Krzysztof Drewniak 499abb243c Add generic type attribute mapping infrastructure, use it in GpuToX
Remapping memory spaces is a function often needed in type
conversions, most often when going to LLVM or to/from SPIR-V (a future
commit), and it is possible that such remappings may become more
common in the future as dialects take advantage of the more generic
memory space infrastructure.

Currently, memory space remappings are handled by running a
special-purpose conversion pass before the main conversion that
changes the address space attributes. In this commit, this approach is
replaced by adding a notion of type attribute conversions
TypeConverter, which is then used to convert memory space attributes.

Then, we use this infrastructure throughout the *ToLLVM conversions.
This has the advantage of loosing the requirements on the inputs to
those passes from "all address spaces must be integers" to "all
memory spaces must be convertible to integer spaces", a looser
requirement that reduces the coupling between portions of MLIR.

ON top of that, this change leads to the removal of most of the calls
to getMemorySpaceAsInt(), bringing us closer to removing it.

(A rework of the SPIR-V conversions to use this new system will be in
a folowup commit.)

As a note, one long-term motivation for this change is that I would
eventually like to add an allocaMemorySpace key to MLIR data layouts
and then call getMemRefAddressSpace(allocaMemorySpace) in the
relevant *ToLLVM in order to ensure all alloca()s, whether incoming or
produces during the LLVM lowering, have the correct address space for
a given target.

I expect that the type attribute conversion system may be useful in
other contexts.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D142159
2023-02-09 18:00:46 +00:00

