llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp
Krzysztof Drewniak 4bdd116b80
[AMDGPU] Add a new amdgcn.load.to.lds intrinsic (#137425)
This PR adds a amdgns_load_to_lds intrinsic that abstracts over loads to
LDS from global (address space 1) pointers and buffer fat pointers
(address space 7), since they use the same API and "gather from a
pointer to LDS" is something of an abstract operation.

This commit adds the intrinsic and its lowerings for addrspaces 1 and 7,
and updates the MLIR wrappers to use it (loosening up the restrictions
on loads to LDS along the way to match the ground truth from target
features).

It also plumbs the intrinsic through to clang.
2025-05-19 07:15:04 -07:00

1435 lines
52 KiB
C++

//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIModeRegisterDefaults.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "AMDGPUtti"
static cl::opt<unsigned> UnrollThresholdPrivate(
"amdgpu-unroll-threshold-private",
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
cl::init(2700), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdLocal(
"amdgpu-unroll-threshold-local",
cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
cl::init(1000), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdIf(
"amdgpu-unroll-threshold-if",
cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
cl::init(200), cl::Hidden);
static cl::opt<bool> UnrollRuntimeLocal(
"amdgpu-unroll-runtime-local",
cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
"amdgpu-unroll-max-block-to-analyze",
cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
cl::init(32), cl::Hidden);
static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
cl::Hidden, cl::init(4000),
cl::desc("Cost of alloca argument"));
// If the amount of scratch memory to eliminate exceeds our ability to allocate
// it into registers we gain nothing by aggressively inlining functions for that
// heuristic.
static cl::opt<unsigned>
ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
cl::init(256),
cl::desc("Maximum alloca size to use for inline cost"));
// Inliner constraint to achieve reasonable compilation time.
static cl::opt<size_t> InlineMaxBB(
"amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
cl::desc("Maximum number of BBs allowed in a function after inlining"
" (compile time constraint)"));
// This default unroll factor is based on microbenchmarks on gfx1030.
static cl::opt<unsigned> MemcpyLoopUnroll(
"amdgpu-memcpy-loop-unroll",
cl::desc("Unroll factor (affecting 4x32-bit operations) to use for memory "
"operations when lowering memcpy as a loop"),
cl::init(16), cl::Hidden);
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
unsigned Depth = 0) {
const Instruction *I = dyn_cast<Instruction>(Cond);
if (!I)
return false;
for (const Value *V : I->operand_values()) {
if (!L->contains(I))
continue;
if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
return SubLoop->contains(PHI); }))
return true;
} else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
return true;
}
return false;
}
AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getDataLayout()),
TargetTriple(TM->getTargetTriple()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()) {}
void AMDGPUTTIImpl::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const {
const Function &F = *L->getHeader()->getParent();
UP.Threshold =
F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.Partial = true;
// Conditional branch in a loop back edge needs 3 additional exec
// manipulations in average.
UP.BEInsns += 3;
// We want to run unroll even for the loops which have been vectorized.
UP.UnrollVectorizedLoop = true;
// TODO: Do we want runtime unrolling?
// Maximum alloca size than can fit registers. Reserve 16 registers.
const unsigned MaxAlloca = (256 - 16) * 4;
unsigned ThresholdPrivate = UnrollThresholdPrivate;
unsigned ThresholdLocal = UnrollThresholdLocal;
// If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
// provided threshold value as the default for Threshold
if (MDNode *LoopUnrollThreshold =
findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
if (LoopUnrollThreshold->getNumOperands() == 2) {
ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
LoopUnrollThreshold->getOperand(1));
if (MetaThresholdValue) {
// We will also use the supplied value for PartialThreshold for now.
// We may introduce additional metadata if it becomes necessary in the
// future.
UP.Threshold = MetaThresholdValue->getSExtValue();
UP.PartialThreshold = UP.Threshold;
ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
}
}
}
unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
for (const BasicBlock *BB : L->getBlocks()) {
const DataLayout &DL = BB->getDataLayout();
unsigned LocalGEPsSeen = 0;
if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
return SubLoop->contains(BB); }))
continue; // Block belongs to an inner loop.
for (const Instruction &I : *BB) {
// Unroll a loop which contains an "if" statement whose condition
// defined by a PHI belonging to the loop. This may help to eliminate
// if region and potentially even PHI itself, saving on both divergence
// and registers used for the PHI.
