/// In-place modification of an op. This rewrite is immediately reflected in
/// the IR. The previous state of the operation is stored in this object.
class ModifyOperationRewrite : public OperationRewrite {
public:
ModifyOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: OperationRewrite(Kind::ModifyOperation, rewriterImpl, op),
name(op->getName()), loc(op->getLoc()), attrs(op->getAttrDictionary()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {
if (OpaqueProperties prop = op->getPropertiesStorage()) {
// Make a copy of the properties.
propertiesStorage = operator new(op->getPropertiesStorageSize());
OpaqueProperties propCopy(propertiesStorage);
name.initOpProperties(propCopy, /*init=*/prop);
}
}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ModifyOperation;
}
~ModifyOperationRewrite() override {
assert(!propertiesStorage &&
"rewrite was neither committed nor rolled back");
}
void commit(RewriterBase &rewriter) override {
// Notify the listener that the operation was modified in-place.
if (auto *listener =
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
listener->notifyOperationModified(op);
if (propertiesStorage) {
OpaqueProperties propCopy(propertiesStorage);
// Note: The operation may have been erased in the mean time, so
// OperationName must be stored in this object.
name.destroyOpProperties(propCopy);
operator delete(propertiesStorage);
propertiesStorage = nullptr;
}
}
void rollback() override {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (const auto &it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
if (propertiesStorage) {
OpaqueProperties propCopy(propertiesStorage);
op->copyProperties(propCopy);
name.destroyOpProperties(propCopy);
operator delete(propertiesStorage);
propertiesStorage = nullptr;
}
}
private:
OperationName name;
LocationAttr loc;
DictionaryAttr attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
void *propertiesStorage = nullptr;
};
/// Replacing an operation. Erasing an operation is treated as a special case
/// with "null" replacements. This rewrite is not immediately reflected in the
/// IR. An internal IR mapping is updated, but values are not replaced and the
/// original op is not erased until the rewrite is committed.
class ReplaceOperationRewrite : public OperationRewrite {
public:
ReplaceOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op, const TypeConverter *converter)
: OperationRewrite(Kind::ReplaceOperation, rewriterImpl, op),
converter(converter) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ReplaceOperation;
}
void commit(RewriterBase &rewriter) override;
void rollback() override;
void cleanup(RewriterBase &rewriter) override;
const TypeConverter *getConverter() const { return converter; }
private:
/// An optional type converter that can be used to materialize conversions
/// between the new and old values if necessary.
const TypeConverter *converter;
};
class CreateOperationRewrite : public OperationRewrite {
public:
CreateOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: OperationRewrite(Kind::CreateOperation, rewriterImpl, op) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::CreateOperation;
}
void commit(RewriterBase &rewriter) override {
// The operation was already created and inserted. Just inform the listener.
if (auto *listener = rewriter.getListener())
listener->notifyOperationInserted(op, /*previous=*/{});
}
void rollback() override;
};
/// The type of materialization.
enum MaterializationKind {
/// This materialization materializes a conversion for an illegal block
/// argument type, to the original one.
Argument,
/// This materialization materializes a conversion from an illegal type to a
/// legal one.
Target,
/// This materialization materializes a conversion from a legal type back to
/// an illegal one.
Source
};
/// An unresolved materialization, i.e., a "builtin.unrealized_conversion_cast"
/// op. Unresolved materializations are erased at the end of the dialect
/// conversion.
class UnresolvedMaterializationRewrite : public OperationRewrite {
public:
UnresolvedMaterializationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
UnrealizedConversionCastOp op,
const TypeConverter *converter,
MaterializationKind kind, Type originalType);
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::UnresolvedMaterialization;
}
void rollback() override;
UnrealizedConversionCastOp getOperation() const {
return cast<UnrealizedConversionCastOp>(op);
}
/// Return the type converter of this materialization (which may be null).
const TypeConverter *getConverter() const {
return converterAndKind.getPointer();
}
/// Return the kind of this materialization.
MaterializationKind getMaterializationKind() const {
return converterAndKind.getInt();
}
/// Return the original type of the SSA value.
Type getOriginalType() const { return originalType; }
private:
/// The corresponding type converter to use when resolving this
/// materialization, and the kind of this materialization.
llvm::PointerIntPair<const TypeConverter *, 2, MaterializationKind>
converterAndKind;
/// The original type of the SSA value. Only used for target
/// materializations.
Type originalType;
};
} // namespace
/// Return "true" if there is an operation rewrite that matches the specified
/// rewrite type and operation among the given rewrites.
template <typename RewriteTy, typename R>
static bool hasRewrite(R &&rewrites, Operation *op) {
return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
return rewriteTy && rewriteTy->getOperation() == op;
});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl : public RewriterBase::Listener {
explicit ConversionPatternRewriterImpl(MLIRContext *ctx,
const ConversionConfig &config)
: context(ctx), eraseRewriter(ctx), config(config) {}
//===--------------------------------------------------------------------===//
// State Management
//===--------------------------------------------------------------------===//
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Append a rewrite. Rewrites are committed upon success and rolled back upon
/// failure.
template <typename RewriteTy, typename... Args>
void appendRewrite(Args &&...args) {
rewrites.push_back(
std::make_unique<RewriteTy>(*this, std::forward<Args>(args)...));
}
/// Undo the rewrites (motions, splits) one by one in reverse order until
/// "numRewritesToKeep" rewrites remains.
void undoRewrites(unsigned numRewritesToKeep = 0);
/// Remap the given values to those with potentially different types. Returns
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
/// is the tag used when describing a value within a diagnostic, e.g.
/// "operand".
LogicalResult remapValues(StringRef valueDiagTag,
std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped);
/// Return "true" if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Return "true" if the given operation was replaced or erased.
bool wasOpReplaced(Operation *op) const;
//===--------------------------------------------------------------------===//
// Type Conversion
//===--------------------------------------------------------------------===//
/// Convert the types of block arguments within the given region.
FailureOr<Block *>
convertRegionTypes(ConversionPatternRewriter &rewriter, Region *region,
const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned. If no conversions were
/// necessary, e.g. if the block has no arguments, `block` is returned.
/// `converter` is used to generate any necessary cast operations that
/// translate between the origin argument types and those specified in the
/// signature conversion.
Block *applySignatureConversion(
ConversionPatternRewriter &rewriter, Block *block,
const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion);
//===--------------------------------------------------------------------===//
// Materializations
//===--------------------------------------------------------------------===//
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
Value buildUnresolvedMaterialization(MaterializationKind kind,
OpBuilder::InsertPoint ip, Location loc,
ValueRange inputs, Type outputType,
Type originalType,
const TypeConverter *converter);
/// Build an N:1 materialization for the given original value that was
/// replaced with the given replacement values.
///
/// This is a workaround around incomplete 1:N support in the dialect
/// conversion driver. The conversion mapping can store only 1:1 replacements
/// and the conversion patterns only support single Value replacements in the
/// adaptor, so N values must be converted back to a single value. This
/// function will be deleted when full 1:N support has been added.
///
/// This function inserts an argument materialization back to the original
/// type, followed by a target materialization to the legalized type (if
/// applicable).
void insertNTo1Materialization(OpBuilder::InsertPoint ip, Location loc,
ValueRange replacements, Value originalValue,
const TypeConverter *converter);
//===--------------------------------------------------------------------===//
// Rewriter Notification Hooks
//===--------------------------------------------------------------------===//
//// Notifies that an op was inserted.
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override;
/// Notifies that an op is about to be replaced with the given values.
void notifyOpReplaced(Operation *op, ArrayRef<ReplacementValues> newValues);
/// Notifies that a block is about to be erased.
void notifyBlockIsBeingErased(Block *block);
/// Notifies that a block was inserted.
void notifyBlockInserted(Block *block, Region *previous,
Region::iterator previousIt) override;
/// Notifies that a block is being inlined into another block.
void notifyBlockBeingInlined(Block *block, Block *srcBlock,
Block::iterator before);
/// Notifies that a pattern match failed for the given reason.
void
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback) override;
//===--------------------------------------------------------------------===//
// IR Erasure
//===--------------------------------------------------------------------===//
/// A rewriter that keeps track of erased ops and blocks. It ensures that no
/// operation or block is erased multiple times. This rewriter assumes that
/// no new IR is created between calls to `eraseOp`/`eraseBlock`.
struct SingleEraseRewriter : public RewriterBase, RewriterBase::Listener {
public:
SingleEraseRewriter(MLIRContext *context)
: RewriterBase(context, /*listener=*/this) {}
/// Erase the given op (unless it was already erased).
void eraseOp(Operation *op) override {
if (wasErased(op))
return;
op->dropAllUses();
RewriterBase::eraseOp(op);
}
/// Erase the given block (unless it was already erased).
void eraseBlock(Block *block) override {
if (wasErased(block))
return;
assert(block->empty() && "expected empty block");
block->dropAllDefinedValueUses();
RewriterBase::eraseBlock(block);
}
bool wasErased(void *ptr) const { return erased.contains(ptr); }
void notifyOperationErased(Operation *op) override { erased.insert(op); }
void notifyBlockErased(Block *block) override { erased.insert(block); }
private:
/// Pointers to all erased operations and blocks.
