Aart Bik 4d06861950 [mlir][sparse] add "sort" to the compress op codegen
This revision also adds convenience methods to test the
dim level type/property (with the codegen being first client)

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D134776
2022-09-28 10:41:40 -07:00

734 lines
29 KiB
C++

//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Reorders stored dimension to original dimension.
static unsigned toOrig(const SparseTensorEncodingAttr &enc, unsigned i) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getDimPosition(i);
}
return i;
}
/// Reorders original dimension to stored dimension.
static unsigned toStored(const SparseTensorEncodingAttr &enc, unsigned i) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getPermutedPosition(i);
}
return i;
}
/// Flatten a list of operands that may contain sparse tensors.
static void flattenOperands(ValueRange operands,
SmallVectorImpl<Value> &flattened) {
// In case of
// sparse_tensor, c, sparse_tensor
// ==>
// memref ..., c, memref ...
for (auto operand : operands) {
if (auto cast =
dyn_cast<UnrealizedConversionCastOp>(operand.getDefiningOp());
cast && getSparseTensorEncoding(cast->getResultTypes()[0]))
// An unrealized_conversion_cast will be inserted by type converter to
// inter-mix the gap between 1:N conversion between sparse tensors and
// fields. In this case, take the operands in the cast and replace the
// sparse tensor output with the flattened type array.
flattened.append(cast.getOperands().begin(), cast.getOperands().end());
else
flattened.push_back(operand);
}
}
/// Gets the dimension size for the given sparse tensor at the given dim.
/// Returns None if no sparse encoding is attached to the tensor type.
static Optional<Value> sizeFromTensorAtDim(OpBuilder &rewriter, Location loc,
ShapedType tensorTp,
Value adaptedValue, unsigned dim) {
auto enc = getSparseTensorEncoding(tensorTp);
if (!enc)
return llvm::None;
// Access into static dimension can query original type directly.
// Note that this is typically already done by DimOp's folding.
auto shape = tensorTp.getShape();
if (!ShapedType::isDynamic(shape[dim]))
return constantIndex(rewriter, loc, shape[dim]);
// Any other query can consult the dimSizes array at field 0 using,
// accounting for the reordering applied to the sparse storage.
auto tuple =
llvm::cast<UnrealizedConversionCastOp>(adaptedValue.getDefiningOp());
return rewriter
.create<memref::LoadOp>(loc, tuple.getInputs().front(),
constantIndex(rewriter, loc, toStored(enc, dim)))
.getResult();
}
/// Returns field index of sparse tensor type for pointers/indices, when set.
static unsigned getFieldIndex(Type type, unsigned ptrDim, unsigned idxDim) {
assert(getSparseTensorEncoding(type));
RankedTensorType rType = type.cast<RankedTensorType>();
unsigned field = 2; // start past sizes
unsigned ptr = 0;
unsigned idx = 0;
for (unsigned r = 0, rank = rType.getShape().size(); r < rank; r++) {
if (isCompressedDim(rType, r)) {
if (ptr++ == ptrDim)
return field;
field++;
if (idx++ == idxDim)
return field;
field++;
} else if (isSingletonDim(rType, r)) {
if (idx++ == idxDim)
return field;
field++;
} else {
assert(isDenseDim(rType, r)); // no fields
}
}
assert(ptrDim == -1u && idxDim == -1u);
return field + 1; // return values field index
}
/// Maps a sparse tensor type to the appropriate compounded buffers.
static Optional<LogicalResult>
convertSparseTensorType(Type type, SmallVectorImpl<Type> &fields) {
auto enc = getSparseTensorEncoding(type);
if (!enc)
return llvm::None;
// Construct the basic types.
auto context = type.getContext();
unsigned idxWidth = enc.getIndexBitWidth();
unsigned ptrWidth = enc.getPointerBitWidth();
RankedTensorType rType = type.cast<RankedTensorType>();
Type indexType = IndexType::get(context);
Type idxType = idxWidth ? IntegerType::get(context, idxWidth) : indexType;
Type ptrType = ptrWidth ? IntegerType::get(context, ptrWidth) : indexType;
Type eltType = rType.getElementType();
//
// Sparse tensor storage for rank-dimensional tensor is organized as a
// single compound type with the following fields. Note that every
// memref with ? size actually behaves as a "vector", i.e. the stored
// size is the capacity and the used size resides in the memSizes array.
