llvm-project/mlir/lib/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.cpp
2022-07-13 00:57:02 -07:00

1435 lines
62 KiB
C++

//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a translation between the MLIR OpenMP dialect and LLVM
// IR.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
using namespace mlir;
namespace {
static llvm::omp::ScheduleKind
convertToScheduleKind(Optional<omp::ClauseScheduleKind> schedKind) {
if (!schedKind.has_value())
return llvm::omp::OMP_SCHEDULE_Default;
switch (schedKind.getValue()) {
case omp::ClauseScheduleKind::Static:
return llvm::omp::OMP_SCHEDULE_Static;
case omp::ClauseScheduleKind::Dynamic:
return llvm::omp::OMP_SCHEDULE_Dynamic;
case omp::ClauseScheduleKind::Guided:
return llvm::omp::OMP_SCHEDULE_Guided;
case omp::ClauseScheduleKind::Auto:
return llvm::omp::OMP_SCHEDULE_Auto;
case omp::ClauseScheduleKind::Runtime:
return llvm::omp::OMP_SCHEDULE_Runtime;
}
llvm_unreachable("unhandled schedule clause argument");
}
/// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
/// insertion points for allocas.
class OpenMPAllocaStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
: allocaInsertPoint(allocaIP) {}
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
};
/// ModuleTranslation stack frame containing the partial mapping between MLIR
/// values and their LLVM IR equivalents.
class OpenMPVarMappingStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<
OpenMPVarMappingStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame)
explicit OpenMPVarMappingStackFrame(
const DenseMap<Value, llvm::Value *> &mapping)
: mapping(mapping) {}
DenseMap<Value, llvm::Value *> mapping;
};
} // namespace
/// Find the insertion point for allocas given the current insertion point for
/// normal operations in the builder.
static llvm::OpenMPIRBuilder::InsertPointTy
findAllocaInsertPoint(llvm::IRBuilderBase &builder,
const LLVM::ModuleTranslation &moduleTranslation) {
// If there is an alloca insertion point on stack, i.e. we are in a nested
// operation and a specific point was provided by some surrounding operation,
// use it.
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
[&](const OpenMPAllocaStackFrame &frame) {
allocaInsertPoint = frame.allocaInsertPoint;
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return allocaInsertPoint;
// Otherwise, insert to the entry block of the surrounding function.
// If the current IRBuilder InsertPoint is the function's entry, it cannot
// also be used for alloca insertion which would result in insertion order
// confusion. Create a new BasicBlock for the Builder and use the entry block
// for the allocs.
// TODO: Create a dedicated alloca BasicBlock at function creation such that
// we do not need to move the current InertPoint here.
if (builder.GetInsertBlock() ==
&builder.GetInsertBlock()->getParent()->getEntryBlock()) {
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
"Assuming end of basic block");
llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
builder.CreateBr(entryBB);
builder.SetInsertPoint(entryBB);
}
llvm::BasicBlock &funcEntryBlock =
builder.GetInsertBlock()->getParent()->getEntryBlock();
return llvm::OpenMPIRBuilder::InsertPointTy(
&funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
}
/// Converts the given region that appears within an OpenMP dialect operation to
/// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
/// region, and a branch from any block with an successor-less OpenMP terminator
/// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
/// of the continuation block if provided.
static llvm::BasicBlock *convertOmpOpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus,
SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
llvm::BasicBlock *continuationBlock =
splitBB(builder, true, "omp.region.cont");
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
llvm::LLVMContext &llvmContext = builder.getContext();
for (Block &bb : region) {
llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
llvmContext, blockName, builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
moduleTranslation.mapBlock(&bb, llvmBB);
}
llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
// Terminators (namely YieldOp) may be forwarding values to the region that
// need to be available in the continuation block. Collect the types of these
// operands in preparation of creating PHI nodes.
SmallVector<llvm::Type *> continuationBlockPHITypes;
bool operandsProcessed = false;
unsigned numYields = 0;
for (Block &bb : region.getBlocks()) {
if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
if (!operandsProcessed) {
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
continuationBlockPHITypes.push_back(
moduleTranslation.convertType(yield->getOperand(i).getType()));
}
operandsProcessed = true;
} else {
assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
"mismatching number of values yielded from the region");
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
llvm::Type *operandType =
moduleTranslation.convertType(yield->getOperand(i).getType());
(void)operandType;
assert(continuationBlockPHITypes[i] == operandType &&
"values of mismatching types yielded from the region");
}
}
numYields++;
}
}
// Insert PHI nodes in the continuation block for any values forwarded by the
// terminators in this region.
if (!continuationBlockPHITypes.empty())
assert(
continuationBlockPHIs &&
"expected continuation block PHIs if converted regions yield values");
if (continuationBlockPHIs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
for (llvm::Type *ty : continuationBlockPHITypes)
continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
}
// Convert blocks one by one in topological order to ensure
// defs are converted before uses.