DenseSet<void *> erased;
};
//===--------------------------------------------------------------------===//
// State
//===--------------------------------------------------------------------===//
/// MLIR context.
MLIRContext *context;
/// A rewriter that keeps track of ops/block that were already erased and
/// skips duplicate op/block erasures. This rewriter is used during the
/// "cleanup" phase.
SingleEraseRewriter eraseRewriter;
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<std::unique_ptr<IRRewrite>> rewrites;
/// A set of operations that should no longer be considered for legalization.
/// E.g., ops that are recursively legal. Ops that were replaced/erased are
/// tracked separately.
SetVector<Operation *> ignoredOps;
/// A set of operations that were replaced/erased. Such ops are not erased
/// immediately but only when the dialect conversion succeeds. In the mean
/// time, they should no longer be considered for legalization and any attempt
/// to modify/access them is invalid rewriter API usage.
SetVector<Operation *> replacedOps;
/// A mapping of all unresolved materializations (UnrealizedConversionCastOp)
/// to the corresponding rewrite objects.
DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
unresolvedMaterializations;
/// The current type converter, or nullptr if no type converter is currently
/// active.
const TypeConverter *currentTypeConverter = nullptr;
/// A mapping of regions to type converters that should be used when
/// converting the arguments of blocks within that region.
DenseMap<Region *, const TypeConverter *> regionToConverter;
/// Dialect conversion configuration.
const ConversionConfig &config;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // namespace detail
} // namespace mlir
const ConversionConfig &IRRewrite::getConfig() const {
return rewriterImpl.config;
}
void BlockTypeConversionRewrite::commit(RewriterBase &rewriter) {
// Inform the listener about all IR modifications that have already taken
// place: References to the original block have been replaced with the new
// block.
if (auto *listener =
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
for (Operation *op : block->getUsers())
listener->notifyOperationModified(op);
}
void BlockTypeConversionRewrite::rollback() {
block->replaceAllUsesWith(origBlock);
}
void ReplaceBlockArgRewrite::commit(RewriterBase &rewriter) {
Value repl = rewriterImpl.mapping.lookupOrNull(arg, arg.getType());
if (!repl)
return;
if (isa<BlockArgument>(repl)) {
rewriter.replaceAllUsesWith(arg, repl);
return;
}
// If the replacement value is an operation, we check to make sure that we
// don't replace uses that are within the parent operation of the
// replacement value.
Operation *replOp = cast<OpResult>(repl).getOwner();
Block *replBlock = replOp->getBlock();
rewriter.replaceUsesWithIf(arg, repl, [&](OpOperand &operand) {
Operation *user = operand.getOwner();
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
});
}
void ReplaceBlockArgRewrite::rollback() { rewriterImpl.mapping.erase(arg); }
void ReplaceOperationRewrite::commit(RewriterBase &rewriter) {
auto *listener =
dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener());
// Compute replacement values.
SmallVector<Value> replacements =
llvm::map_to_vector(op->getResults(), [&](OpResult result) {
return rewriterImpl.mapping.lookupOrNull(result, result.getType());
});
// Notify the listener that the operation is about to be replaced.
if (listener)
listener->notifyOperationReplaced(op, replacements);
// Replace all uses with the new values.
for (auto [result, newValue] :
llvm::zip_equal(op->getResults(), replacements))
if (newValue)
rewriter.replaceAllUsesWith(result, newValue);
// The original op will be erased, so remove it from the set of unlegalized
// ops.
if (getConfig().unlegalizedOps)
getConfig().unlegalizedOps->erase(op);
// Notify the listener that the operation (and its nested operations) was
// erased.
if (listener) {
op->walk<WalkOrder::PostOrder>(
[&](Operation *op) { listener->notifyOperationErased(op); });
}
// Do not erase the operation yet. It may still be referenced in `mapping`.
// Just unlink it for now and erase it during cleanup.
op->getBlock()->getOperations().remove(op);
}
void ReplaceOperationRewrite::rollback() {
for (auto result : op->getResults())
rewriterImpl.mapping.erase(result);
}
void ReplaceOperationRewrite::cleanup(RewriterBase &rewriter) {
rewriter.eraseOp(op);
}
void CreateOperationRewrite::rollback() {
for (Region &region : op->getRegions()) {
while (!region.getBlocks().empty())
region.getBlocks().remove(region.getBlocks().begin());
}
op->dropAllUses();
op->erase();
}
UnresolvedMaterializationRewrite::UnresolvedMaterializationRewrite(
ConversionPatternRewriterImpl &rewriterImpl, UnrealizedConversionCastOp op,
const TypeConverter *converter, MaterializationKind kind, Type originalType)
: OperationRewrite(Kind::UnresolvedMaterialization, rewriterImpl, op),
converterAndKind(converter, kind), originalType(originalType) {
assert((!originalType || kind == MaterializationKind::Target) &&
"original type is valid only for target materializations");
rewriterImpl.unresolvedMaterializations[op] = this;
}
void UnresolvedMaterializationRewrite::rollback() {
if (getMaterializationKind() == MaterializationKind::Target) {
for (Value input : op->getOperands())
rewriterImpl.mapping.erase(input);
}
rewriterImpl.unresolvedMaterializations.erase(getOperation());
op->erase();
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Commit all rewrites.
IRRewriter rewriter(context, config.listener);
for (auto &rewrite : rewrites)
rewrite->commit(rewriter);
// Clean up all rewrites.
for (auto &rewrite : rewrites)
rewrite->cleanup(eraseRewriter);
}
//===----------------------------------------------------------------------===//
// State Management
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(rewrites.size(), ignoredOps.size(), replacedOps.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Undo any rewrites.
undoRewrites(state.numRewrites);
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
while (replacedOps.size() != state.numReplacedOps)
replacedOps.pop_back();
}
void ConversionPatternRewriterImpl::undoRewrites(unsigned numRewritesToKeep) {
for (auto &rewrite :
llvm::reverse(llvm::drop_begin(rewrites, numRewritesToKeep)))
rewrite->rollback();
rewrites.resize(numRewritesToKeep);
}
LogicalResult ConversionPatternRewriterImpl::remapValues(
StringRef valueDiagTag, std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(values));
for (const auto &it : llvm::enumerate(values)) {
Value operand = it.value();
Type origType = operand.getType();
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
if (!currentTypeConverter) {
// The current pattern does not have a type converter. I.e., it does not
// distinguish between legal and illegal types. For each operand, simply
// pass through the most recently mapped value.
remapped.push_back(mapping.lookupOrDefault(operand));
continue;
}
// If there is no legal conversion, fail to match this pattern.
SmallVector<Type, 1> legalTypes;
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
diag << "unable to convert type for " << valueDiagTag << " #"
<< it.index() << ", type was " << origType;
});
return failure();
}
if (legalTypes.size() != 1) {
// TODO: Parts of the dialect conversion infrastructure do not support
// 1->N type conversions yet. Therefore, if a type is converted to 0 or
// multiple types, the only thing that we can do for now is passing
// through the most recently mapped value. Fixing this requires
// improvements to the `ConversionValueMapping` (to be able to store 1:N
// mappings) and to the `ConversionPattern` adaptor handling (to be able
// to pass multiple remapped values for a single operand to the adaptor).
remapped.push_back(mapping.lookupOrDefault(operand));
continue;
}
// Handle 1->1 type conversions.
Type desiredType = legalTypes.front();
// Try to find a mapped value with the desired type. (Or the operand itself
// if the value is not mapped at all.)
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
if (newOperand.getType() != desiredType) {
// If the looked up value's type does not have the desired type, it means
// that the value was replaced with a value of different type and no
// source materialization was created yet.