//
// struct {
// memref<rank x index> dimSizes ; size in each dimension
// memref<n x index> memSizes ; sizes of ptrs/inds/values
// ; per-dimension d:
// ; if dense:
// <nothing>
// ; if compresed:
// memref<? x ptr> pointers-d ; pointers for sparse dim d
// memref<? x idx> indices-d ; indices for sparse dim d
// ; if singleton:
// memref<? x idx> indices-d ; indices for singleton dim d
// memref<? x eltType> values ; values
// };
//
unsigned rank = rType.getShape().size();
// The dimSizes array.
fields.push_back(MemRefType::get({rank}, indexType));
// The memSizes array.
unsigned lastField = getFieldIndex(type, -1u, -1u);
fields.push_back(MemRefType::get({lastField - 2}, indexType));
// Per-dimension storage.
for (unsigned r = 0; r < rank; r++) {
// Dimension level types apply in order to the reordered dimension.
// As a result, the compound type can be constructed directly in the given
// order. Clients of this type know what field is what from the sparse
// tensor type.
if (isCompressedDim(rType, r)) {
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType));
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
} else if (isSingletonDim(rType, r)) {
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
} else {
assert(isDenseDim(rType, r)); // no fields
}
}
// The values array.
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, eltType));
assert(fields.size() == lastField);
return success();
}
/// Create allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc, Type type,
Value sz) {
auto memType = MemRefType::get({ShapedType::kDynamicSize}, type);
return builder.create<memref::AllocOp>(loc, memType, sz);
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs, the memory size is really the capacity of
/// the "vector", while the actual size resides in the sizes array.
///
/// TODO: for efficiency, we will need heuristis to make educated guesses
/// on the required capacities
///
static void createAllocFields(OpBuilder &builder, Location loc, Type type,
ValueRange dynSizes,
SmallVectorImpl<Value> &fields) {
auto enc = getSparseTensorEncoding(type);
assert(enc);
// Construct the basic types.
unsigned idxWidth = enc.getIndexBitWidth();
unsigned ptrWidth = enc.getPointerBitWidth();
RankedTensorType rType = type.cast<RankedTensorType>();
Type indexType = builder.getIndexType();
Type idxType = idxWidth ? builder.getIntegerType(idxWidth) : indexType;
Type ptrType = ptrWidth ? builder.getIntegerType(ptrWidth) : indexType;
Type eltType = rType.getElementType();
auto shape = rType.getShape();
unsigned rank = shape.size();
bool allDense = true;
Value one = constantIndex(builder, loc, 1);
Value linear = one;
Value heuristic = one; // FIX, see TODO above
// Build original sizes.
SmallVector<Value, 8> sizes;
for (unsigned r = 0, o = 0; r < rank; r++) {
if (ShapedType::isDynamic(shape[r]))
sizes.push_back(dynSizes[o++]);
else
sizes.push_back(constantIndex(builder, loc, shape[r]));
}
// The dimSizes array.
Value dimSizes =
builder.create<memref::AllocOp>(loc, MemRefType::get({rank}, indexType));
fields.push_back(dimSizes);
// The sizes array.
unsigned lastField = getFieldIndex(type, -1u, -1u);
Value memSizes = builder.create<memref::AllocOp>(
loc, MemRefType::get({lastField - 2}, indexType));
fields.push_back(memSizes);
// Per-dimension storage.
for (unsigned r = 0; r < rank; r++) {
// Get the original dimension (ro) for the current stored dimension.
unsigned ro = toOrig(enc, r);
builder.create<memref::StoreOp>(loc, sizes[ro], dimSizes,
constantIndex(builder, loc, r));
linear = builder.create<arith::MulIOp>(loc, linear, sizes[ro]);
// Allocate fields.
if (isCompressedDim(rType, r)) {
fields.push_back(createAllocation(builder, loc, ptrType, heuristic));
fields.push_back(createAllocation(builder, loc, idxType, heuristic));
allDense = false;
} else if (isSingletonDim(rType, r)) {
fields.push_back(createAllocation(builder, loc, idxType, heuristic));
allDense = false;
} else {
assert(isDenseDim(rType, r)); // no fields
}
}
// The values array. For all-dense, the full length is required.
