436 lines
18 KiB
C++

//===- MathToLLVM.cpp - Math to LLVM dialect conversion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/FloatingPointMode.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
template <typename SourceOp, typename TargetOp>
using ConvertFastMath = arith::AttrConvertFastMathToLLVM<SourceOp, TargetOp>;
template <typename SourceOp, typename TargetOp>
using ConvertFMFMathToLLVMPattern =
VectorConvertToLLVMPattern<SourceOp, TargetOp, ConvertFastMath>;
using AbsFOpLowering = ConvertFMFMathToLLVMPattern<math::AbsFOp, LLVM::FAbsOp>;
using CeilOpLowering = ConvertFMFMathToLLVMPattern<math::CeilOp, LLVM::FCeilOp>;
using CopySignOpLowering =
ConvertFMFMathToLLVMPattern<math::CopySignOp, LLVM::CopySignOp>;
using CosOpLowering = ConvertFMFMathToLLVMPattern<math::CosOp, LLVM::CosOp>;
using CoshOpLowering = ConvertFMFMathToLLVMPattern<math::CoshOp, LLVM::CoshOp>;
using AcosOpLowering = ConvertFMFMathToLLVMPattern<math::AcosOp, LLVM::ACosOp>;
using CtPopFOpLowering =
VectorConvertToLLVMPattern<math::CtPopOp, LLVM::CtPopOp>;
using Exp2OpLowering = ConvertFMFMathToLLVMPattern<math::Exp2Op, LLVM::Exp2Op>;
using ExpOpLowering = ConvertFMFMathToLLVMPattern<math::ExpOp, LLVM::ExpOp>;
using FloorOpLowering =
ConvertFMFMathToLLVMPattern<math::FloorOp, LLVM::FFloorOp>;
using FmaOpLowering = ConvertFMFMathToLLVMPattern<math::FmaOp, LLVM::FMAOp>;
using Log10OpLowering =
ConvertFMFMathToLLVMPattern<math::Log10Op, LLVM::Log10Op>;
using Log2OpLowering = ConvertFMFMathToLLVMPattern<math::Log2Op, LLVM::Log2Op>;
using LogOpLowering = ConvertFMFMathToLLVMPattern<math::LogOp, LLVM::LogOp>;
using PowFOpLowering = ConvertFMFMathToLLVMPattern<math::PowFOp, LLVM::PowOp>;
using FPowIOpLowering =
ConvertFMFMathToLLVMPattern<math::FPowIOp, LLVM::PowIOp>;
using RoundEvenOpLowering =
ConvertFMFMathToLLVMPattern<math::RoundEvenOp, LLVM::RoundEvenOp>;
using RoundOpLowering =
ConvertFMFMathToLLVMPattern<math::RoundOp, LLVM::RoundOp>;
using SinOpLowering = ConvertFMFMathToLLVMPattern<math::SinOp, LLVM::SinOp>;
using SinhOpLowering = ConvertFMFMathToLLVMPattern<math::SinhOp, LLVM::SinhOp>;
using ASinOpLowering = ConvertFMFMathToLLVMPattern<math::AsinOp, LLVM::ASinOp>;
using SqrtOpLowering = ConvertFMFMathToLLVMPattern<math::SqrtOp, LLVM::SqrtOp>;
using FTruncOpLowering =
ConvertFMFMathToLLVMPattern<math::TruncOp, LLVM::FTruncOp>;
using TanOpLowering = ConvertFMFMathToLLVMPattern<math::TanOp, LLVM::TanOp>;
using TanhOpLowering = ConvertFMFMathToLLVMPattern<math::TanhOp, LLVM::TanhOp>;
using ATanOpLowering = ConvertFMFMathToLLVMPattern<math::AtanOp, LLVM::ATanOp>;
using ATan2OpLowering =
ConvertFMFMathToLLVMPattern<math::Atan2Op, LLVM::ATan2Op>;
// A `CtLz/CtTz/absi(a)` is converted into `CtLz/CtTz/absi(a, false)`.