Value castValue = buildUnresolvedMaterialization(
MaterializationKind::Target, computeInsertPoint(newOperand),
operandLoc,
/*inputs=*/newOperand, /*outputType=*/desiredType,
/*originalType=*/origType, currentTypeConverter);
mapping.map(newOperand, castValue);
newOperand = castValue;
}
remapped.push_back(newOperand);
}
return success();
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation is ignored or was replaced.
return replacedOps.count(op) || ignoredOps.count(op);
}
bool ConversionPatternRewriterImpl::wasOpReplaced(Operation *op) const {
// Check to see if this operation was replaced.
return replacedOps.count(op);
}
//===----------------------------------------------------------------------===//
// Type Conversion
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
ConversionPatternRewriter &rewriter, Region *region,
const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
regionToConverter[region] = &converter;
if (region->empty())
return nullptr;
// Convert the arguments of each non-entry block within the region.
for (Block &block :
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
// Compute the signature for the block with the provided converter.
std::optional<TypeConverter::SignatureConversion> conversion =
converter.convertBlockSignature(&block);
if (!conversion)
return failure();
// Convert the block with the computed signature.
applySignatureConversion(rewriter, &block, &converter, *conversion);
}
// Convert the entry block. If an entry signature conversion was provided,
// use that one. Otherwise, compute the signature with the type converter.
if (entryConversion)
return applySignatureConversion(rewriter, &region->front(), &converter,
*entryConversion);
std::optional<TypeConverter::SignatureConversion> conversion =
converter.convertBlockSignature(&region->front());
if (!conversion)
return failure();
return applySignatureConversion(rewriter, &region->front(), &converter,
*conversion);
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
ConversionPatternRewriter &rewriter, Block *block,
const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion) {
OpBuilder::InsertionGuard g(rewriter);
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (llvm::equal(block->getArgumentTypes(), convertedTypes))
return block;
// Compute the locations of all block arguments in the new block.
SmallVector<Location> newLocs(convertedTypes.size(),
rewriter.getUnknownLoc());
for (unsigned i = 0; i < origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap || inputMap->replacementValue)
continue;
Location origLoc = block->getArgument(i).getLoc();
for (unsigned j = 0; j < inputMap->size; ++j)
newLocs[inputMap->inputNo + j] = origLoc;
}
// Insert a new block with the converted block argument types and move all ops
// from the old block to the new block.
Block *newBlock =
rewriter.createBlock(block->getParent(), std::next(block->getIterator()),
convertedTypes, newLocs);
// If a listener is attached to the dialect conversion, ops cannot be moved
// to the destination block in bulk ("fast path"). This is because at the time
// the notifications are sent, it is unknown which ops were moved. Instead,
// ops should be moved one-by-one ("slow path"), so that a separate
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
// a bit more efficient, so we try to do that when possible.
bool fastPath = !config.listener;
if (fastPath) {
appendRewrite<InlineBlockRewrite>(newBlock, block, newBlock->end());
newBlock->getOperations().splice(newBlock->end(), block->getOperations());
} else {
while (!block->empty())
rewriter.moveOpBefore(&block->front(), newBlock, newBlock->end());
}
// Replace all uses of the old block with the new block.
block->replaceAllUsesWith(newBlock);
for (unsigned i = 0; i != origArgCount; ++i) {
BlockArgument origArg = block->getArgument(i);
Type origArgType = origArg.getType();
std::optional<TypeConverter::SignatureConversion::InputMapping> inputMap =
signatureConversion.getInputMapping(i);
if (!inputMap) {
// This block argument was dropped and no replacement value was provided.
// Materialize a replacement value "out of thin air".
Value repl = buildUnresolvedMaterialization(
MaterializationKind::Source,
OpBuilder::InsertPoint(newBlock, newBlock->begin()), origArg.getLoc(),
/*inputs=*/ValueRange(),
/*outputType=*/origArgType, /*originalType=*/Type(), converter);
mapping.map(origArg, repl);
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
continue;
}
if (Value repl = inputMap->replacementValue) {
// This block argument was dropped and a replacement value was provided.
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, repl);
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
continue;
}
// This is a 1->1+ mapping. 1->N mappings are not fully supported in the
// dialect conversion. Therefore, we need an argument materialization to
// turn the replacement block arguments into a single SSA value that can be
// used as a replacement.
auto replArgs =
newBlock->getArguments().slice(inputMap->inputNo, inputMap->size);
insertNTo1Materialization(
OpBuilder::InsertPoint(newBlock, newBlock->begin()), origArg.getLoc(),
/*replacements=*/replArgs, /*outputValue=*/origArg, converter);
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
}
appendRewrite<BlockTypeConversionRewrite>(newBlock, block, converter);
// Erase the old block. (It is just unlinked for now and will be erased during
// cleanup.)
rewriter.eraseBlock(block);
return newBlock;
}
//===----------------------------------------------------------------------===//
// Materializations
//===----------------------------------------------------------------------===//
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
Value ConversionPatternRewriterImpl::buildUnresolvedMaterialization(
MaterializationKind kind, OpBuilder::InsertPoint ip, Location loc,
ValueRange inputs, Type outputType, Type originalType,
const TypeConverter *converter) {
assert((!originalType || kind == MaterializationKind::Target) &&
"original type is valid only for target materializations");
// Avoid materializing an unnecessary cast.
if (inputs.size() == 1 && inputs.front().getType() == outputType)
return inputs.front();
// Create an unresolved materialization. We use a new OpBuilder to avoid
// tracking the materialization like we do for other operations.
OpBuilder builder(outputType.getContext());
builder.setInsertionPoint(ip.getBlock(), ip.getPoint());
auto convertOp =
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
appendRewrite<UnresolvedMaterializationRewrite>(convertOp, converter, kind,
originalType);
return convertOp.getResult(0);
}
void ConversionPatternRewriterImpl::insertNTo1Materialization(
OpBuilder::InsertPoint ip, Location loc, ValueRange replacements,
Value originalValue, const TypeConverter *converter) {
// Insert argument materialization back to the original type.
Type originalType = originalValue.getType();
Value argMat =
buildUnresolvedMaterialization(MaterializationKind::Argument, ip, loc,
/*inputs=*/replacements, originalType,
/*originalType=*/Type(), converter);
mapping.map(originalValue, argMat);
// Insert target materialization to the legalized type.
Type legalOutputType;
if (converter) {
legalOutputType = converter->convertType(originalType);
} else if (replacements.size() == 1) {
// When there is no type converter, assume that the replacement value
// types are legal. This is reasonable to assume because they were
// specified by the user.
// FIXME: This won't work for 1->N conversions because multiple output
// types are not supported in parts of the dialect conversion. In such a
// case, we currently use the original value type.
legalOutputType = replacements[0].getType();
}
if (legalOutputType && legalOutputType != originalType) {
Value targetMat = buildUnresolvedMaterialization(
MaterializationKind::Target, computeInsertPoint(argMat), loc,
/*inputs=*/argMat, /*outputType=*/legalOutputType,
/*originalType=*/originalType, converter);
mapping.map(argMat, targetMat);
}
}
//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks
void ConversionPatternRewriterImpl::notifyOperationInserted(
Operation *op, OpBuilder::InsertPoint previous) {
LLVM_DEBUG({
logger.startLine() << "** Insert : '" << op->getName() << "'(" << op
<< ")\n";
});
assert(!wasOpReplaced(op->getParentOp()) &&
"attempting to insert into a block within a replaced/erased op");
if (!previous.isSet()) {
// This is a newly created op.
appendRewrite<CreateOperationRewrite>(op);
return;
}
Operation *prevOp = previous.getPoint() == previous.getBlock()->end()
? nullptr
: &*previous.getPoint();
appendRewrite<MoveOperationRewrite>(op, previous.getBlock(), prevOp);
}
void ConversionPatternRewriterImpl::notifyOpReplaced(
Operation *op, ArrayRef<ReplacementValues> newValues) {
assert(newValues.size() == op->getNumResults());
assert(!ignoredOps.contains(op) && "operation was already replaced");
// Check if replaced op is an unresolved materialization, i.e., an
// unrealized_conversion_cast op that was created by the conversion driver.
bool isUnresolvedMaterialization = false;
if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
if (unresolvedMaterializations.contains(castOp))
isUnresolvedMaterialization = true;
// Create mappings for each of the new result values.
for (auto [n, result] : llvm::zip_equal(newValues, op->getResults())) {
ReplacementValues repl = n;
if (repl.empty()) {
// This result was dropped and no replacement value was provided.
if (isUnresolvedMaterialization) {
// Do not create another materializations if we are erasing a
// materialization.
continue;
}
// Materialize a replacement value "out of thin air".