// In all other case, we resort to the heuristical initial value.
Value valuesSz = allDense ? linear : heuristic;
fields.push_back(createAllocation(builder, loc, eltType, valuesSz));
// Set memSizes.
if (allDense)
builder.create<memref::StoreOp>(
loc, valuesSz, memSizes,
constantIndex(builder, loc, 0)); // TODO: avoid memSizes in this case?
else
builder.create<linalg::FillOp>(
loc, ValueRange{constantZero(builder, loc, indexType)},
ValueRange{memSizes});
assert(fields.size() == lastField);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value count) {
Type indexType = builder.getIndexType();
Value zero = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, zero, count, one);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value, 8> flattened;
flattenOperands(adaptor.getOperands(), flattened);
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type, 8> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Genereates new call with flattened return value.
SmallVector<Value, 8> flattened;
flattenOperands(adaptor.getOperands(), flattened);
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
finalRetTy, flattened);
// (2) Create cast operation for sparse tensor returns.
SmallVector<Value, 4> castedRet;
// Tracks the offset of current return value (of the orignal call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type, 8> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
// This should never happen.
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
ValueRange sparseElem(iterator_range<ResultRange::iterator>(
newCall.result_begin() + retOffset,
newCall.result_begin() + retOffset + flatSize));
auto castOp = rewriter.create<UnrealizedConversionCastOp>(
loc, TypeRange({retType}), sparseElem);
castedRet.push_back(castOp.getResult(0));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
castedRet.push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(castedRet.size() == op.getNumResults());
rewriter.replaceOp(op, castedRet);
return success();
}
};
/// Sparse codegen rule for dimension accesses.
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Optional<int64_t> index = op.getConstantIndex();
if (!index)
return failure();
auto sz =
sizeFromTensorAtDim(rewriter, op.getLoc(),
op.getSource().getType().cast<RankedTensorType>(),
adaptor.getSource(), *index);
if (!sz)
return failure();
rewriter.replaceOp(op, *sz);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codgen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
RankedTensorType resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
if (op.getCopy())
return rewriter.notifyMatchFailure(op, "tensor copy not implemented");
// Construct allocation for each field.
Location loc = op.getLoc();
SmallVector<Value, 8> fields;
createAllocFields(rewriter, loc, resType, adaptor.getOperands(), fields);
rewriter.replaceOpWithNewOp<UnrealizedConversionCastOp>(
op, TypeRange{resType}, fields);
return success();
}
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
auto tuple = llvm::cast<UnrealizedConversionCastOp>(
adaptor.getTensor().getDefiningOp());
for (auto input : tuple.getInputs())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
// TODO: implement
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
RankedTensorType srcType =
op.getTensor().getType().cast<RankedTensorType>();
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// dimension size, translated back to original dimension). Note that we
// recursively rewrite the new DimOp on the **original** tensor.
auto enc = getSparseTensorEncoding(srcType);
unsigned innerDim = srcType.getRank() - 1;
if (AffineMap p = enc.getDimOrdering())
innerDim = p.getDimPosition(innerDim);
auto sz = sizeFromTensorAtDim(rewriter, loc, srcType, adaptor.getTensor(),
innerDim);
assert(sz); // This for sure is a sparse tensor
// Generate a memref for `sz` elements of type `t`.
auto genAlloc = [&](Type t) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{*sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
RankedTensorType dstType =
op.getTensor().getType().cast<RankedTensorType>();
Type eltType = dstType.getElementType();
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
// If the innermost dimension is ordered, we need to sort the indices
// in the "added" array prior to applying the compression.
unsigned rank = dstType.getShape().size();
if (isOrderedDim(dstType, rank - 1))
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{});
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// for (i = 0; i < count; i++) {
// index = added[i];
// value = values[index];
//
// TODO: insert prev_indices, index, value
//
// values[index] = 0;
// filled[index] = false;
// }
Value i = createFor(rewriter, loc, count).getInductionVar();
Value index = rewriter.create<memref::LoadOp>(loc, added, i);
rewriter.create<memref::LoadOp>(loc, values, index);
// TODO: insert
rewriter.create<memref::StoreOp>(loc, constantZero(rewriter, loc, eltType),
values, index);
rewriter.create<memref::StoreOp>(loc, constantI1(rewriter, loc, false),
filled, index);
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = op;
for (; isa<scf::ForOp>(parent->getParentOp()) ||
isa<scf::WhileOp>(parent->getParentOp()) ||
isa<scf::ParallelOp>(parent->getParentOp()) ||
isa<scf::IfOp>(parent->getParentOp());
parent = parent->getParentOp())
;
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse codegen rule for the push_back operator.