// Add a small bonus for each of such "if" statements.
if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
if (UP.Threshold < MaxBoost && Br->isConditional()) {
BasicBlock *Succ0 = Br->getSuccessor(0);
BasicBlock *Succ1 = Br->getSuccessor(1);
if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
(L->contains(Succ1) && L->isLoopExiting(Succ1)))
continue;
if (dependsOnLocalPhi(L, Br->getCondition())) {
UP.Threshold += UnrollThresholdIf;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
<< " for loop:\n"
<< *L << " due to " << *Br << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
}
continue;
}
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
if (!GEP)
continue;
unsigned AS = GEP->getAddressSpace();
unsigned Threshold = 0;
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
Threshold = ThresholdPrivate;
else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
Threshold = ThresholdLocal;
else
continue;
if (UP.Threshold >= Threshold)
continue;
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
const Value *Ptr = GEP->getPointerOperand();
const AllocaInst *Alloca =
dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
if (!Alloca || !Alloca->isStaticAlloca())
continue;
Type *Ty = Alloca->getAllocatedType();
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
if (AllocaSize > MaxAlloca)
continue;
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
AS == AMDGPUAS::REGION_ADDRESS) {
LocalGEPsSeen++;
// Inhibit unroll for local memory if we have seen addressing not to
// a variable, most likely we will be unable to combine it.
// Do not unroll too deep inner loops for local memory to give a chance
// to unroll an outer loop for a more important reason.
if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
(!isa<GlobalVariable>(GEP->getPointerOperand()) &&
!isa<Argument>(GEP->getPointerOperand())))
continue;
LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
<< *L << " due to LDS use.\n");
UP.Runtime = UnrollRuntimeLocal;
}
// Check if GEP depends on a value defined by this loop itself.
bool HasLoopDef = false;
for (const Value *Op : GEP->operands()) {
const Instruction *Inst = dyn_cast<Instruction>(Op);
if (!Inst || L->isLoopInvariant(Op))
continue;
if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
return SubLoop->contains(Inst); }))
continue;
HasLoopDef = true;
break;
}
if (!HasLoopDef)
continue;
// We want to do whatever we can to limit the number of alloca
// instructions that make it through to the code generator. allocas
// require us to use indirect addressing, which is slow and prone to
// compiler bugs. If this loop does an address calculation on an
// alloca ptr, then we want to use a higher than normal loop unroll
// threshold. This will give SROA a better chance to eliminate these
// allocas.
//
// We also want to have more unrolling for local memory to let ds
// instructions with different offsets combine.
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
UP.Threshold = Threshold;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
<< " for loop:\n"
<< *L << " due to " << *GEP << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
// If we got a GEP in a small BB from inner loop then increase max trip
// count to analyze for better estimation cost in unroll
if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
UP.MaxIterationsCountToAnalyze = 32;
}
}
void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) const {
BaseT::getPeelingPreferences(L, SE, PP);
}
uint64_t AMDGPUTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
return 1024;
}
const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
// Codegen control options which don't matter.
AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
AMDGPU::FeatureUnalignedAccessMode,
AMDGPU::FeatureAutoWaitcntBeforeBarrier,
// Property of the kernel/environment which can't actually differ.
AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
AMDGPU::FeatureTrapHandler,
// The default assumption needs to be ecc is enabled, but no directly
// exposed operations depend on it, so it can be safely inlined.
AMDGPU::FeatureSRAMECC,
// Perf-tuning features
AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
: BaseT(TM, F.getDataLayout()),
ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
TLI(ST->getTargetLowering()), CommonTTI(TM, F),
IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
SIModeRegisterDefaults Mode(F, *ST);
HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
HasFP64FP16Denormals =
Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
}
bool GCNTTIImpl::hasBranchDivergence(const Function *F) const {
return !F || !ST->isSingleLaneExecution(*F);
}
unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
// NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
// registers. See getRegisterClassForType for the implementation.
// In this case vector registers are not vector in terms of
// VGPRs, but those which can hold multiple values.