SetVector<Block *> blocks =
LLVM::detail::getTopologicallySortedBlocks(region);
for (Block *bb : blocks) {
llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
// Retarget the branch of the entry block to the entry block of the
// converted region (regions are single-entry).
if (bb->isEntryBlock()) {
assert(sourceTerminator->getNumSuccessors() == 1 &&
"provided entry block has multiple successors");
assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
"ContinuationBlock is not the successor of the entry block");
sourceTerminator->setSuccessor(0, llvmBB);
}
llvm::IRBuilderBase::InsertPointGuard guard(builder);
if (failed(
moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) {
bodyGenStatus = failure();
return continuationBlock;
}
// Special handling for `omp.yield` and `omp.terminator` (we may have more
// than one): they return the control to the parent OpenMP dialect operation
// so replace them with the branch to the continuation block. We handle this
// here to avoid relying inter-function communication through the
// ModuleTranslation class to set up the correct insertion point. This is
// also consistent with MLIR's idiom of handling special region terminators
// in the same code that handles the region-owning operation.
Operation *terminator = bb->getTerminator();
if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
builder.CreateBr(continuationBlock);
for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
(*continuationBlockPHIs)[i]->addIncoming(
moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
}
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
LLVM::detail::connectPHINodes(region, moduleTranslation);
// Remove the blocks and values defined in this region from the mapping since
// they are not visible outside of this region. This allows the same region to
// be converted several times, that is cloned, without clashes, and slightly
// speeds up the lookups.
moduleTranslation.forgetMapping(region);
return continuationBlock;
}
/// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
switch (kind) {
case omp::ClauseProcBindKind::Close:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
case omp::ClauseProcBindKind::Master:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
case omp::ClauseProcBindKind::Primary:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
case omp::ClauseProcBindKind::Spread:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
}
llvm_unreachable("Unknown ClauseProcBindKind kind");
}
/// Converts the OpenMP parallel operation to LLVM IR.
static LogicalResult
convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// ParallelOp has only one region associated with it.
builder.restoreIP(codeGenIP);
convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::Value &, llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::Value *ifCond = nullptr;
if (auto ifExprVar = opInst.if_expr_var())
ifCond = moduleTranslation.lookupValue(ifExprVar);
llvm::Value *numThreads = nullptr;
if (auto numThreadsVar = opInst.num_threads_var())
numThreads = moduleTranslation.lookupValue(numThreadsVar);
auto pbKind = llvm::omp::OMP_PROC_BIND_default;
if (auto bind = opInst.proc_bind_val())
pbKind = getProcBindKind(*bind);
// TODO: Is the Parallel construct cancellable?
bool isCancellable = false;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createParallel(
ompLoc, allocaIP, bodyGenCB, privCB, finiCB, ifCond, numThreads, pbKind,
isCancellable));
return bodyGenStatus;
}
/// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MasterOp has only one region associated with it.
auto &region = cast<omp::MasterOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation,
bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster(
ompLoc, bodyGenCB, finiCB));
return success();
}
/// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto criticalOp = cast<omp::CriticalOp>(opInst);
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// CriticalOp has only one region associated with it.
auto &region = cast<omp::CriticalOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.critical.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
llvm::Constant *hint = nullptr;
// If it has a name, it probably has a hint too.
if (criticalOp.nameAttr()) {
// The verifiers in OpenMP Dialect guarentee that all the pointers are
// non-null
auto symbolRef = criticalOp.nameAttr().cast<SymbolRefAttr>();
auto criticalDeclareOp =
SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
symbolRef);
hint =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext),
static_cast<int>(criticalDeclareOp.hint_val()));
}
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical(
ompLoc, bodyGenCB, finiCB, criticalOp.name().value_or(""), hint));
return success();
}
/// Returns a reduction declaration that corresponds to the given reduction
/// operation in the given container. Currently only supports reductions inside
/// WsLoopOp but can be easily extended.