Value sourceMat = buildUnresolvedMaterialization(
MaterializationKind::Source, computeInsertPoint(result),
result.getLoc(), /*inputs=*/ValueRange(),
/*outputType=*/result.getType(), /*originalType=*/Type(),
currentTypeConverter);
repl.push_back(sourceMat);
} else {
// Make sure that the user does not mess with unresolved materializations
// that were inserted by the conversion driver. We keep track of these
// ops in internal data structures. Erasing them must be allowed because
// this can happen when the user is erasing an entire block (including
// its body). But replacing them with another value should be forbidden
// to avoid problems with the `mapping`.
assert(!isUnresolvedMaterialization &&
"attempting to replace an unresolved materialization");
}
// Remap result to replacement value.
if (repl.empty())
continue;
if (repl.size() == 1) {
// Single replacement value: replace directly.
mapping.map(result, repl.front());
} else {
// Multiple replacement values: insert N:1 materialization.
insertNTo1Materialization(computeInsertPoint(result), result.getLoc(),
/*replacements=*/repl, /*outputValue=*/result,
currentTypeConverter);
}
}
appendRewrite<ReplaceOperationRewrite>(op, currentTypeConverter);
// Mark this operation and all nested ops as replaced.
op->walk([&](Operation *op) { replacedOps.insert(op); });
}
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
appendRewrite<EraseBlockRewrite>(block);
}
void ConversionPatternRewriterImpl::notifyBlockInserted(
Block *block, Region *previous, Region::iterator previousIt) {
assert(!wasOpReplaced(block->getParentOp()) &&
"attempting to insert into a region within a replaced/erased op");
LLVM_DEBUG(
{
Operation *parent = block->getParentOp();
if (parent) {
logger.startLine() << "** Insert Block into : '" << parent->getName()
<< "'(" << parent << ")\n";
} else {
logger.startLine()
<< "** Insert Block into detached Region (nullptr parent op)'";
}
});
if (!previous) {
// This is a newly created block.
appendRewrite<CreateBlockRewrite>(block);
return;
}
Block *prevBlock = previousIt == previous->end() ? nullptr : &*previousIt;
appendRewrite<MoveBlockRewrite>(block, previous, prevBlock);
}
void ConversionPatternRewriterImpl::notifyBlockBeingInlined(
Block *block, Block *srcBlock, Block::iterator before) {
appendRewrite<InlineBlockRewrite>(block, srcBlock, before);
}
void ConversionPatternRewriterImpl::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
if (config.notifyCallback)
config.notifyCallback(diag);
});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(
MLIRContext *ctx, const ConversionConfig &config)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(ctx, config)) {
setListener(impl.get());
}
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
assert(op && newOp && "expected non-null op");
replaceOp(op, newOp->getResults());
}
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<ReplacementValues> newVals(newValues.size());
for (auto [index, val] : llvm::enumerate(newValues))
if (val)
newVals[index].push_back(val);
impl->notifyOpReplaced(op, newVals);
}
void ConversionPatternRewriter::replaceOpWithMultiple(
Operation *op, ArrayRef<ValueRange> newValues) {
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<ReplacementValues> newVals(newValues.size(), {});
for (auto [index, val] : llvm::enumerate(newValues))
llvm::append_range(newVals[index], val);
impl->notifyOpReplaced(op, newVals);
}
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<ReplacementValues> nullRepls(op->getNumResults(), {});
impl->notifyOpReplaced(op, nullRepls);
}
void ConversionPatternRewriter::eraseBlock(Block *block) {
assert(!impl->wasOpReplaced(block->getParentOp()) &&
"attempting to erase a block within a replaced/erased op");
// Mark all ops for erasure.
for (Operation &op : *block)
eraseOp(&op);
// Unlink the block from its parent region. The block is kept in the rewrite
// object and will be actually destroyed when rewrites are applied. This
// allows us to keep the operations in the block live and undo the removal by
// re-inserting the block.
impl->notifyBlockIsBeingErased(block);
block->getParent()->getBlocks().remove(block);
}
Block *ConversionPatternRewriter::applySignatureConversion(
Block *block, TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter) {
assert(!impl->wasOpReplaced(block->getParentOp()) &&
"attempting to apply a signature conversion to a block within a "
"replaced/erased op");
return impl->applySignatureConversion(*this, block, converter, conversion);
}
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
assert(!impl->wasOpReplaced(region->getParentOp()) &&
"attempting to apply a signature conversion to a block within a "
"replaced/erased op");
return impl->convertRegionTypes(*this, region, converter, entryConversion);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
LLVM_DEBUG({
Operation *parentOp = from.getOwner()->getParentOp();
impl->logger.startLine() << "** Replace Argument : '" << from
<< "'(in region of '" << parentOp->getName()
<< "'(" << from.getOwner()->getParentOp() << ")\n";
});
impl->appendRewrite<ReplaceBlockArgRewrite>(from.getOwner(), from);
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
Value ConversionPatternRewriter::getRemappedValue(Value key) {
SmallVector<Value> remappedValues;
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
remappedValues)))
return nullptr;
return remappedValues.front();
}
LogicalResult
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
SmallVectorImpl<Value> &results) {
if (keys.empty())
return success();
return impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
results);
}
void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
Block::iterator before,
ValueRange argValues) {
#ifndef NDEBUG
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
assert(!impl->wasOpReplaced(source->getParentOp()) &&
"attempting to inline a block from a replaced/erased op");
assert(!impl->wasOpReplaced(dest->getParentOp()) &&
"attempting to inline a block into a replaced/erased op");
auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
// The source block will be deleted, so it should not have any users (i.e.,
// there should be no predecessors).
assert(llvm::all_of(source->getUsers(), opIgnored) &&
"expected 'source' to have no predecessors");
#endif // NDEBUG
// If a listener is attached to the dialect conversion, ops cannot be moved
// to the destination block in bulk ("fast path"). This is because at the time
// the notifications are sent, it is unknown which ops were moved. Instead,
// ops should be moved one-by-one ("slow path"), so that a separate
// `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
// a bit more efficient, so we try to do that when possible.
bool fastPath = !impl->config.listener;
if (fastPath)
impl->notifyBlockBeingInlined(dest, source, before);
// Replace all uses of block arguments.
for (auto it : llvm::zip(source->getArguments(), argValues))
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
if (fastPath) {
// Move all ops at once.
dest->getOperations().splice(before, source->getOperations());
} else {
// Move op by op.
while (!source->empty())
moveOpBefore(&source->front(), dest, before);
}
// Erase the source block.
eraseBlock(source);
}
void ConversionPatternRewriter::startOpModification(Operation *op) {
assert(!impl->wasOpReplaced(op) &&
"attempting to modify a replaced/erased op");
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->appendRewrite<ModifyOperationRewrite>(op);
}
void ConversionPatternRewriter::finalizeOpModification(Operation *op) {
assert(!impl->wasOpReplaced(op) &&
"attempting to modify a replaced/erased op");
PatternRewriter::finalizeOpModification(op);
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
void ConversionPatternRewriter::cancelOpModification(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto it = llvm::find_if(
llvm::reverse(impl->rewrites), [&](std::unique_ptr<IRRewrite> &rewrite) {
auto *modifyRewrite = dyn_cast<ModifyOperationRewrite>(rewrite.get());
return modifyRewrite && modifyRewrite->getOperation() == op;
});
assert(it != impl->rewrites.rend() && "no root update started on op");
(*it)->rollback();
int updateIdx = std::prev(impl->rewrites.rend()) - it;
impl->rewrites.erase(impl->rewrites.begin() + updateIdx);
}
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
auto &rewriterImpl = dialectRewriter.getImpl();
// Track the current conversion pattern type converter in the rewriter.
llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
getTypeConverter());
// Remap the operands of the operation.
SmallVector<Value, 4> operands;
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
op->getOperands(), operands))) {
return failure();
}
return matchAndRewrite(op, operands, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns,
const ConversionConfig &config);
/// Returns true if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
const ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying a pattern. Returns
/// success if the operation was legalized, failure otherwise.