// This is really the number of registers to fill when vectorizing /
// interleaving loops, so we lie to avoid trying to use all registers.
return 4;
}
TypeSize
GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(32);
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(0);
}
llvm_unreachable("Unsupported register kind");
}
unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
return 32;
}
unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (Opcode == Instruction::Load || Opcode == Instruction::Store)
return 32 * 4 / ElemWidth;
return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
: (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
: 1;
}
unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * LoadSize;
if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
// TODO: Support element-size less than 32bit?
return 128 / LoadSize;
return VF;
}
unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * StoreSize;
if (VecRegBitWidth > 128)
return 128 / StoreSize;
return VF;
}
unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
AddrSpace == AMDGPUAS::BUFFER_STRIDED_POINTER) {
return 512;
}
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
return 8 * ST->getMaxPrivateElementSize();
// Common to flat, global, local and region. Assume for unknown addrspace.
return 128;
}
bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
// We allow vectorization of flat stores, even though we may need to decompose
// them later if they may access private memory. We don't have enough context
// here, and legalization can handle it.
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
return (Alignment >= 4 || ST->hasUnalignedScratchAccessEnabled()) &&
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
}
return true;
}
bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
uint64_t GCNTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
return 1024;
}
Type *GCNTTIImpl::getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
std::optional<uint32_t> AtomicElementSize) const {
if (AtomicElementSize)
return Type::getIntNTy(Context, *AtomicElementSize * 8);
// 16-byte accesses achieve the highest copy throughput.
// If the operation has a fixed known length that is large enough, it is
// worthwhile to return an even wider type and let legalization lower it into
// multiple accesses, effectively unrolling the memcpy loop.
// We also rely on legalization to decompose into smaller accesses for
// subtargets and address spaces where it is necessary.
//
// Don't unroll if Length is not a constant, since unrolling leads to worse
// performance for length values that are smaller or slightly larger than the
// total size of the type returned here. Mitigating that would require a more
// complex lowering for variable-length memcpy and memmove.
unsigned I32EltsInVector = 4;
if (MemcpyLoopUnroll > 0 && isa<ConstantInt>(Length))
return FixedVectorType::get(Type::getInt32Ty(Context),
MemcpyLoopUnroll * I32EltsInVector);
return FixedVectorType::get(Type::getInt32Ty(Context), I32EltsInVector);
}
void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
Align SrcAlign, Align DestAlign,
std::optional<uint32_t> AtomicCpySize) const {
if (AtomicCpySize)
BaseT::getMemcpyLoopResidualLoweringType(
OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
DestAlign, AtomicCpySize);
Type *I32x4Ty = FixedVectorType::get(Type::getInt32Ty(Context), 4);
while (RemainingBytes >= 16) {
OpsOut.push_back(I32x4Ty);
RemainingBytes -= 16;
}
Type *I64Ty = Type::getInt64Ty(Context);
while (RemainingBytes >= 8) {
OpsOut.push_back(I64Ty);
RemainingBytes -= 8;
}
Type *I32Ty = Type::getInt32Ty(Context);
while (RemainingBytes >= 4) {
OpsOut.push_back(I32Ty);
RemainingBytes -= 4;
}
Type *I16Ty = Type::getInt16Ty(Context);
while (RemainingBytes >= 2) {
OpsOut.push_back(I16Ty);
RemainingBytes -= 2;
}
Type *I8Ty = Type::getInt8Ty(Context);
while (RemainingBytes) {
OpsOut.push_back(I8Ty);
--RemainingBytes;
}
}
unsigned GCNTTIImpl::getMaxInterleaveFactor(ElementCount VF) const {
// Disable unrolling if the loop is not vectorized.
// TODO: Enable this again.
if (VF.isScalar())
return 1;
return 8;
}
bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
if (!Ordering || !Volatile)
return false; // Invalid.
unsigned OrderingVal = Ordering->getZExtValue();
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
return false;
Info.PtrVal = Inst->getArgOperand(0);
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
Info.ReadMem = true;
Info.WriteMem = true;
Info.IsVolatile = !Volatile->isZero();
return true;
}
default:
return false;
}
}
InstructionCost GCNTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) const {
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// Because we don't have any legal vector operations, but the legal types, we
// need to account for split vectors.