static omp::ReductionDeclareOp findReductionDecl(omp::WsLoopOp container,
omp::ReductionOp reduction) {
SymbolRefAttr reductionSymbol;
for (unsigned i = 0, e = container.getNumReductionVars(); i < e; ++i) {
if (container.reduction_vars()[i] != reduction.accumulator())
continue;
reductionSymbol = (*container.reductions())[i].cast<SymbolRefAttr>();
break;
}
assert(reductionSymbol &&
"reduction operation must be associated with a declaration");
return SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
container, reductionSymbol);
}
/// Populates `reductions` with reduction declarations used in the given loop.
static void
collectReductionDecls(omp::WsLoopOp loop,
SmallVectorImpl<omp::ReductionDeclareOp> &reductions) {
Optional<ArrayAttr> attr = loop.reductions();
if (!attr)
return;
reductions.reserve(reductions.size() + loop.getNumReductionVars());
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
reductions.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
loop, symbolRef));
}
}
/// Translates the blocks contained in the given region and appends them to at
/// the current insertion point of `builder`. The operations of the entry block
/// are appended to the current insertion block, which is not expected to have a
/// terminator. If set, `continuationBlockArgs` is populated with translated
/// values that correspond to the values omp.yield'ed from the region.
static LogicalResult inlineConvertOmpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
if (region.empty())
return success();
// Special case for single-block regions that don't create additional blocks:
// insert operations without creating additional blocks.
if (llvm::hasSingleElement(region)) {
moduleTranslation.mapBlock(&region.front(), builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(
region.front(), /*ignoreArguments=*/true, builder)))
return failure();
// The continuation arguments are simply the translated terminator operands.
if (continuationBlockArgs)
llvm::append_range(
*continuationBlockArgs,
moduleTranslation.lookupValues(region.front().back().getOperands()));
// Drop the mapping that is no longer necessary so that the same region can
// be processed multiple times.
moduleTranslation.forgetMapping(region);
return success();
}
LogicalResult bodyGenStatus = success();
SmallVector<llvm::PHINode *> phis;
llvm::BasicBlock *continuationBlock = convertOmpOpRegions(
region, blockName, builder, moduleTranslation, bodyGenStatus, &phis);
if (failed(bodyGenStatus))
return failure();
if (continuationBlockArgs)
llvm::append_range(*continuationBlockArgs, phis);
builder.SetInsertPoint(continuationBlock,
continuationBlock->getFirstInsertionPt());
return success();
}
namespace {
/// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
/// store lambdas with capture.
using OwningReductionGen = std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
llvm::Value *&)>;
using OwningAtomicReductionGen =
std::function<llvm::OpenMPIRBuilder::InsertPointTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
llvm::Value *)>;
} // namespace
/// Create an OpenMPIRBuilder-compatible reduction generator for the given
/// reduction declaration. The generator uses `builder` but ignores its
/// insertion point.
static OwningReductionGen
makeReductionGen(omp::ReductionDeclareOp decl, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningReductionGen gen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
llvm::Value *lhs, llvm::Value *rhs,
llvm::Value *&result) mutable {
Region &reductionRegion = decl.reductionRegion();
moduleTranslation.mapValue(reductionRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(reductionRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionRegion,
"omp.reduction.nonatomic.body",
builder, moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.size() == 1);
result = phis[0];
return builder.saveIP();
};
return gen;
}
/// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
/// given reduction declaration. The generator uses `builder` but ignores its
/// insertion point. Returns null if there is no atomic region available in the
/// reduction declaration.
static OwningAtomicReductionGen
makeAtomicReductionGen(omp::ReductionDeclareOp decl,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (decl.atomicReductionRegion().empty())
return OwningAtomicReductionGen();
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningAtomicReductionGen atomicGen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
llvm::Value *lhs, llvm::Value *rhs) mutable {
Region &atomicRegion = decl.atomicReductionRegion();
moduleTranslation.mapValue(atomicRegion.front().getArgument(0), lhs);
moduleTranslation.mapValue(atomicRegion.front().getArgument(1), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(atomicRegion,
"omp.reduction.atomic.body", builder,
moduleTranslation, &phis)))
return llvm::OpenMPIRBuilder::InsertPointTy();
assert(phis.empty());
return builder.saveIP();
};
return atomicGen;
}
/// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto orderedOp = cast<omp::OrderedOp>(opInst);
omp::ClauseDepend dependType = *orderedOp.depend_type_val();
bool isDependSource = dependType == omp::ClauseDepend::dependsource;
unsigned numLoops = *orderedOp.num_loops_val();
SmallVector<llvm::Value *> vecValues =
moduleTranslation.lookupValues(orderedOp.depend_vec_vars());
size_t indexVecValues = 0;
while (indexVecValues < vecValues.size()) {
SmallVector<llvm::Value *> storeValues;
storeValues.reserve(numLoops);
for (unsigned i = 0; i < numLoops; i++) {
storeValues.push_back(vecValues[indexVecValues]);
indexVecValues++;
}
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
}
return success();
}
/// Converts an OpenMP 'ordered_region' operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
// TODO: The code generation for ordered simd directive is not supported yet.