350 lines
14 KiB
C++

//===- Pattern.cpp - Conversion pattern to the LLVM dialect ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ConvertToLLVMPattern
//===----------------------------------------------------------------------===//
ConvertToLLVMPattern::ConvertToLLVMPattern(StringRef rootOpName,
MLIRContext *context,
LLVMTypeConverter &typeConverter,
PatternBenefit benefit)
: ConversionPattern(typeConverter, rootOpName, benefit, context) {}
LLVMTypeConverter *ConvertToLLVMPattern::getTypeConverter() const {
return static_cast<LLVMTypeConverter *>(
ConversionPattern::getTypeConverter());
}
LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const {
return *getTypeConverter()->getDialect();
}
Type ConvertToLLVMPattern::getIndexType() const {
return getTypeConverter()->getIndexType();
}
Type ConvertToLLVMPattern::getIntPtrType(unsigned addressSpace) const {
return IntegerType::get(&getTypeConverter()->getContext(),
getTypeConverter()->getPointerBitwidth(addressSpace));
}
Type ConvertToLLVMPattern::getVoidType() const {
return LLVM::LLVMVoidType::get(&getTypeConverter()->getContext());
}
Type ConvertToLLVMPattern::getVoidPtrType() const {
return getTypeConverter()->getPointerType(
IntegerType::get(&getTypeConverter()->getContext(), 8));
}
Value ConvertToLLVMPattern::createIndexAttrConstant(OpBuilder &builder,
Location loc,
Type resultType,
int64_t value) {
return builder.create<LLVM::ConstantOp>(loc, resultType,
builder.getIndexAttr(value));
}
Value ConvertToLLVMPattern::createIndexConstant(
ConversionPatternRewriter &builder, Location loc, uint64_t value) const {
return createIndexAttrConstant(builder, loc, getIndexType(), value);
}
Value ConvertToLLVMPattern::getStridedElementPtr(
Location loc, MemRefType type, Value memRefDesc, ValueRange indices,
ConversionPatternRewriter &rewriter) const {
auto [strides, offset] = getStridesAndOffset(type);
MemRefDescriptor memRefDescriptor(memRefDesc);
Value base = memRefDescriptor.alignedPtr(rewriter, loc);
Value index;
if (offset != 0) // Skip if offset is zero.
index = ShapedType::isDynamic(offset)
? memRefDescriptor.offset(rewriter, loc)
: createIndexConstant(rewriter, loc, offset);
for (int i = 0, e = indices.size(); i < e; ++i) {
Value increment = indices[i];
if (strides[i] != 1) { // Skip if stride is 1.
Value stride = ShapedType::isDynamic(strides[i])
? memRefDescriptor.stride(rewriter, loc, i)
: createIndexConstant(rewriter, loc, strides[i]);
increment = rewriter.create<LLVM::MulOp>(loc, increment, stride);
}
index =
index ? rewriter.create<LLVM::AddOp>(loc, index, increment) : increment;
}
Type elementPtrType = memRefDescriptor.getElementPtrType();
return index ? rewriter.create<LLVM::GEPOp>(
loc, elementPtrType,
getTypeConverter()->convertType(type.getElementType()),
base, index)
: base;
}
// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
bool ConvertToLLVMPattern::isConvertibleAndHasIdentityMaps(
MemRefType type) const {
if (!typeConverter->convertType(type.getElementType()))
return false;
return type.getLayout().isIdentity();
}
Type ConvertToLLVMPattern::getElementPtrType(MemRefType type) const {
auto elementType = type.getElementType();
auto structElementType = typeConverter->convertType(elementType);
auto addressSpace = getTypeConverter()->getMemRefAddressSpace(type);
if (failed(addressSpace))
return {};
return getTypeConverter()->getPointerType(structElementType, *addressSpace);
}
void ConvertToLLVMPattern::getMemRefDescriptorSizes(
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
ConversionPatternRewriter &rewriter, SmallVectorImpl<Value> &sizes,
SmallVectorImpl<Value> &strides, Value &sizeBytes) const {
assert(isConvertibleAndHasIdentityMaps(memRefType) &&
"layout maps must have been normalized away");
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
static_cast<ssize_t>(dynamicSizes.size()) &&
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
sizes.reserve(memRefType.getRank());
unsigned dynamicIndex = 0;
for (int64_t size : memRefType.getShape()) {
sizes.push_back(size == ShapedType::kDynamic
? dynamicSizes[dynamicIndex++]
: createIndexConstant(rewriter, loc, size));
}
// Strides: iterate sizes in reverse order and multiply.
int64_t stride = 1;
Value runningStride = createIndexConstant(rewriter, loc, 1);
strides.resize(memRefType.getRank());
for (auto i = memRefType.getRank(); i-- > 0;) {
strides[i] = runningStride;
int64_t size = memRefType.getShape()[i];
if (size == 0)
continue;
bool useSizeAsStride = stride == 1;
if (size == ShapedType::kDynamic)
stride = ShapedType::kDynamic;
if (stride != ShapedType::kDynamic)
stride *= size;
if (useSizeAsStride)
runningStride = sizes[i];
else if (stride == ShapedType::kDynamic)
runningStride =
rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[i]);
else
runningStride = createIndexConstant(rewriter, loc, stride);
}
// Buffer size in bytes.
Type elementType = typeConverter->convertType(memRefType.getElementType());
Type elementPtrType = getTypeConverter()->getPointerType(elementType);
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
Value gepPtr = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, elementType,
nullPtr, runningStride);
sizeBytes = rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
}
Value ConvertToLLVMPattern::getSizeInBytes(
Location loc, Type type, ConversionPatternRewriter &rewriter) const {
// Compute the size of an individual element. This emits the MLIR equivalent
// of the following sizeof(...) implementation in LLVM IR:
// %0 = getelementptr %elementType* null, %indexType 1
// %1 = ptrtoint %elementType* %0 to %indexType
// which is a common pattern of getting the size of a type in bytes.
Type llvmType = typeConverter->convertType(type);
auto convertedPtrType = getTypeConverter()->getPointerType(llvmType);