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
switch (ISD) {
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (SLT == MVT::i64)
return get64BitInstrCost(CostKind) * LT.first * NElts;
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return getFullRateInstrCost() * LT.first * NElts;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
if (SLT == MVT::i64) {
// and, or and xor are typically split into 2 VALU instructions.
return 2 * getFullRateInstrCost() * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
return LT.first * NElts * getFullRateInstrCost();
case ISD::MUL: {
const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
if (SLT == MVT::i64) {
const int FullRateCost = getFullRateInstrCost();
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return QuarterRateCost * NElts * LT.first;
}
case ISD::FMUL:
// Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
// fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
// fused operation.
if (CxtI && CxtI->hasOneUse())
if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
if (OPC == ISD::FADD || OPC == ISD::FSUB) {
if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
return TargetTransformInfo::TCC_Free;
if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
return TargetTransformInfo::TCC_Free;
// Estimate all types may be fused with contract/unsafe flags
const TargetOptions &Options = TLI->getTargetMachine().Options;
if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath ||
(FAdd->hasAllowContract() && CxtI->hasAllowContract()))
return TargetTransformInfo::TCC_Free;
}
}
[[fallthrough]];
case ISD::FADD:
case ISD::FSUB:
if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if (ST->has16BitInsts() && SLT == MVT::f16)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f32 || SLT == MVT::f16)
return LT.first * NElts * getFullRateInstrCost();
break;
case ISD::FDIV:
case ISD::FREM:
// FIXME: frem should be handled separately. The fdiv in it is most of it,
// but the current lowering is also not entirely correct.
if (SLT == MVT::f64) {
int Cost = 7 * get64BitInstrCost(CostKind) +
getQuarterRateInstrCost(CostKind) +
3 * getHalfRateInstrCost(CostKind);
// Add cost of workaround.
if (!ST->hasUsableDivScaleConditionOutput())
Cost += 3 * getFullRateInstrCost();
return LT.first * Cost * NElts;
}
if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
// TODO: This is more complicated, unsafe flags etc.
if ((SLT == MVT::f32 && !HasFP32Denormals) ||
(SLT == MVT::f16 && ST->has16BitInsts())) {
return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
}
}
if (SLT == MVT::f16 && ST->has16BitInsts()) {
// 2 x v_cvt_f32_f16
// f32 rcp
// f32 fmul
// v_cvt_f16_f32
// f16 div_fixup
int Cost =
4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
return LT.first * Cost * NElts;
}
if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) ||
TLI->getTargetMachine().Options.UnsafeFPMath)) {
// Fast unsafe fdiv lowering:
// f32 rcp
// f32 fmul
int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost();
return LT.first * Cost * NElts;
}
if (SLT == MVT::f32 || SLT == MVT::f16) {
// 4 more v_cvt_* insts without f16 insts support
int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
1 * getQuarterRateInstrCost(CostKind);
if (!HasFP32Denormals) {
// FP mode switches.
Cost += 2 * getFullRateInstrCost();
}
return LT.first * NElts * Cost;
}
break;
case ISD::FNEG:
// Use the backend' estimation. If fneg is not free each element will cost
// one additional instruction.
return TLI->isFNegFree(SLT) ? 0 : NElts;
default:
break;
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
}
// Return true if there's a potential benefit from using v2f16/v2i16
// instructions for an intrinsic, even if it requires nontrivial legalization.
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::copysign:
case Intrinsic::canonicalize:
// There's a small benefit to using vector ops in the legalized code.
case Intrinsic::round:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::abs:
return true;
default:
return false;
}
}
InstructionCost
GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const {
if (ICA.getID() == Intrinsic::fabs)
return 0;
if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
Type *RetTy = ICA.getReturnType();
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost(CostKind);
if ((ST->has16BitInsts() && (SLT == MVT::f16 || SLT == MVT::i16)) ||
(ST->hasPackedFP32Ops() && SLT == MVT::f32))
NElts = (NElts + 1) / 2;
// TODO: Get more refined intrinsic costs?