if (orderedRegionOp.simd())
return failure();
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
LogicalResult bodyGenStatus = success();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// OrderedOp has only one region associated with it.
auto &region = cast<omp::OrderedRegionOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.ordered.region", builder,
moduleTranslation, bodyGenStatus);
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(
moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
ompLoc, bodyGenCB, finiCB, !orderedRegionOp.simd()));
return bodyGenStatus;
}
static LogicalResult
convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
using StorableBodyGenCallbackTy =
llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
auto sectionsOp = cast<omp::SectionsOp>(opInst);
// TODO: Support the following clauses: private, firstprivate, lastprivate,
// reduction, allocate
if (!sectionsOp.reduction_vars().empty() || sectionsOp.reductions() ||
!sectionsOp.allocate_vars().empty() ||
!sectionsOp.allocators_vars().empty())
return emitError(sectionsOp.getLoc())
<< "reduction and allocate clauses are not supported for sections "
"construct";
LogicalResult bodyGenStatus = success();
SmallVector<StorableBodyGenCallbackTy> sectionCBs;
for (Operation &op : *sectionsOp.region().begin()) {
auto sectionOp = dyn_cast<omp::SectionOp>(op);
if (!sectionOp) // omp.terminator
continue;
Region &region = sectionOp.region();
auto sectionCB = [&region, &builder, &moduleTranslation, &bodyGenStatus](
InsertPointTy allocaIP, InsertPointTy codeGenIP) {
builder.restoreIP(codeGenIP);
convertOmpOpRegions(region, "omp.section.region", builder,
moduleTranslation, bodyGenStatus);
};
sectionCBs.push_back(sectionCB);
}
// No sections within omp.sections operation - skip generation. This situation
// is only possible if there is only a terminator operation inside the
// sections operation
if (sectionCBs.empty())
return success();
assert(isa<omp::SectionOp>(*sectionsOp.region().op_begin()));
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections(
ompLoc, allocaIP, sectionCBs, privCB, finiCB, false,
sectionsOp.nowait()));
return bodyGenStatus;
}
/// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
LogicalResult bodyGenStatus = success();
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(singleOp.region(), "omp.single.region", builder,
moduleTranslation, bodyGenStatus);
};
auto finiCB = [&](InsertPointTy codeGenIP) {};
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle(
ompLoc, bodyCB, finiCB, singleOp.nowait(), /*DidIt=*/nullptr));
return bodyGenStatus;
}
/// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
LogicalResult bodyGenStatus = success();
if (taskOp.if_expr() || taskOp.final_expr() || taskOp.untiedAttr() ||
taskOp.mergeableAttr() || taskOp.in_reductions() || taskOp.priority() ||
!taskOp.allocate_vars().empty()) {
return taskOp.emitError("unhandled clauses for translation to LLVM IR");
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
convertOmpOpRegions(taskOp.region(), "omp.task.region", builder,
moduleTranslation, bodyGenStatus);
};
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask(
ompLoc, allocaIP, bodyCB, !taskOp.untied()));
return bodyGenStatus;
}
/// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpWsLoop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto loop = cast<omp::WsLoopOp>(opInst);
// TODO: this should be in the op verifier instead.
if (loop.lowerBound().empty())
return failure();
// Static is the default.
auto schedule = loop.schedule_val().value_or(omp::ClauseScheduleKind::Static);
// Find the loop configuration.
llvm::Value *step = moduleTranslation.lookupValue(loop.step()[0]);
llvm::Type *ivType = step->getType();
llvm::Value *chunk = nullptr;
if (loop.schedule_chunk_var()) {
llvm::Value *chunkVar =
moduleTranslation.lookupValue(loop.schedule_chunk_var());
chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
}
SmallVector<omp::ReductionDeclareOp> reductionDecls;
collectReductionDecls(loop, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
// Allocate space for privatized reduction variables.