// TODO: Result and operand types match for `absi` as opposed to `ct*z`, so it
// may be better to separate the patterns.
template <typename MathOp, typename LLVMOp>
struct IntOpWithFlagLowering : public ConvertOpToLLVMPattern<MathOp> {
using ConvertOpToLLVMPattern<MathOp>::ConvertOpToLLVMPattern;
using Super = IntOpWithFlagLowering<MathOp, LLVMOp>;
LogicalResult
matchAndRewrite(MathOp op, typename MathOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType = adaptor.getOperand().getType();
auto llvmOperandType = typeConverter.convertType(operandType);
if (!llvmOperandType)
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto llvmResultType = typeConverter.convertType(resultType);
if (!llvmResultType)
return failure();
if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) {
rewriter.replaceOpWithNewOp<LLVMOp>(op, llvmResultType,
adaptor.getOperand(), false);
return success();
}
if (!isa<VectorType>(llvmResultType))
return failure();
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), typeConverter,
[&](Type llvm1DVectorTy, ValueRange operands) {
return LLVMOp::create(rewriter, loc, llvm1DVectorTy, operands[0],
false);
},
rewriter);
}
};
using CountLeadingZerosOpLowering =
IntOpWithFlagLowering<math::CountLeadingZerosOp, LLVM::CountLeadingZerosOp>;
using CountTrailingZerosOpLowering =
IntOpWithFlagLowering<math::CountTrailingZerosOp,
LLVM::CountTrailingZerosOp>;
using AbsIOpLowering = IntOpWithFlagLowering<math::AbsIOp, LLVM::AbsOp>;
// A `expm1` is converted into `exp - 1`.
struct ExpM1OpLowering : public ConvertOpToLLVMPattern<math::ExpM1Op> {
using ConvertOpToLLVMPattern<math::ExpM1Op>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::ExpM1Op op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType = adaptor.getOperand().getType();
auto llvmOperandType = typeConverter.convertType(operandType);
if (!llvmOperandType)
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = cast<FloatType>(
typeConverter.convertType(getElementTypeOrSelf(resultType)));
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::ExpM1Op, LLVM::ExpOp> expAttrs(op);
ConvertFastMath<math::ExpM1Op, LLVM::FSubOp> subAttrs(op);
if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) {
LLVM::ConstantOp one;
if (LLVM::isCompatibleVectorType(llvmOperandType)) {
one = LLVM::ConstantOp::create(
rewriter, loc, llvmOperandType,
SplatElementsAttr::get(cast<ShapedType>(llvmOperandType),
floatOne));
} else {
one =
LLVM::ConstantOp::create(rewriter, loc, llvmOperandType, floatOne);
}
auto exp = LLVM::ExpOp::create(rewriter, loc, adaptor.getOperand(),
expAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::FSubOp>(
op, llvmOperandType, ValueRange{exp, one}, subAttrs.getAttrs());
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), typeConverter,
[&](Type llvm1DVectorTy, ValueRange operands) {
auto numElements = LLVM::getVectorNumElements(llvm1DVectorTy);
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get({numElements.getKnownMinValue()}, floatType,
{numElements.isScalable()}),
floatOne);
auto one = LLVM::ConstantOp::create(rewriter, loc, llvm1DVectorTy,
splatAttr);
auto exp = LLVM::ExpOp::create(rewriter, loc, llvm1DVectorTy,
operands[0], expAttrs.getAttrs());
return LLVM::FSubOp::create(rewriter, loc, llvm1DVectorTy,
ValueRange{exp, one},
subAttrs.getAttrs());
},
rewriter);
}
};
// A `log1p` is converted into `log(1 + ...)`.