unsigned InstRate = getQuarterRateInstrCost(CostKind);
switch (ICA.getID()) {
case Intrinsic::fma:
case Intrinsic::fmuladd:
if ((SLT == MVT::f32 && ST->hasFastFMAF32()) || SLT == MVT::f16)
InstRate = getFullRateInstrCost();
else {
InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
}
break;
case Intrinsic::copysign:
return NElts * getFullRateInstrCost();
case Intrinsic::canonicalize: {
assert(SLT != MVT::f64);
InstRate = getFullRateInstrCost();
break;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat: {
if (SLT == MVT::i16 || SLT == MVT::i32)
InstRate = getFullRateInstrCost();
static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
NElts = 1;
break;
}
case Intrinsic::abs:
// Expansion takes 2 instructions for VALU
if (SLT == MVT::i16 || SLT == MVT::i32)
InstRate = 2 * getFullRateInstrCost();
break;
default:
break;
}
return LT.first * NElts * InstRate;
}
InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
const bool SCost =
(CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
const int CBrCost = SCost ? 5 : 7;
switch (Opcode) {
case Instruction::Br: {
// Branch instruction takes about 4 slots on gfx900.
const auto *BI = dyn_cast_or_null<BranchInst>(I);
if (BI && BI->isUnconditional())
return SCost ? 1 : 4;
// Suppose conditional branch takes additional 3 exec manipulations
// instructions in average.
return CBrCost;
}
case Instruction::Switch: {
const auto *SI = dyn_cast_or_null<SwitchInst>(I);
// Each case (including default) takes 1 cmp + 1 cbr instructions in
// average.
return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
}
case Instruction::Ret:
return SCost ? 1 : 10;
}
return BaseT::getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost
GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) const {
if (TTI::requiresOrderedReduction(FMF))
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
return LT.first * getFullRateInstrCost();
}
InstructionCost
GCNTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind) const {
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
return LT.first * getHalfRateInstrCost(CostKind);
}
InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
TTI::TargetCostKind CostKind,
unsigned Index, const Value *Op0,
const Value *Op1) const {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement: {
unsigned EltSize
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
if (EltSize < 32) {
if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
return 0;
return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
Op1);
}
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
}
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
}
}
/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
/// this is analyzing the collective result of all output registers. Otherwise,
/// this is only querying a specific result index if this returns multiple
/// registers in a struct.
bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
const CallInst *CI, ArrayRef<unsigned> Indices) const {
// TODO: Handle complex extract indices
if (Indices.size() > 1)
return true;
const DataLayout &DL = CI->getDataLayout();
const SIRegisterInfo *TRI = ST->getRegisterInfo();
TargetLowering::AsmOperandInfoVector TargetConstraints =
TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
int OutputIdx = 0;
for (auto &TC : TargetConstraints) {
if (TC.Type != InlineAsm::isOutput)
continue;
// Skip outputs we don't care about.
if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
continue;
TLI->ComputeConstraintToUse(TC, SDValue());
const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
TRI, TC.ConstraintCode, TC.ConstraintVT).second;
// For AGPR constraints null is returned on subtargets without AGPRs, so
// assume divergent for null.
if (!RC || !TRI->isSGPRClass(RC))
return true;
}
return false;
}
bool GCNTTIImpl::isReadRegisterSourceOfDivergence(
const IntrinsicInst *ReadReg) const {
Metadata *MD =
cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
StringRef RegName =
cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
// Special case registers that look like VCC.
MVT VT = MVT::getVT(ReadReg->getType());
if (VT == MVT::i1)
return true;
// Special case scalar registers that start with 'v'.
if (RegName.starts_with("vcc") || RegName.empty())
return false;
// VGPR or AGPR is divergent. There aren't any specially named vector
// registers.
return RegName[0] == 'v' || RegName[0] == 'a';
}
/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return !AMDGPU::isArgPassedInSGPR(A);
// Loads from the private and flat address spaces are divergent, because
// threads can execute the load instruction with the same inputs and get
// different results.
//
// All other loads are not divergent, because if threads issue loads with the
// same arguments, they will always get the same result.