SmallVector<llvm::Value *> privateReductionVariables;
DenseMap<Value, llvm::Value *> reductionVariableMap;
unsigned numReductions = loop.getNumReductionVars();
privateReductionVariables.reserve(numReductions);
if (numReductions != 0) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.restoreIP(allocaIP);
for (unsigned i = 0; i < numReductions; ++i) {
auto reductionType =
loop.reduction_vars()[i].getType().cast<LLVM::LLVMPointerType>();
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionType.getElementType()));
privateReductionVariables.push_back(var);
reductionVariableMap.try_emplace(loop.reduction_vars()[i], var);
}
}
// Store the mapping between reduction variables and their private copies on
// ModuleTranslation stack. It can be then recovered when translating
// omp.reduce operations in a separate call.
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
moduleTranslation, reductionVariableMap);
// Before the loop, store the initial values of reductions into reduction
// variables. Although this could be done after allocas, we don't want to mess
// up with the alloca insertion point.
for (unsigned i = 0; i < numReductions; ++i) {
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionDecls[i].initializerRegion(),
"omp.reduction.neutral", builder,
moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from the "
"reduction neutral element declaration region");
builder.CreateStore(phis[0], privateReductionVariables[i]);
}
// Set up the source location value for OpenMP runtime.
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loop.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loop.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loop.region(), "omp.wsloop.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes WsLoop is semantically similar to SCF loop,
// i.e. it has a positive step, uses signed integer semantics. Reconsider
// this code when WsLoop clearly supports more cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loop.lowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loop.upperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back());
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, loop.inclusive(), computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops. Store the insertion point because LoopInfos may get
// invalidated.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
// TODO: Handle doacross loops when the ordered clause has a parameter.
bool isOrdered = loop.ordered_val().has_value();
Optional<omp::ScheduleModifier> scheduleModifier = loop.schedule_modifier();
bool isSimd = loop.simd_modifier();
ompBuilder->applyWorkshareLoop(
ompLoc.DL, loopInfo, allocaIP, !loop.nowait(),
convertToScheduleKind(schedule), chunk, isSimd,
scheduleModifier == omp::ScheduleModifier::monotonic,
scheduleModifier == omp::ScheduleModifier::nonmonotonic, isOrdered);
// Continue building IR after the loop. Note that the LoopInfo returned by
// `collapseLoops` points inside the outermost loop and is intended for
// potential further loop transformations. Use the insertion point stored
// before collapsing loops instead.
builder.restoreIP(afterIP);
// Process the reductions if required.
if (numReductions == 0)
return success();
// Create the reduction generators. We need to own them here because
// ReductionInfo only accepts references to the generators.
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
for (unsigned i = 0; i < numReductions; ++i) {
owningReductionGens.push_back(
makeReductionGen(reductionDecls[i], builder, moduleTranslation));
owningAtomicReductionGens.push_back(
makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
}
// Collect the reduction information.
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
reductionInfos.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
llvm::OpenMPIRBuilder::AtomicReductionGenTy atomicGen = nullptr;
if (owningAtomicReductionGens[i])
atomicGen = owningAtomicReductionGens[i];
auto reductionType =
loop.reduction_vars()[i].getType().cast<LLVM::LLVMPointerType>();
llvm::Value *variable =
moduleTranslation.lookupValue(loop.reduction_vars()[i]);
reductionInfos.push_back(
{moduleTranslation.convertType(reductionType.getElementType()),
variable, privateReductionVariables[i], owningReductionGens[i],
atomicGen});
}
// The call to createReductions below expects the block to have a
// terminator. Create an unreachable instruction to serve as terminator
// and remove it later.
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
loop.nowait());
if (!contInsertPoint.getBlock())
return loop->emitOpError() << "failed to convert reductions";
auto nextInsertionPoint =
ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for);
tempTerminator->eraseFromParent();
builder.restoreIP(nextInsertionPoint);
return success();
}
/// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSimdLoop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto loop = cast<omp::SimdLoopOp>(opInst);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
// relying on captured variables.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
LogicalResult bodyGenStatus = success();
// TODO: The code generation for if clause is not supported yet.
if (loop.if_expr())
return failure();
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loop.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loop.getNumLoops() - 1)
return;
// Convert the body of the loop.
builder.restoreIP(ip);
convertOmpOpRegions(loop.region(), "omp.simdloop.region", builder,
moduleTranslation, bodyGenStatus);
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes SimdLoop is semantically similar to SCF loop,
// i.e. it has a positive step, uses signed integer semantics. Reconsider
// this code when SimdLoop clearly supports more cases.