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType, llvmType,
nullPtr, ArrayRef<LLVM::GEPArg>{1});
return rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
}
Value ConvertToLLVMPattern::getNumElements(
Location loc, ArrayRef<Value> shape,
ConversionPatternRewriter &rewriter) const {
// Compute the total number of memref elements.
Value numElements =
shape.empty() ? createIndexConstant(rewriter, loc, 1) : shape.front();
for (unsigned i = 1, e = shape.size(); i < e; ++i)
numElements = rewriter.create<LLVM::MulOp>(loc, numElements, shape[i]);
return numElements;
}
/// Creates and populates the memref descriptor struct given all its fields.
MemRefDescriptor ConvertToLLVMPattern::createMemRefDescriptor(
Location loc, MemRefType memRefType, Value allocatedPtr, Value alignedPtr,
ArrayRef<Value> sizes, ArrayRef<Value> strides,
ConversionPatternRewriter &rewriter) const {
auto structType = typeConverter->convertType(memRefType);
auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);
// Field 1: Allocated pointer, used for malloc/free.
memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedPtr);
// Field 2: Actual aligned pointer to payload.
memRefDescriptor.setAlignedPtr(rewriter, loc, alignedPtr);
// Field 3: Offset in aligned pointer.
memRefDescriptor.setOffset(rewriter, loc,
createIndexConstant(rewriter, loc, 0));
// Fields 4: Sizes.
for (const auto &en : llvm::enumerate(sizes))
memRefDescriptor.setSize(rewriter, loc, en.index(), en.value());
// Field 5: Strides.
for (const auto &en : llvm::enumerate(strides))
memRefDescriptor.setStride(rewriter, loc, en.index(), en.value());
return memRefDescriptor;
}
LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
OpBuilder &builder, Location loc, TypeRange origTypes,
SmallVectorImpl<Value> &operands, bool toDynamic) const {
assert(origTypes.size() == operands.size() &&
"expected as may original types as operands");
// Find operands of unranked memref type and store them.
SmallVector<UnrankedMemRefDescriptor, 4> unrankedMemrefs;
for (unsigned i = 0, e = operands.size(); i < e; ++i)
if (origTypes[i].isa<UnrankedMemRefType>())
unrankedMemrefs.emplace_back(operands[i]);
if (unrankedMemrefs.empty())
return success();
// Compute allocation sizes.
SmallVector<Value, 4> sizes;
UnrankedMemRefDescriptor::computeSizes(builder, loc, *getTypeConverter(),
unrankedMemrefs, sizes);
// Get frequently used types.
MLIRContext *context = builder.getContext();
auto i1Type = IntegerType::get(context, 1);
Type indexType = getTypeConverter()->getIndexType();
// Find the malloc and free, or declare them if necessary.
auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>();
LLVM::LLVMFuncOp freeFunc, mallocFunc;
if (toDynamic)
mallocFunc = LLVM::lookupOrCreateMallocFn(
module, indexType, getTypeConverter()->useOpaquePointers());
if (!toDynamic)
freeFunc = LLVM::lookupOrCreateFreeFn(
module, getTypeConverter()->useOpaquePointers());
// Initialize shared constants.
Value zero =
builder.create<LLVM::ConstantOp>(loc, i1Type, builder.getBoolAttr(false));
unsigned unrankedMemrefPos = 0;
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
Type type = origTypes[i];
if (!type.isa<UnrankedMemRefType>())
continue;
Value allocationSize = sizes[unrankedMemrefPos++];
UnrankedMemRefDescriptor desc(operands[i]);
// Allocate memory, copy, and free the source if necessary.
Value memory =
toDynamic
? builder.create<LLVM::CallOp>(loc, mallocFunc, allocationSize)
.getResult()
: builder.create<LLVM::AllocaOp>(loc, getVoidPtrType(),
IntegerType::get(getContext(), 8),
allocationSize,
/*alignment=*/0);
Value source = desc.memRefDescPtr(builder, loc);
builder.create<LLVM::MemcpyOp>(loc, memory, source, allocationSize, zero);
if (!toDynamic)
builder.create<LLVM::CallOp>(loc, freeFunc, source);
// Create a new descriptor. The same descriptor can be returned multiple
// times, attempting to modify its pointer can lead to memory leaks
// (allocated twice and overwritten) or double frees (the caller does not
// know if the descriptor points to the same memory).
Type descriptorType = getTypeConverter()->convertType(type);
if (!descriptorType)
return failure();
auto updatedDesc =
UnrankedMemRefDescriptor::undef(builder, loc, descriptorType);
Value rank = desc.rank(builder, loc);
updatedDesc.setRank(builder, loc, rank);
updatedDesc.setMemRefDescPtr(builder, loc, memory);
operands[i] = updatedDesc;
}
return success();
}
//===----------------------------------------------------------------------===//
// Detail methods
//===----------------------------------------------------------------------===//
/// Replaces the given operation "op" with a new operation of type "targetOp"
/// and given operands.
LogicalResult LLVM::detail::oneToOneRewrite(
Operation *op, StringRef targetOp, ValueRange operands,
ArrayRef<NamedAttribute> targetAttrs, LLVMTypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
unsigned numResults = op->getNumResults();
SmallVector<Type> resultTypes;
if (numResults != 0) {
resultTypes.push_back(
typeConverter.packFunctionResults(op->getResultTypes()));
if (!resultTypes.back())
return failure();
}
// Create the operation through state since we don't know its C++ type.
Operation *newOp =
rewriter.create(op->getLoc(), rewriter.getStringAttr(targetOp), operands,
resultTypes, targetAttrs);
// If the operation produced 0 or 1 result, return them immediately.
if (numResults == 0)
return rewriter.eraseOp(op), success();
if (numResults == 1)
return rewriter.replaceOp(op, newOp->getResult(0)), success();
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
SmallVector<Value, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
op->getLoc(), newOp->getResult(0), i));
}
rewriter.replaceOp(op, results);
return success();
}