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
// Atomics are divergent because they are executed sequentially: when an
// atomic operation refers to the same address in each thread, then each
// thread after the first sees the value written by the previous thread as
// original value.
if (isa<AtomicRMWInst, AtomicCmpXchgInst>(V))
return true;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
return isReadRegisterSourceOfDivergence(Intrinsic);
return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
}
// Assume all function calls are a source of divergence.
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return isInlineAsmSourceOfDivergence(CI);
return true;
}
// Assume all function calls are a source of divergence.
if (isa<InvokeInst>(V))
return true;
return false;
}
bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI);
return false;
}
// In most cases TID / wavefrontsize is uniform.
//
// However, if a kernel has uneven dimesions we can have a value of
// workitem-id-x divided by the wavefrontsize non-uniform. For example
// dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
// packed into a same wave which gives 1 and 0 after the division by 64
// respectively.
//
// FIXME: limit it to 1D kernels only, although that shall be possible
// to perform this optimization is the size of the X dimension is a power
// of 2, we just do not currently have infrastructure to query it.
using namespace llvm::PatternMatch;
uint64_t C;
if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_ConstantInt(C))) ||
match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_ConstantInt(C)))) {
const Function *F = cast<Instruction>(V)->getFunction();
return C >= ST->getWavefrontSizeLog2() &&
ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
}
Value *Mask;
if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
m_Value(Mask)))) {
const Function *F = cast<Instruction>(V)->getFunction();
const DataLayout &DL = F->getDataLayout();
return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
ST->getWavefrontSizeLog2() &&
ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
}
const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
if (!ExtValue)
return false;
const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
if (!CI)
return false;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else: {
ArrayRef<unsigned> Indices = ExtValue->getIndices();
return Indices.size() == 1 && Indices[0] == 1;
}
}
}
// If we have inline asm returning mixed SGPR and VGPR results, we inferred
// divergent for the overall struct return. We need to override it in the
// case we're extracting an SGPR component here.
if (CI->isInlineAsm())
return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
return false;
}
bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
switch (IID) {
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private:
case Intrinsic::amdgcn_flat_atomic_fmax_num:
case Intrinsic::amdgcn_flat_atomic_fmin_num:
case Intrinsic::amdgcn_load_to_lds:
OpIndexes.push_back(0);
return true;
default:
return false;
}
}
Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const {
auto IntrID = II->getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private: {
unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
LLVMContext &Ctx = NewV->getType()->getContext();
ConstantInt *NewVal = (TrueAS == NewAS) ?
ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
return NewVal;
}
case Intrinsic::ptrmask: {
unsigned OldAS = OldV->getType()->getPointerAddressSpace();
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
Value *MaskOp = II->getArgOperand(1);
Type *MaskTy = MaskOp->getType();
bool DoTruncate = false;
const GCNTargetMachine &TM =
static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
// All valid 64-bit to 32-bit casts work by chopping off the high
// bits. Any masking only clearing the low bits will also apply in the new
// address space.
if (DL.getPointerSizeInBits(OldAS) != 64 ||
DL.getPointerSizeInBits(NewAS) != 32)
return nullptr;
// TODO: Do we need to thread more context in here?
KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
if (Known.countMinLeadingOnes() < 32)
return nullptr;
DoTruncate = true;
}
IRBuilder<> B(II);
if (DoTruncate) {
MaskTy = B.getInt32Ty();
MaskOp = B.CreateTrunc(MaskOp, MaskTy);
}
return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
{NewV, MaskOp});
}
case Intrinsic::amdgcn_flat_atomic_fmax_num:
case Intrinsic::amdgcn_flat_atomic_fmin_num: {
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
unsigned NewAS = SrcTy->getPointerAddressSpace();
if (!AMDGPU::isExtendedGlobalAddrSpace(NewAS))
return nullptr;
Module *M = II->getModule();
Function *NewDecl = Intrinsic::getOrInsertDeclaration(
M, II->getIntrinsicID(), {DestTy, SrcTy, DestTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return II;
}
case Intrinsic::amdgcn_load_to_lds: {
Type *SrcTy = NewV->getType();
Module *M = II->getModule();
Function *NewDecl =
Intrinsic::getOrInsertDeclaration(M, II->getIntrinsicID(), {SrcTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return II;
}
default:
return nullptr;
}
}
InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *VT, ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args,
const Instruction *CxtI) const {
if (!isa<FixedVectorType>(VT))
return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp);
// Larger vector widths may require additional instructions, but are
// typically cheaper than scalarized versions.