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loop.lowerBound()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loop.upperBound()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
ompLoc.DL);
computeIP = loopInfos.front()->getPreheaderIP();
}
loopInfos.push_back(ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, /*Inclusive=*/true, computeIP));
if (failed(bodyGenStatus))
return failure();
}
// Collapse loops.
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
llvm::CanonicalLoopInfo *loopInfo =
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
ompBuilder->applySimd(loopInfo, nullptr);
builder.restoreIP(afterIP);
return success();
}
/// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
llvm::AtomicOrdering
convertAtomicOrdering(Optional<omp::ClauseMemoryOrderKind> ao) {
if (!ao)
return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
switch (*ao) {
case omp::ClauseMemoryOrderKind::Seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
case omp::ClauseMemoryOrderKind::Acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case omp::ClauseMemoryOrderKind::Acquire:
return llvm::AtomicOrdering::Acquire;
case omp::ClauseMemoryOrderKind::Release:
return llvm::AtomicOrdering::Release;
case omp::ClauseMemoryOrderKind::Relaxed:
return llvm::AtomicOrdering::Monotonic;
}
llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
}
/// Convert omp.atomic.read operation to LLVM IR.
static LogicalResult
convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto readOp = cast<omp::AtomicReadOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.memory_order_val());
llvm::Value *x = moduleTranslation.lookupValue(readOp.x());
Type xTy = readOp.x().getType().cast<omp::PointerLikeType>().getElementType();
llvm::Value *v = moduleTranslation.lookupValue(readOp.v());
Type vTy = readOp.v().getType().cast<omp::PointerLikeType>().getElementType();
llvm::OpenMPIRBuilder::AtomicOpValue V = {
v, moduleTranslation.convertType(vTy), false, false};
llvm::OpenMPIRBuilder::AtomicOpValue X = {
x, moduleTranslation.convertType(xTy), false, false};
builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO));
return success();
}
/// Converts an omp.atomic.write operation to LLVM IR.
static LogicalResult
convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto writeOp = cast<omp::AtomicWriteOp>(opInst);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.memory_order_val());
llvm::Value *expr = moduleTranslation.lookupValue(writeOp.value());
llvm::Value *dest = moduleTranslation.lookupValue(writeOp.address());
llvm::Type *ty = moduleTranslation.convertType(writeOp.value().getType());
llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
/*isVolatile=*/false};
builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao));
return success();
}
/// Converts an LLVM dialect binary operation to the corresponding enum value
/// for `atomicrmw` supported binary operation.
llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
.Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
.Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
.Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
.Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
.Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
.Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
.Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
.Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
.Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
.Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
}
/// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
static LogicalResult
convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Convert values and types.
auto &innerOpList = opInst.region().front().getOperations();
if (innerOpList.size() != 2)
return opInst.emitError("exactly two operations are allowed inside an "
"atomic update region while lowering to LLVM IR");
Operation &innerUpdateOp = innerOpList.front();
if (innerUpdateOp.getNumOperands() != 2 ||
!llvm::is_contained(innerUpdateOp.getOperands(),
opInst.getRegion().getArgument(0)))
return opInst.emitError(
"the update operation inside the region must be a binary operation and "
"that update operation must have the region argument as an operand");
llvm::AtomicRMWInst::BinOp binop = convertBinOpToAtomic(innerUpdateOp);
bool isXBinopExpr =
innerUpdateOp.getNumOperands() > 0 &&
innerUpdateOp.getOperand(0) == opInst.getRegion().getArgument(0);
mlir::Value mlirExpr = (isXBinopExpr ? innerUpdateOp.getOperand(1)
: innerUpdateOp.getOperand(0));
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX = moduleTranslation.lookupValue(opInst.x());
LLVM::LLVMPointerType mlirXType =
opInst.x().getType().cast<LLVM::LLVMPointerType>();
llvm::Type *llvmXElementType =
moduleTranslation.convertType(mlirXType.getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(opInst.memory_order_val());
// Generate update code.