LogicalResult legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter);
/// Return true if the given pattern may be applied to the given operation,
/// false otherwise.
bool canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter);
/// Legalize the resultant IR after successfully applying the given pattern.
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState);
/// Legalizes the actions registered during the execution of a pattern.
LogicalResult
legalizePatternBlockRewrites(Operation *op,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
//===--------------------------------------------------------------------===//
// Cost Model
//===--------------------------------------------------------------------===//
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
/// patterns for operations that are not directly legal, but may be
/// transitively legal for the current target given the provided patterns.
void buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the legalization depth when legalizing an operation of the given
/// type.
unsigned computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Apply the conversion cost model to the given set of patterns, and return
/// the smallest legalization depth of any of the patterns. See
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
unsigned applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// The current set of patterns that have been applied.
SmallPtrSet<const Pattern *, 8> appliedPatterns;
/// The legalization information provided by the target.
const ConversionTarget &target;
/// The pattern applicator to use for conversions.
PatternApplicator applicator;
/// Dialect conversion configuration.
const ConversionConfig &config;
};
} // namespace
OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns,
const ConversionConfig &config)
: target(targetInfo), applicator(patterns), config(config) {
// The set of patterns that can be applied to illegal operations to transform
// them into legal ones.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
LegalizationPatterns anyOpLegalizerPatterns;
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}
bool OperationLegalizer::isIllegal(Operation *op) const {
return target.isIllegal(op);
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &logger = rewriter.getImpl().logger;
#endif
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << logLineComment;
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
<< op << ") {\n";
logger.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
logger.getOStream() << "\n\n";
}
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal) {
op->walk([&](Operation *nested) {
if (op != nested)
rewriter.getImpl().ignoredOps.insert(nested);
});
}
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(logger, "operation marked 'ignored' during conversion");
logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO: Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "operation was folded");
logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
if (succeeded(legalizeWithPattern(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "");
logger.startLine() << logLineComment;
});
return success();
}
LLVM_DEBUG({
logFailure(logger, "no matched legalization pattern");
logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// An empty list of replacement values indicates that the fold was in-place.
// As the operation changed, a new legalization needs to be attempted.
if (replacementValues.empty())
return legalize(op, rewriter);
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numRewrites, e = rewriterImpl.rewrites.size();
i != e; ++i) {
auto *createOp =
dyn_cast<CreateOperationRewrite>(rewriterImpl.rewrites[i].get());
if (!createOp)
continue;
if (failed(legalize(createOp->getOperation(), rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"failed to legalize generated constant '{0}'",
createOp->getOperation()->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
// Functor that returns if the given pattern may be applied.
auto canApply = [&](const Pattern &pattern) {
bool canApply = canApplyPattern(op, pattern, rewriter);
if (canApply && config.listener)
config.listener->notifyPatternBegin(pattern, op);
return canApply;
};
// Functor that cleans up the rewriter state after a pattern failed to match.
RewriterState curState = rewriterImpl.getCurrentState();
auto onFailure = [&](const Pattern &pattern) {
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "pattern failed to match");
if (rewriterImpl.config.notifyCallback) {
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
diag << "Failed to apply pattern \"" << pattern.getDebugName()
<< "\" on op:\n"
<< *op;
rewriterImpl.config.notifyCallback(diag);
}
});
if (config.listener)
config.listener->notifyPatternEnd(pattern, failure());
rewriterImpl.resetState(curState);
appliedPatterns.erase(&pattern);
};
// Functor that performs additional legalization when a pattern is
// successfully applied.
auto onSuccess = [&](const Pattern &pattern) {
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
auto result = legalizePatternResult(op, pattern, rewriter, curState);
appliedPatterns.erase(&pattern);
if (failed(result))
rewriterImpl.resetState(curState);
if (config.listener)
config.listener->notifyPatternEnd(pattern, result);
return result;
};
// Try to match and rewrite a pattern on this operation.
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
onSuccess);
}
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
auto &os = rewriter.getImpl().logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack if it is not known to be safe.
if (!pattern.hasBoundedRewriteRecursion() &&
!appliedPatterns.insert(&pattern).second) {
LLVM_DEBUG(
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
return false;
}
return true;
}
LogicalResult
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState) {
auto &impl = rewriter.getImpl();
#ifndef NDEBUG
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
// Check that the root was either replaced or updated in place.
auto newRewrites = llvm::drop_begin(impl.rewrites, curState.numRewrites);
auto replacedRoot = [&] {
return hasRewrite<ReplaceOperationRewrite>(newRewrites, op);
};
auto updatedRootInPlace = [&] {
return hasRewrite<ModifyOperationRewrite>(newRewrites, op);
};
assert((replacedRoot() || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
#endif // NDEBUG
// Legalize each of the actions registered during application.
RewriterState newState = impl.getCurrentState();
if (failed(legalizePatternBlockRewrites(op, rewriter, impl, curState,
newState)) ||
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
newState))) {
return failure();
}
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
return success();
}
LogicalResult OperationLegalizer::legalizePatternBlockRewrites(
Operation *op, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl, RewriterState &state,
RewriterState &newState) {
SmallPtrSet<Operation *, 16> operationsToIgnore;
// If the pattern moved or created any blocks, make sure the types of block
// arguments get legalized.
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
BlockRewrite *rewrite = dyn_cast<BlockRewrite>(impl.rewrites[i].get());
if (!rewrite)
continue;
Block *block = rewrite->getBlock();
if (isa<BlockTypeConversionRewrite, EraseBlockRewrite,
ReplaceBlockArgRewrite>(rewrite))
continue;
// Only check blocks outside of the current operation.
Operation *parentOp = block->getParentOp();
if (!parentOp || parentOp == op || block->getNumArguments() == 0)
continue;
// If the region of the block has a type converter, try to convert the block
// directly.
if (auto *converter = impl.regionToConverter.lookup(block->getParent())) {
std::optional<TypeConverter::SignatureConversion> conversion =
converter->convertBlockSignature(block);
if (!conversion) {
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
"block"));
return failure();
}
impl.applySignatureConversion(rewriter, block, converter, *conversion);
continue;
}
// Otherwise, check that this operation isn't one generated by this pattern.
// This is because we will attempt to legalize the parent operation, and
// blocks in regions created by this pattern will already be legalized later
// on. If we haven't built the set yet, build it now.
if (operationsToIgnore.empty()) {
for (unsigned i = state.numRewrites, e = impl.rewrites.size(); i != e;
++i) {
auto *createOp =
dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
if (!createOp)
continue;
operationsToIgnore.insert(createOp->getOperation());
}
}
// If this operation should be considered for re-legalization, try it.
if (operationsToIgnore.insert(parentOp).second &&
failed(legalize(parentOp, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"operation '{0}'({1}) became illegal after rewrite",
parentOp->getName(), parentOp));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
auto *createOp = dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
if (!createOp)
continue;
Operation *op = createOp->getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"failed to legalize generated operation '{0}'({1})",
op->getName(), op));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
auto *rewrite = dyn_cast<ModifyOperationRewrite>(impl.rewrites[i].get());
if (!rewrite)
continue;
Operation *op = rewrite->getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "failed to legalize operation updated in-place '{0}'",
op->getName()));
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Cost Model
void OperationLegalizer::buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
SetVector<const Pattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
applicator.walkAllPatterns([&](const Pattern &pattern) {
std::optional<OperationName> root = pattern.getRootKind();
// If the pattern has no specific root, we can't analyze the relationship
// between the root op and generated operations. Given that, add all such
// patterns to the legalization set.
if (!root) {
anyOpLegalizerPatterns.push_back(&pattern);
return;
}
// Skip operations that are always known to be legal.
if (target.getOpAction(*root) == LegalizationAction::Legal)
return;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[*root].insert(&pattern);
for (auto op : pattern.getGeneratedOps())
parentOps[op].insert(*root);
// Add this pattern to the worklist.
patternWorklist.insert(&pattern);
});
// If there are any patterns that don't have a specific root kind, we can't
// make direct assumptions about what operations will never be legalized.