unsigned NumVectorElts = cast<FixedVectorType>(VT)->getNumElements();
if (ST->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
DL.getTypeSizeInBits(VT->getElementType()) == 16) {
bool HasVOP3P = ST->hasVOP3PInsts();
unsigned RequestedElts =
count_if(Mask, [](int MaskElt) { return MaskElt != -1; });
if (RequestedElts == 0)
return 0;
switch (Kind) {
case TTI::SK_Broadcast:
case TTI::SK_Reverse:
case TTI::SK_PermuteSingleSrc: {
// With op_sel VOP3P instructions freely can access the low half or high
// half of a register, so any swizzle of two elements is free.
if (HasVOP3P && NumVectorElts == 2)
return 0;
unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
// SK_Broadcast just reuses the same mask
unsigned NumPermMasks = Kind == TTI::SK_Broadcast ? 1 : NumPerms;
return NumPerms + NumPermMasks;
}
case TTI::SK_ExtractSubvector:
case TTI::SK_InsertSubvector: {
// Even aligned accesses are free
if (!(Index % 2))
return 0;
// Insert/extract subvectors only require shifts / extract code to get the
// relevant bits
return alignTo(RequestedElts, 2) / 2;
}
case TTI::SK_PermuteTwoSrc:
case TTI::SK_Splice:
case TTI::SK_Select: {
unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
// SK_Select just reuses the same mask
unsigned NumPermMasks = Kind == TTI::SK_Select ? 1 : NumPerms;
return NumPerms + NumPermMasks;
}
default:
break;
}
}
return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
}
/// Whether it is profitable to sink the operands of an
/// Instruction I to the basic block of I.
/// This helps using several modifiers (like abs and neg) more often.
bool GCNTTIImpl::isProfitableToSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const {
using namespace PatternMatch;
for (auto &Op : I->operands()) {
// Ensure we are not already sinking this operand.
if (any_of(Ops, [&](Use *U) { return U->get() == Op.get(); }))
continue;
if (match(&Op, m_FAbs(m_Value())) || match(&Op, m_FNeg(m_Value())))
Ops.push_back(&Op);
}
return !Ops.empty();
}
bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const GCNSubtarget *CallerST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
const GCNSubtarget *CalleeST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
const FeatureBitset &CallerBits = CallerST->getFeatureBits();
const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
return false;
// FIXME: dx10_clamp can just take the caller setting, but there seems to be
// no way to support merge for backend defined attributes.
SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
if (!CallerMode.isInlineCompatible(CalleeMode))
return false;
if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
Callee->hasFnAttribute(Attribute::InlineHint))
return true;
// Hack to make compile times reasonable.
if (InlineMaxBB) {
// Single BB does not increase total BB amount.
if (Callee->size() == 1)
return true;
size_t BBSize = Caller->size() + Callee->size() - 1;
return BBSize <= InlineMaxBB;
}
return true;
}
static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB,
const SITargetLowering *TLI,
const GCNTTIImpl *TTIImpl) {
const int NrOfSGPRUntilSpill = 26;
const int NrOfVGPRUntilSpill = 32;
const DataLayout &DL = TTIImpl->getDataLayout();
unsigned adjustThreshold = 0;
int SGPRsInUse = 0;
int VGPRsInUse = 0;
for (const Use &A : CB->args()) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
for (auto ArgVT : ValueVTs) {
unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
CB->getContext(), CB->getCallingConv(), ArgVT);
if (AMDGPU::isArgPassedInSGPR(CB, CB->getArgOperandNo(&A)))
SGPRsInUse += CCRegNum;
else
VGPRsInUse += CCRegNum;
}
}
// The cost of passing function arguments through the stack:
// 1 instruction to put a function argument on the stack in the caller.
// 1 instruction to take a function argument from the stack in callee.
// 1 instruction is explicitly take care of data dependencies in callee
// function.