LogicalResult updateGenStatus = success();
auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus](
llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
Block &bb = *opInst.region().begin();
moduleTranslation.mapValue(*opInst.region().args_begin(), atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (opInst.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.results().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.results()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicUpdate(
ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn,
isXBinopExpr));
return updateGenStatus;
}
static LogicalResult
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
mlir::Value mlirExpr;
bool isXBinopExpr = false, isPostfixUpdate = false;
llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
assert((atomicUpdateOp || atomicWriteOp) &&
"internal op must be an atomic.update or atomic.write op");
if (atomicWriteOp) {
isPostfixUpdate = true;
mlirExpr = atomicWriteOp.value();
} else {
isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
atomicCaptureOp.getAtomicUpdateOp().getOperation();
auto &innerOpList = atomicUpdateOp.region().front().getOperations();
if (innerOpList.size() != 2)
return atomicUpdateOp.emitError(
"exactly two operations are allowed inside an "
"atomic update region while lowering to LLVM IR");
Operation *innerUpdateOp = atomicUpdateOp.getFirstOp();
if (innerUpdateOp->getNumOperands() != 2 ||
!llvm::is_contained(innerUpdateOp->getOperands(),
atomicUpdateOp.getRegion().getArgument(0)))
return atomicUpdateOp.emitError(
"the update operation inside the region must be a binary operation "
"and that update operation must have the region argument as an "
"operand");
binop = convertBinOpToAtomic(*innerUpdateOp);
isXBinopExpr = innerUpdateOp->getOperand(0) ==
atomicUpdateOp.getRegion().getArgument(0);
mlirExpr = (isXBinopExpr ? innerUpdateOp->getOperand(1)
: innerUpdateOp->getOperand(0));
}
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().x());
llvm::Value *llvmV =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().v());
auto mlirXType = atomicCaptureOp.getAtomicReadOp()
.x()
.getType()
.cast<LLVM::LLVMPointerType>();
llvm::Type *llvmXElementType =
moduleTranslation.convertType(mlirXType.getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(atomicCaptureOp.memory_order_val());
LogicalResult updateGenStatus = success();
auto updateFn = [&](llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Value * {
if (atomicWriteOp)
return moduleTranslation.lookupValue(atomicWriteOp.value());
Block &bb = *atomicUpdateOp.region().begin();
moduleTranslation.mapValue(*atomicUpdateOp.region().args_begin(), atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
updateGenStatus = (atomicUpdateOp.emitError()
<< "unable to convert update operation to llvm IR");
return nullptr;
}
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.results().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.results()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(ompBuilder->createAtomicCapture(
ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr));
return updateGenStatus;
}
/// Converts an OpenMP reduction operation using OpenMPIRBuilder. Expects the
/// mapping between reduction variables and their private equivalents to have
/// been stored on the ModuleTranslation stack. Currently only supports
/// reduction within WsLoopOp, but can be easily extended.
static LogicalResult
convertOmpReductionOp(omp::ReductionOp reductionOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// Find the declaration that corresponds to the reduction op.
auto reductionContainer = reductionOp->getParentOfType<omp::WsLoopOp>();
omp::ReductionDeclareOp declaration =
findReductionDecl(reductionContainer, reductionOp);
assert(declaration && "could not find reduction declaration");
// Retrieve the mapping between reduction variables and their private
// equivalents.
const DenseMap<Value, llvm::Value *> *reductionVariableMap = nullptr;
moduleTranslation.stackWalk<OpenMPVarMappingStackFrame>(
[&](const OpenMPVarMappingStackFrame &frame) {
reductionVariableMap = &frame.mapping;
return WalkResult::interrupt();
});
assert(reductionVariableMap && "couldn't find private reduction variables");
// Translate the reduction operation by emitting the body of the corresponding
// reduction declaration.
Region &reductionRegion = declaration.reductionRegion();
llvm::Value *privateReductionVar =
reductionVariableMap->lookup(reductionOp.accumulator());
llvm::Value *reductionVal = builder.CreateLoad(
moduleTranslation.convertType(reductionOp.operand().getType()),
privateReductionVar);
moduleTranslation.mapValue(reductionRegion.front().getArgument(0),
reductionVal);
moduleTranslation.mapValue(
reductionRegion.front().getArgument(1),
moduleTranslation.lookupValue(reductionOp.operand()));
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(reductionRegion, "omp.reduction.body",
builder, moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from "
"the reduction body declaration region");
builder.CreateStore(phis[0], privateReductionVar);
return success();
}
/// Converts an OpenMP Threadprivate operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
Value symAddr = threadprivateOp.sym_addr();
auto *symOp = symAddr.getDefiningOp();
if (!isa<LLVM::AddressOfOp>(symOp))
return opInst.emitError("Addressing symbol not found");
LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
LLVM::GlobalOp global = addressOfOp.getGlobal();
llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
llvm::Value *data =
builder.CreateBitCast(globalValue, builder.getInt8PtrTy());
llvm::Type *type = globalValue->getValueType();
llvm::TypeSize typeSize =
builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
type);
llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedSize());
llvm::StringRef suffix = llvm::StringRef(".cache", 6);
std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str();
// Emit runtime function and bitcast its type (i8*) to real data type.