// Note: Technically we could, but it would require an analysis that may
// recurse into itself. It would be better to perform this kind of filtering
// at a higher level than here anyways.
if (!anyOpLegalizerPatterns.empty()) {
for (const Pattern *pattern : patternWorklist)
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
return;
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
std::optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
invalidPatterns[*pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[*pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minOpPatternDepth;
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minOpPatternDepth.count(opIt.first))
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
legalizerPatterns);
// Apply the cost model to the patterns that can match any operation. Those
// with a specific operation type are already resolved when computing the op
// legalization depth.
if (!anyOpLegalizerPatterns.empty())
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
legalizerPatterns);
// Apply a cost model to the pattern applicator. We order patterns first by
// depth then benefit. `legalizerPatterns` contains per-op patterns by
// decreasing benefit.
applicator.applyCostModel([&](const Pattern &pattern) {
ArrayRef<const Pattern *> orderedPatternList;
if (std::optional<OperationName> rootName = pattern.getRootKind())
orderedPatternList = legalizerPatterns[*rootName];
else
orderedPatternList = anyOpLegalizerPatterns;
// If the pattern is not found, then it was removed and cannot be matched.
auto *it = llvm::find(orderedPatternList, &pattern);
if (it == orderedPatternList.end())
return PatternBenefit::impossibleToMatch();
// Patterns found earlier in the list have higher benefit.
return PatternBenefit(std::distance(it, orderedPatternList.end()));
});
}
unsigned OperationLegalizer::computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// Check for existing depth.
auto depthIt = minOpPatternDepth.find(op);
if (depthIt != minOpPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
// Apply the cost model to the operation patterns, and update the minimum
// depth.
unsigned minDepth = applyCostModelToPatterns(
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
minOpPatternDepth[op] = minDepth;
return minDepth;
}
unsigned OperationLegalizer::applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern within the set.
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(patterns.size());
for (const Pattern *pattern : patterns) {
unsigned depth = 1;
for (auto generatedOp : pattern->getGeneratedOps()) {
unsigned generatedOpDepth = computeOpLegalizationDepth(
generatedOp, minOpPatternDepth, legalizerPatterns);
depth = std::max(depth, generatedOpDepth + 1);
}
patternsByDepth.emplace_back(pattern, depth);
// Update the minimum depth of the pattern list.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<const Pattern *, unsigned> &lhs,
const std::pair<const Pattern *, unsigned> &rhs) {
// First sort by the smaller pattern legalization
// depth.
if (lhs.second != rhs.second)
return lhs.second < rhs.second;
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs.first->getBenefit();
auto rhsBenefit = rhs.first->getBenefit();
return lhsBenefit > rhsBenefit;
});
// Update the legalization pattern to use the new sorted list.
patterns.clear();
for (auto &patternIt : patternsByDepth)
patterns.push_back(patternIt.first);
return minDepth;
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
/// In this mode, the conversion will ignore failed conversions to allow
/// illegal operations to co-exist in the IR.
Partial,
/// In this mode, all operations must be legal for the given target for the
/// conversion to succeed.
Full,
/// In this mode, operations are analyzed for legality. No actual rewrites are
/// applied to the operations on success.
Analysis,
};
} // namespace
namespace mlir {
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
const ConversionConfig &config,
OpConversionMode mode)
: config(config), opLegalizer(target, patterns, this->config),
mode(mode) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// This method is called after the conversion process to legalize any
/// remaining artifacts and complete the conversion.
void finalize(ConversionPatternRewriter &rewriter);
/// Dialect conversion configuration.
ConversionConfig config;
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
};
} // namespace mlir
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
// Partial conversions allow conversions to fail iff the operation was not
// explicitly marked as illegal. If the user provided a `unlegalizedOps`
// set, non-legalizable ops are added to that set.
if (mode == OpConversionMode::Partial) {
if (opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
if (config.unlegalizedOps)
config.unlegalizedOps->insert(op);
}
} else if (mode == OpConversionMode::Analysis) {
// Analysis conversions don't fail if any operations fail to legalize,
// they are only interested in the operations that were successfully
// legalized.
if (config.legalizableOps)
config.legalizableOps->insert(op);
}
return success();
}
static LogicalResult
legalizeUnresolvedMaterialization(RewriterBase &rewriter,
UnresolvedMaterializationRewrite *rewrite) {
UnrealizedConversionCastOp op = rewrite->getOperation();
assert(!op.use_empty() &&
"expected that dead materializations have already been DCE'd");
Operation::operand_range inputOperands = op.getOperands();
Type outputType = op.getResultTypes()[0];
// Try to materialize the conversion.
if (const TypeConverter *converter = rewrite->getConverter()) {
rewriter.setInsertionPoint(op);
Value newMaterialization;
switch (rewrite->getMaterializationKind()) {
case MaterializationKind::Argument:
// Try to materialize an argument conversion.
newMaterialization = converter->materializeArgumentConversion(
rewriter, op->getLoc(), outputType, inputOperands);
if (newMaterialization)
break;
// If an argument materialization failed, fallback to trying a target
// materialization.
[[fallthrough]];
case MaterializationKind::Target:
newMaterialization = converter->materializeTargetConversion(
rewriter, op->getLoc(), outputType, inputOperands,
rewrite->getOriginalType());
break;
case MaterializationKind::Source:
newMaterialization = converter->materializeSourceConversion(
rewriter, op->getLoc(), outputType, inputOperands);
break;
}
if (newMaterialization) {
assert(newMaterialization.getType() == outputType &&
"materialization callback produced value of incorrect type");
rewriter.replaceOp(op, newMaterialization);
return success();
}
}
InFlightDiagnostic diag =
op->emitError() << "failed to legalize unresolved materialization "
"from ("
<< inputOperands.getTypes() << ") to (" << outputType
<< ") that remained live after conversion";
diag.attachNote(op->getUsers().begin()->getLoc())
<< "see existing live user here: " << *op->getUsers().begin();
return failure();
}
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
if (ops.empty())
return success();
const ConversionTarget &target = opLegalizer.getTarget();
// Compute the set of operations and blocks to convert.
SmallVector<Operation *> toConvert;
for (auto *op : ops) {
op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
[&](Operation *op) {
toConvert.push_back(op);
// Don't check this operation's children for conversion if the
// operation is recursively legal.
auto legalityInfo = target.isLegal(op);
if (legalityInfo && legalityInfo->isRecursivelyLegal)
return WalkResult::skip();
return WalkResult::advance();
});
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext(), config);
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriterImpl.undoRewrites(), failure();
// Now that all of the operations have been converted, finalize the conversion
// process to ensure any lingering conversion artifacts are cleaned up and
// legalized.
finalize(rewriter);
// After a successful conversion, apply rewrites.
rewriterImpl.applyRewrites();
// Gather all unresolved materializations.
SmallVector<UnrealizedConversionCastOp> allCastOps;
const DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
&materializations = rewriterImpl.unresolvedMaterializations;
for (auto it : materializations) {
if (rewriterImpl.eraseRewriter.wasErased(it.first))
continue;
allCastOps.push_back(it.first);
}
// Reconcile all UnrealizedConversionCastOps that were inserted by the
// dialect conversion frameworks. (Not the one that were inserted by
// patterns.)
SmallVector<UnrealizedConversionCastOp> remainingCastOps;
reconcileUnrealizedCasts(allCastOps, &remainingCastOps);
// Try to legalize all unresolved materializations.
if (config.buildMaterializations) {
IRRewriter rewriter(rewriterImpl.context, config.listener);
for (UnrealizedConversionCastOp castOp : remainingCastOps) {
auto it = materializations.find(castOp);
assert(it != materializations.end() && "inconsistent state");
if (failed(legalizeUnresolvedMaterialization(rewriter, it->second)))
return failure();
}
}
return success();
}
/// Finds a user of the given value, or of any other value that the given value
/// replaced, that was not replaced in the conversion process.
static Operation *findLiveUserOfReplaced(
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
SmallVector<Value> worklist = {initialValue};
while (!worklist.empty()) {
Value value = worklist.pop_back_val();
// Walk the users of this value to see if there are any live users that
// weren't replaced during conversion.