InstructionCost ArgStackCost(1);
ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
// The penalty cost is computed relative to the cost of instructions and does
// not model any storage costs.
adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
ArgStackCost.getValue() * InlineConstants::getInstrCost();
adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
ArgStackCost.getValue() * InlineConstants::getInstrCost();
return adjustThreshold;
}
static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
const DataLayout &DL) {
// If we have a pointer to a private array passed into a function
// it will not be optimized out, leaving scratch usage.
// This function calculates the total size in bytes of the memory that would
// end in scratch if the call was not inlined.
unsigned AllocaSize = 0;
SmallPtrSet<const AllocaInst *, 8> AIVisited;
for (Value *PtrArg : CB->args()) {
PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
if (!Ty)
continue;
unsigned AddrSpace = Ty->getAddressSpace();
if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
continue;
const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
continue;
AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
}
return AllocaSize;
}
int GCNTTIImpl::getInliningLastCallToStaticBonus() const {
return BaseT::getInliningLastCallToStaticBonus() *
getInliningThresholdMultiplier();
}
unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
// Private object passed as arguments may end up in scratch usage if the call
// is not inlined. Increase the inline threshold to promote inlining.
unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
if (AllocaSize > 0)
Threshold += ArgAllocaCost;
return Threshold;
}
unsigned GCNTTIImpl::getCallerAllocaCost(const CallBase *CB,
const AllocaInst *AI) const {
// Below the cutoff, assume that the private memory objects would be
// optimized
auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
if (AllocaSize <= ArgAllocaCutoff)
return 0;
// Above the cutoff, we give a cost to each private memory object
// depending its size. If the array can be optimized by SROA this cost is not
// added to the total-cost in the inliner cost analysis.
//
// We choose the total cost of the alloca such that their sum cancels the
// bonus given in the threshold (ArgAllocaCost).
//
// Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
//
// Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
// the single-bb bonus and the vector-bonus.
//
// We compensate the first two multipliers, by repeating logic from the
// inliner-cost in here. The vector-bonus is 0 on AMDGPU.
static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
return BB.getTerminator()->getNumSuccessors() > 1;
});
if (SingleBB) {
Threshold += Threshold / 2;
}
auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Attribute the bonus proportionally to the alloca size
unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
return AllocaThresholdBonus;
}
void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const {
CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
}
void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) const {
CommonTTI.getPeelingPreferences(L, SE, PP);
}
int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
return ST->hasFullRate64Ops()
? getFullRateInstrCost()
: ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
: getQuarterRateInstrCost(CostKind);
}
std::pair<InstructionCost, MVT>
GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
auto Size = DL.getTypeSizeInBits(Ty);
// Maximum load or store can handle 8 dwords for scalar and 4 for
// vector ALU. Let's assume anything above 8 dwords is expensive
// even if legal.
if (Size <= 256)
return Cost;
Cost.first += (Size + 255) / 256;
return Cost;
}
unsigned GCNTTIImpl::getPrefetchDistance() const {
return ST->hasPrefetch() ? 128 : 0;
}
bool GCNTTIImpl::shouldPrefetchAddressSpace(unsigned AS) const {
return AMDGPU::isFlatGlobalAddrSpace(AS);
}
void GCNTTIImpl::collectKernelLaunchBounds(
const Function &F,
SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const {
SmallVector<unsigned> MaxNumWorkgroups = ST->getMaxNumWorkGroups(F);
LB.push_back({"amdgpu-max-num-workgroups[0]", MaxNumWorkgroups[0]});
LB.push_back({"amdgpu-max-num-workgroups[1]", MaxNumWorkgroups[1]});
LB.push_back({"amdgpu-max-num-workgroups[2]", MaxNumWorkgroups[2]});
std::pair<unsigned, unsigned> FlatWorkGroupSize =
ST->getFlatWorkGroupSizes(F);
LB.push_back({"amdgpu-flat-work-group-size[0]", FlatWorkGroupSize.first});
LB.push_back({"amdgpu-flat-work-group-size[1]", FlatWorkGroupSize.second});
std::pair<unsigned, unsigned> WavesPerEU = ST->getWavesPerEU(F);
LB.push_back({"amdgpu-waves-per-eu[0]", WavesPerEU.first});
LB.push_back({"amdgpu-waves-per-eu[1]", WavesPerEU.second});
}