llvm::Value *callInst =
moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate(
ompLoc, data, size, cacheName);
llvm::Value *result = builder.CreateBitCast(callInst, globalValue->getType());
moduleTranslation.mapValue(opInst.getResult(0), result);
return success();
}
namespace {
/// Implementation of the dialect interface that converts operations belonging
/// to the OpenMP dialect to LLVM IR.
class OpenMPDialectLLVMIRTranslationInterface
: public LLVMTranslationDialectInterface {
public:
using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
/// Translates the given operation to LLVM IR using the provided IR builder
/// and saving the state in `moduleTranslation`.
LogicalResult
convertOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const final;
};
} // namespace
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
return llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::BarrierOp) {
ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();
})
.Case([&](omp::TaskwaitOp) {
ompBuilder->createTaskwait(builder.saveIP());
return success();
})
.Case([&](omp::TaskyieldOp) {
ompBuilder->createTaskyield(builder.saveIP());
return success();
})
.Case([&](omp::FlushOp) {
// No support in Openmp runtime function (__kmpc_flush) to accept
// the argument list.
// OpenMP standard states the following:
// "An implementation may implement a flush with a list by ignoring
// the list, and treating it the same as a flush without a list."
//
// The argument list is discarded so that, flush with a list is treated
// same as a flush without a list.
ompBuilder->createFlush(builder.saveIP());
return success();
})
.Case([&](omp::ParallelOp op) {
return convertOmpParallel(op, builder, moduleTranslation);
})
.Case([&](omp::ReductionOp reductionOp) {
return convertOmpReductionOp(reductionOp, builder, moduleTranslation);
})
.Case([&](omp::MasterOp) {
return convertOmpMaster(*op, builder, moduleTranslation);
})
.Case([&](omp::CriticalOp) {
return convertOmpCritical(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedRegionOp) {
return convertOmpOrderedRegion(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedOp) {
return convertOmpOrdered(*op, builder, moduleTranslation);
})
.Case([&](omp::WsLoopOp) {
return convertOmpWsLoop(*op, builder, moduleTranslation);
})
.Case([&](omp::SimdLoopOp) {
return convertOmpSimdLoop(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicReadOp) {
return convertOmpAtomicRead(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicWriteOp) {
return convertOmpAtomicWrite(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicUpdateOp op) {
return convertOmpAtomicUpdate(op, builder, moduleTranslation);
})
.Case([&](omp::AtomicCaptureOp op) {
return convertOmpAtomicCapture(op, builder, moduleTranslation);
})
.Case([&](omp::SectionsOp) {
return convertOmpSections(*op, builder, moduleTranslation);
})
.Case([&](omp::SingleOp op) {
return convertOmpSingle(op, builder, moduleTranslation);
})
.Case([&](omp::TaskOp op) {
return convertOmpTaskOp(op, builder, moduleTranslation);
})
.Case<omp::YieldOp, omp::TerminatorOp, omp::ReductionDeclareOp,
omp::CriticalDeclareOp>([](auto op) {
// `yield` and `terminator` can be just omitted. The block structure
// was created in the region that handles their parent operation.
// `reduction.declare` will be used by reductions and is not
// converted directly, skip it.
// `critical.declare` is only used to declare names of critical
// sections which will be used by `critical` ops and hence can be
// ignored for lowering. The OpenMP IRBuilder will create unique
// name for critical section names.
return success();
})
.Case([&](omp::ThreadprivateOp) {
return convertOmpThreadprivate(*op, builder, moduleTranslation);
})
.Default([&](Operation *inst) {
return inst->emitError("unsupported OpenMP operation: ")
<< inst->getName();
});
}
void mlir::registerOpenMPDialectTranslation(DialectRegistry &registry) {
registry.insert<omp::OpenMPDialect>();
registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
});
}
void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
DialectRegistry registry;
registerOpenMPDialectTranslation(registry);
context.appendDialectRegistry(registry);
}