struct Log1pOpLowering : public ConvertOpToLLVMPattern<math::Log1pOp> {
using ConvertOpToLLVMPattern<math::Log1pOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::Log1pOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType = adaptor.getOperand().getType();
auto llvmOperandType = typeConverter.convertType(operandType);
if (!llvmOperandType)
return rewriter.notifyMatchFailure(op, "unsupported operand type");
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = cast<FloatType>(
typeConverter.convertType(getElementTypeOrSelf(resultType)));
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::Log1pOp, LLVM::FAddOp> addAttrs(op);
ConvertFastMath<math::Log1pOp, LLVM::LogOp> logAttrs(op);
if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) {
LLVM::ConstantOp one =
isa<VectorType>(llvmOperandType)
? LLVM::ConstantOp::create(
rewriter, loc, llvmOperandType,
SplatElementsAttr::get(cast<ShapedType>(llvmOperandType),
floatOne))
: LLVM::ConstantOp::create(rewriter, loc, llvmOperandType,
floatOne);
auto add = LLVM::FAddOp::create(rewriter, loc, llvmOperandType,
ValueRange{one, adaptor.getOperand()},
addAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::LogOp>(
op, llvmOperandType, ValueRange{add}, logAttrs.getAttrs());
return success();
}
if (!isa<VectorType>(resultType))
return rewriter.notifyMatchFailure(op, "expected vector result type");
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), typeConverter,
[&](Type llvm1DVectorTy, ValueRange operands) {
auto numElements = LLVM::getVectorNumElements(llvm1DVectorTy);
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get({numElements.getKnownMinValue()}, floatType,
{numElements.isScalable()}),
floatOne);
auto one = LLVM::ConstantOp::create(rewriter, loc, llvm1DVectorTy,
splatAttr);
auto add = LLVM::FAddOp::create(rewriter, loc, llvm1DVectorTy,
ValueRange{one, operands[0]},
addAttrs.getAttrs());
return LLVM::LogOp::create(rewriter, loc, llvm1DVectorTy,
ValueRange{add}, logAttrs.getAttrs());
},
rewriter);
}
};
// A `rsqrt` is converted into `1 / sqrt`.
struct RsqrtOpLowering : public ConvertOpToLLVMPattern<math::RsqrtOp> {
using ConvertOpToLLVMPattern<math::RsqrtOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType = adaptor.getOperand().getType();
auto llvmOperandType = typeConverter.convertType(operandType);
if (!llvmOperandType)
return failure();
auto loc = op.getLoc();
auto resultType = op.getResult().getType();
auto floatType = cast<FloatType>(
typeConverter.convertType(getElementTypeOrSelf(resultType)));
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
ConvertFastMath<math::RsqrtOp, LLVM::SqrtOp> sqrtAttrs(op);
ConvertFastMath<math::RsqrtOp, LLVM::FDivOp> divAttrs(op);
if (!isa<LLVM::LLVMArrayType>(llvmOperandType)) {
LLVM::ConstantOp one;
if (isa<VectorType>(llvmOperandType)) {
one = LLVM::ConstantOp::create(
rewriter, loc, llvmOperandType,
SplatElementsAttr::get(cast<ShapedType>(llvmOperandType),
floatOne));
} else {
one =
LLVM::ConstantOp::create(rewriter, loc, llvmOperandType, floatOne);
}
auto sqrt = LLVM::SqrtOp::create(rewriter, loc, adaptor.getOperand(),
sqrtAttrs.getAttrs());
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(
op, llvmOperandType, ValueRange{one, sqrt}, divAttrs.getAttrs());
return success();
}
if (!isa<VectorType>(resultType))
return failure();
return LLVM::detail::handleMultidimensionalVectors(
op.getOperation(), adaptor.getOperands(), typeConverter,
[&](Type llvm1DVectorTy, ValueRange operands) {
auto numElements = LLVM::getVectorNumElements(llvm1DVectorTy);
auto splatAttr = SplatElementsAttr::get(
mlir::VectorType::get({numElements.getKnownMinValue()}, floatType,
{numElements.isScalable()}),
floatOne);