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != value.user_end())
return *liveUserIt;
auto mapIt = inverseMapping.find(value);
if (mapIt != inverseMapping.end())
worklist.append(mapIt->second);
}
return nullptr;
}
/// Helper function that returns the replaced values and the type converter if
/// the given rewrite object is an "operation replacement" or a "block type
/// conversion" (which corresponds to a "block replacement"). Otherwise, return
/// an empty ValueRange and a null type converter pointer.
static std::pair<ValueRange, const TypeConverter *>
getReplacedValues(IRRewrite *rewrite) {
if (auto *opRewrite = dyn_cast<ReplaceOperationRewrite>(rewrite))
return {opRewrite->getOperation()->getResults(), opRewrite->getConverter()};
if (auto *blockRewrite = dyn_cast<BlockTypeConversionRewrite>(rewrite))
return {blockRewrite->getOrigBlock()->getArguments(),
blockRewrite->getConverter()};
return {};
}
void OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
DenseMap<Value, SmallVector<Value>> inverseMapping =
rewriterImpl.mapping.getInverse();
// Process requested value replacements.
for (unsigned i = 0, e = rewriterImpl.rewrites.size(); i < e; ++i) {
ValueRange replacedValues;
const TypeConverter *converter;
std::tie(replacedValues, converter) =
getReplacedValues(rewriterImpl.rewrites[i].get());
for (Value originalValue : replacedValues) {
// If the type of this value changed and the value is still live, we need
// to materialize a conversion.
if (rewriterImpl.mapping.lookupOrNull(originalValue,
originalValue.getType()))
continue;
Operation *liveUser =
findLiveUserOfReplaced(originalValue, rewriterImpl, inverseMapping);
if (!liveUser)
continue;
// Legalize this value replacement.
Value newValue = rewriterImpl.mapping.lookupOrNull(originalValue);
assert(newValue && "replacement value not found");
Value castValue = rewriterImpl.buildUnresolvedMaterialization(
MaterializationKind::Source, computeInsertPoint(newValue),
originalValue.getLoc(),
/*inputs=*/newValue, /*outputType=*/originalValue.getType(),
/*originalType=*/Type(), converter);
rewriterImpl.mapping.map(originalValue, castValue);
inverseMapping[castValue].push_back(originalValue);
llvm::erase(inverseMapping[newValue], originalValue);
}
}
}
//===----------------------------------------------------------------------===//
// Reconcile Unrealized Casts
//===----------------------------------------------------------------------===//
void mlir::reconcileUnrealizedCasts(
ArrayRef<UnrealizedConversionCastOp> castOps,
SmallVectorImpl<UnrealizedConversionCastOp> *remainingCastOps) {
SetVector<UnrealizedConversionCastOp> worklist(castOps.begin(),
castOps.end());
// This set is maintained only if `remainingCastOps` is provided.
DenseSet<Operation *> erasedOps;
// Helper function that adds all operands to the worklist that are an
// unrealized_conversion_cast op result.
auto enqueueOperands = [&](UnrealizedConversionCastOp castOp) {
for (Value v : castOp.getInputs())
if (auto inputCastOp = v.getDefiningOp<UnrealizedConversionCastOp>())
worklist.insert(inputCastOp);
};
// Helper function that return the unrealized_conversion_cast op that
// defines all inputs of the given op (in the same order). Return "nullptr"
// if there is no such op.
auto getInputCast =
[](UnrealizedConversionCastOp castOp) -> UnrealizedConversionCastOp {
if (castOp.getInputs().empty())
return {};
auto inputCastOp =
castOp.getInputs().front().getDefiningOp<UnrealizedConversionCastOp>();
if (!inputCastOp)
return {};
if (inputCastOp.getOutputs() != castOp.getInputs())
return {};
return inputCastOp;
};
// Process ops in the worklist bottom-to-top.
while (!worklist.empty()) {
UnrealizedConversionCastOp castOp = worklist.pop_back_val();
if (castOp->use_empty()) {
// DCE: If the op has no users, erase it. Add the operands to the
// worklist to find additional DCE opportunities.
enqueueOperands(castOp);
if (remainingCastOps)
erasedOps.insert(castOp.getOperation());
castOp->erase();
continue;
}
// Traverse the chain of input cast ops to see if an op with the same
// input types can be found.
UnrealizedConversionCastOp nextCast = castOp;
while (nextCast) {
if (nextCast.getInputs().getTypes() == castOp.getResultTypes()) {
// Found a cast where the input types match the output types of the
// matched op. We can directly use those inputs and the matched op can
// be removed.
enqueueOperands(castOp);
castOp.replaceAllUsesWith(nextCast.getInputs());
if (remainingCastOps)
erasedOps.insert(castOp.getOperation());
castOp->erase();
break;
}
nextCast = getInputCast(nextCast);
}
}
if (remainingCastOps)
for (UnrealizedConversionCastOp op : castOps)
if (!erasedOps.contains(op.getOperation()))
remainingCastOps->push_back(op);
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) const {
{
std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
std::defer_lock);
if (t.getContext()->isMultithreadingEnabled())
cacheReadLock.lock();
auto existingIt = cachedDirectConversions.find(t);
if (existingIt != cachedDirectConversions.end()) {
if (existingIt->second)
results.push_back(existingIt->second);
return success(existingIt->second != nullptr);
}
auto multiIt = cachedMultiConversions.find(t);
if (multiIt != cachedMultiConversions.end()) {
results.append(multiIt->second.begin(), multiIt->second.end());
return success();
}
}
// Walk the added converters in reverse order to apply the most recently
// registered first.
size_t currentCount = results.size();
std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
std::defer_lock);
for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
if (std::optional<LogicalResult> result = converter(t, results)) {
if (t.getContext()->isMultithreadingEnabled())
cacheWriteLock.lock();
if (!succeeded(*result)) {
cachedDirectConversions.try_emplace(t, nullptr);
return failure();
}
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
if (newTypes.size() == 1)
cachedDirectConversions.try_emplace(t, newTypes.front());
else
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
return success();
}
}
return failure();
}
Type TypeConverter::convertType(Type t) const {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
LogicalResult
TypeConverter::convertTypes(TypeRange types,
SmallVectorImpl<Type> &results) const {
for (Type type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
bool TypeConverter::isLegal(Type type) const {
return convertType(type) == type;
}
bool TypeConverter::isLegal(Operation *op) const {
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}
bool TypeConverter::isLegal(Region *region) const {
return llvm::all_of(*region, [this](Block &block) {
return isLegal(block.getArgumentTypes());
});
}
bool TypeConverter::isSignatureLegal(FunctionType ty) const {
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}
LogicalResult
TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) const {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
LogicalResult
TypeConverter::convertSignatureArgs(TypeRange types,
SignatureConversion &result,
unsigned origInputOffset) const {
for (unsigned i = 0, e = types.size(); i != e; ++i)
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
return failure();
return success();
}
Value TypeConverter::materializeArgumentConversion(OpBuilder &builder,
Location loc,
Type resultType,
ValueRange inputs) const {
for (const MaterializationCallbackFn &fn :
llvm::reverse(argumentMaterializations))
if (Value result = fn(builder, resultType, inputs, loc))
return result;
return nullptr;
}
Value TypeConverter::materializeSourceConversion(OpBuilder &builder,
Location loc, Type resultType,
ValueRange inputs) const {
for (const MaterializationCallbackFn &fn :
llvm::reverse(sourceMaterializations))
if (Value result = fn(builder, resultType, inputs, loc))
return result;
return nullptr;
}
Value TypeConverter::materializeTargetConversion(OpBuilder &builder,
Location loc, Type resultType,
ValueRange inputs,
Type originalType) const {
SmallVector<Value> result = materializeTargetConversion(
builder, loc, TypeRange(resultType), inputs, originalType);
if (result.empty())
return nullptr;
assert(result.size() == 1 && "expected single result");
return result.front();
}
SmallVector<Value> TypeConverter::materializeTargetConversion(
OpBuilder &builder, Location loc, TypeRange resultTypes, ValueRange inputs,
Type originalType) const {
for (const TargetMaterializationCallbackFn &fn :
llvm::reverse(targetMaterializations)) {
SmallVector<Value> result =
fn(builder, resultTypes, inputs, loc, originalType);
if (result.empty())
continue;
assert(TypeRange(ValueRange(result)) == resultTypes &&
"callback produced incorrect number of values or values with "
"incorrect types");
return result;
}
return {};
}
std::optional<TypeConverter::SignatureConversion>
TypeConverter::convertBlockSignature(Block *block) const {
SignatureConversion conversion(block->getNumArguments());
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
return std::nullopt;
return conversion;
}
//===----------------------------------------------------------------------===//
// Type attribute conversion
//===----------------------------------------------------------------------===//
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::result(Attribute attr) {
return AttributeConversionResult(attr, resultTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::na() {
return AttributeConversionResult(nullptr, naTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::abort() {
return AttributeConversionResult(nullptr, abortTag);
}
bool TypeConverter::AttributeConversionResult::hasResult() const {
return impl.getInt() == resultTag;
}
bool TypeConverter::AttributeConversionResult::isNa() const {
return impl.getInt() == naTag;
}
bool TypeConverter::AttributeConversionResult::isAbort() const {
return impl.getInt() == abortTag;
}
Attribute TypeConverter::AttributeConversionResult::getResult() const {
assert(hasResult() && "Cannot get result from N/A or abort");
return impl.getPointer();
}
std::optional<Attribute>
TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
for (const TypeAttributeConversionCallbackFn &fn :
llvm::reverse(typeAttributeConversions)) {
AttributeConversionResult res = fn(type, attr);
if (res.hasResult())
return res.getResult();
if (res.isAbort())
return std::nullopt;
}
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// FunctionOpInterfaceSignatureConversion
//===----------------------------------------------------------------------===//
static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
const TypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
if (!type)
return failure();
// Convert the original function types.