auto one = LLVM::ConstantOp::create(rewriter, loc, llvm1DVectorTy,
splatAttr);
auto sqrt = LLVM::SqrtOp::create(rewriter, loc, llvm1DVectorTy,
operands[0], sqrtAttrs.getAttrs());
return LLVM::FDivOp::create(rewriter, loc, llvm1DVectorTy,
ValueRange{one, sqrt},
divAttrs.getAttrs());
},
rewriter);
}
};
struct IsNaNOpLowering : public ConvertOpToLLVMPattern<math::IsNaNOp> {
using ConvertOpToLLVMPattern<math::IsNaNOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::IsNaNOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType =
typeConverter.convertType(adaptor.getOperand().getType());
auto resultType = typeConverter.convertType(op.getResult().getType());
if (!operandType || !resultType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::IsFPClass>(
op, resultType, adaptor.getOperand(), llvm::fcNan);
return success();
}
};
struct IsFiniteOpLowering : public ConvertOpToLLVMPattern<math::IsFiniteOp> {
using ConvertOpToLLVMPattern<math::IsFiniteOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(math::IsFiniteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto &typeConverter = *this->getTypeConverter();
auto operandType =
typeConverter.convertType(adaptor.getOperand().getType());
auto resultType = typeConverter.convertType(op.getResult().getType());
if (!operandType || !resultType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::IsFPClass>(
op, resultType, adaptor.getOperand(), llvm::fcFinite);
return success();
}
};
struct ConvertMathToLLVMPass
: public impl::ConvertMathToLLVMPassBase<ConvertMathToLLVMPass> {
using Base::Base;
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
populateMathToLLVMConversionPatterns(converter, patterns, approximateLog1p);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::populateMathToLLVMConversionPatterns(
const LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool approximateLog1p, PatternBenefit benefit) {
if (approximateLog1p)
patterns.add<Log1pOpLowering>(converter, benefit);
// clang-format off
patterns.add<
IsNaNOpLowering,
IsFiniteOpLowering,
AbsFOpLowering,
AbsIOpLowering,
CeilOpLowering,
CopySignOpLowering,
CosOpLowering,
CoshOpLowering,
AcosOpLowering,
CountLeadingZerosOpLowering,
CountTrailingZerosOpLowering,
CtPopFOpLowering,
Exp2OpLowering,
ExpM1OpLowering,
ExpOpLowering,
FPowIOpLowering,
FloorOpLowering,
FmaOpLowering,
Log10OpLowering,
Log2OpLowering,
LogOpLowering,
PowFOpLowering,
RoundEvenOpLowering,
RoundOpLowering,
RsqrtOpLowering,
SinOpLowering,
SinhOpLowering,
ASinOpLowering,
SqrtOpLowering,
FTruncOpLowering,
TanOpLowering,
TanhOpLowering,
ATanOpLowering,
ATan2OpLowering
>(converter, benefit);
// clang-format on
}
//===----------------------------------------------------------------------===//
// ConvertToLLVMPatternInterface implementation
//===----------------------------------------------------------------------===//
namespace {
/// Implement the interface to convert Math to LLVM.
struct MathToLLVMDialectInterface : public ConvertToLLVMPatternInterface {
using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
void loadDependentDialects(MLIRContext *context) const final {
context->loadDialect<LLVM::LLVMDialect>();
}
/// Hook for derived dialect interface to provide conversion patterns
/// and mark dialect legal for the conversion target.
void populateConvertToLLVMConversionPatterns(
ConversionTarget &target, LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns) const final {
populateMathToLLVMConversionPatterns(typeConverter, patterns);
}
};
} // namespace
void mlir::registerConvertMathToLLVMInterface(DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, math::MathDialect *dialect) {
dialect->addInterfaces<MathToLLVMDialectInterface>();
});
}