TypeConverter::SignatureConversion result(type.getNumInputs());
SmallVector<Type, 1> newResults;
if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
typeConverter, &result)))
return failure();
// Update the function signature in-place.
auto newType = FunctionType::get(rewriter.getContext(),
result.getConvertedTypes(), newResults);
rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); });
return success();
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FunctionOpInterface op. This only supports ops which use FunctionType to
/// represent their type.
namespace {
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
MLIRContext *ctx,
const TypeConverter &converter)
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
struct AnyFunctionOpInterfaceSignatureConversion
: public OpInterfaceConversionPattern<FunctionOpInterface> {
using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
LogicalResult
matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
} // namespace
FailureOr<Operation *>
mlir::convertOpResultTypes(Operation *op, ValueRange operands,
const TypeConverter &converter,
ConversionPatternRewriter &rewriter) {
assert(op && "Invalid op");
Location loc = op->getLoc();
if (converter.isLegal(op))
return rewriter.notifyMatchFailure(loc, "op already legal");
OperationState newOp(loc, op->getName());
newOp.addOperands(operands);
SmallVector<Type> newResultTypes;
if (failed(converter.convertTypes(op->getResultTypes(), newResultTypes)))
return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
newOp.addTypes(newResultTypes);
newOp.addAttributes(op->getAttrs());
return rewriter.create(newOp);
}
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
StringRef functionLikeOpName, RewritePatternSet &patterns,
const TypeConverter &converter) {
patterns.add<FunctionOpInterfaceSignatureConversion>(
functionLikeOpName, patterns.getContext(), converter);
}
void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
RewritePatternSet &patterns, const TypeConverter &converter) {
patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
converter, patterns.getContext());
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op].action = action;
}
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
auto ConversionTarget::getOpAction(OperationName op) const
-> std::optional<LegalizationAction> {
std::optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : std::optional<LegalizationAction>();
}
auto ConversionTarget::isLegal(Operation *op) const
-> std::optional<LegalOpDetails> {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return std::nullopt;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function.
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (result)
return *result;
}
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return std::nullopt;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end()) {
legalityDetails.isRecursivelyLegal =
legalityFnIt->second(op).value_or(true);
} else {
legalityDetails.isRecursivelyLegal = true;
}
}
return legalityDetails;
}
bool ConversionTarget::isIllegal(Operation *op) const {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return false;
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (!result)
return false;
return !(*result);
}
return info->action == LegalizationAction::Illegal;
}
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
if (!oldCallback)
return newCallback;
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
Operation *op) -> std::optional<bool> {
if (std::optional<bool> result = newCl(op))
return *result;
return oldCl(op);
};
return chain;
}
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto *infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn =
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
}
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto *infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
std::move(opRecursiveLegalityFns[name]), callback);
else
opRecursiveLegalityFns.erase(name);
}
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = composeLegalityCallbacks(
std::move(dialectLegalityFns[dialect]), callback);
}
void ConversionTarget::setLegalityCallback(
const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
}
auto ConversionTarget::getOpInfo(OperationName op) const
-> std::optional<LegalizationInfo> {
// Check for info for this specific operation.
const auto *it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialectNamespace());
if (dialectIt != legalDialects.end()) {
DynamicLegalityCallbackFn callback;
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownLegalityFn)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return std::nullopt;
}
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// PDL Configuration
//===----------------------------------------------------------------------===//
void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = getTypeConverter();
}
void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = nullptr;
}
/// Remap the given value using the rewriter and the type converter in the
/// provided config.
static FailureOr<SmallVector<Value>>
pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
SmallVector<Value> mappedValues;
if (failed(rewriter.getRemappedValues(values, mappedValues)))
return failure();
return std::move(mappedValues);
}
void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
patterns.getPDLPatterns().registerRewriteFunction(
"convertValue",
[](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
auto results = pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), value);
if (failed(results))
return failure();
return results->front();
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertValues", [](PatternRewriter &rewriter, ValueRange values) {
return pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), values);
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertType",
[](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
if (const TypeConverter *converter =
rewriterImpl.currentTypeConverter) {
if (Type newType = converter->convertType(type))
return newType;
return failure();
}
return type;
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertTypes",
[](PatternRewriter &rewriter,
TypeRange types) -> FailureOr<SmallVector<Type>> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
const TypeConverter *converter = rewriterImpl.currentTypeConverter;
if (!converter)
return SmallVector<Type>(types);
SmallVector<Type> remappedTypes;
if (failed(converter->convertTypes(types, remappedTypes)))
return failure();
return std::move(remappedTypes);
});
}
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Partial Conversion
LogicalResult mlir::applyPartialConversion(
ArrayRef<Operation *> ops, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Partial);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyPartialConversion(llvm::ArrayRef(op), target, patterns, config);
}
//===----------------------------------------------------------------------===//
// Full Conversion
LogicalResult mlir::applyFullConversion(ArrayRef<Operation *> ops,
const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Full);
return opConverter.convertOperations(ops);
}
LogicalResult mlir::applyFullConversion(Operation *op,
const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyFullConversion(llvm::ArrayRef(op), target, patterns, config);
}
//===----------------------------------------------------------------------===//
// Analysis Conversion
/// Find a common IsolatedFromAbove ancestor of the given ops. If at least one
/// op is a top-level module op (which is expected to be isolated from above),
/// return that op.
static Operation *findCommonAncestor(ArrayRef<Operation *> ops) {
// Check if there is a top-level operation within `ops`. If so, return that
// op.
for (Operation *op : ops) {
if (!op->getParentOp()) {
#ifndef NDEBUG
assert(op->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
"expected top-level op to be isolated from above");
for (Operation *other : ops)
assert(op->isAncestor(other) &&
"expected ops to have a common ancestor");
#endif // NDEBUG
return op;
}
}
// No top-level op. Find a common ancestor.
Operation *commonAncestor =
ops.front()->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
for (Operation *op : ops.drop_front()) {
while (!commonAncestor->isProperAncestor(op)) {
commonAncestor =
commonAncestor->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
assert(commonAncestor &&
"expected to find a common isolated from above ancestor");
}
}
return commonAncestor;
}
LogicalResult mlir::applyAnalysisConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
#ifndef NDEBUG
if (config.legalizableOps)
assert(config.legalizableOps->empty() && "expected empty set");
#endif // NDEBUG
// Clone closted common ancestor that is isolated from above.
Operation *commonAncestor = findCommonAncestor(ops);
IRMapping mapping;
Operation *clonedAncestor = commonAncestor->clone(mapping);
// Compute inverse IR mapping.
DenseMap<Operation *, Operation *> inverseOperationMap;
for (auto &it : mapping.getOperationMap())
inverseOperationMap[it.second] = it.first;
// Convert the cloned operations. The original IR will remain unchanged.
SmallVector<Operation *> opsToConvert = llvm::map_to_vector(
ops, [&](Operation *op) { return mapping.lookup(op); });
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Analysis);
LogicalResult status = opConverter.convertOperations(opsToConvert);
// Remap `legalizableOps`, so that they point to the original ops and not the
// cloned ops.
if (config.legalizableOps) {
DenseSet<Operation *> originalLegalizableOps;
for (Operation *op : *config.legalizableOps)
originalLegalizableOps.insert(inverseOperationMap[op]);
*config.legalizableOps = std::move(originalLegalizableOps);
}
// Erase the cloned IR.
clonedAncestor->erase();
return status;
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, config);
}