class SparsePushBackConverter : public OpConversionPattern<PushBackOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PushBackOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Lower push_back(buffer, value) to:
// if (size(buffer) >= capacity(buffer))
// new_capacity = capacity(buffer)*2
// new_buffer = realloc(buffer, new_capacity)
// buffer = new_buffer
// store(buffer, value)
// size(buffer)++
Location loc = op->getLoc();
Value c0 = constantIndex(rewriter, loc, 0);
Value buffer = adaptor.getInBuffer();
Value capacity = rewriter.create<memref::DimOp>(loc, buffer, c0);
Value idx = constantIndex(rewriter, loc, op.getIdx().getZExtValue());
Value bufferSizes = adaptor.getBufferSizes();
Value size = rewriter.create<memref::LoadOp>(loc, bufferSizes, idx);
Value cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge,
size, capacity);
Value value = adaptor.getValue();
auto bufferType =
MemRefType::get({ShapedType::kDynamicSize}, value.getType());
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
/*else=*/true);
// True branch.
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value c2 = constantIndex(rewriter, loc, 2);
capacity = rewriter.create<arith::MulIOp>(loc, capacity, c2);
Value newBuffer =
rewriter.create<memref::ReallocOp>(loc, bufferType, buffer, capacity);
rewriter.create<scf::YieldOp>(loc, newBuffer);
// False branch.
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
rewriter.create<scf::YieldOp>(loc, buffer);
// Add the value to the end of the buffer.
rewriter.setInsertionPointAfter(ifOp);
buffer = ifOp.getResult(0);
rewriter.create<memref::StoreOp>(loc, value, buffer, size);
// Increment the size of the buffer by 1.
Value c1 = constantIndex(rewriter, loc, 1);
size = rewriter.create<arith::AddIOp>(loc, size, c1);
rewriter.create<memref::StoreOp>(loc, size, bufferSizes, idx);
rewriter.replaceOp(op, buffer);
return success();
}
};
/// Base class for getter-like operations, e.g., to_indices, to_pointers.
template <typename SourceOp, typename Base>
class SparseGetterOpConverter : public OpConversionPattern<SourceOp> {
public:
using OpAdaptor = typename SourceOp::Adaptor;
using OpConversionPattern<SourceOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SourceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested pointer access with corresponding field.
// The cast_op is inserted by type converter to intermix 1:N type
// conversion.
auto tuple = llvm::cast<UnrealizedConversionCastOp>(
adaptor.getTensor().getDefiningOp());
unsigned idx = Base::getIndexForOp(tuple, op);
auto fields = tuple.getInputs();
assert(idx < fields.size());
rewriter.replaceOp(op, fields[idx]);
return success();
}
};
/// Sparse codegen rule for pointer accesses.
class SparseToPointersConverter
: public SparseGetterOpConverter<ToPointersOp, SparseToPointersConverter> {
public:
using SparseGetterOpConverter::SparseGetterOpConverter;
// Callback for SparseGetterOpConverter.
static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/,
ToPointersOp op) {
uint64_t dim = op.getDimension().getZExtValue();
return getFieldIndex(op.getTensor().getType(), /*ptrDim=*/dim, -1u);
}
};
/// Sparse codegen rule for index accesses.
class SparseToIndicesConverter
: public SparseGetterOpConverter<ToIndicesOp, SparseToIndicesConverter> {
public:
using SparseGetterOpConverter::SparseGetterOpConverter;
// Callback for SparseGetterOpConverter.
static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/,
ToIndicesOp op) {
uint64_t dim = op.getDimension().getZExtValue();
return getFieldIndex(op.getTensor().getType(), -1u, /*idxDim=*/dim);
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter
: public SparseGetterOpConverter<ToValuesOp, SparseToValuesConverter> {
public:
using SparseGetterOpConverter::SparseGetterOpConverter;
// Callback for SparseGetterOpConverter.
static unsigned getIndexForOp(UnrealizedConversionCastOp tuple,
ToValuesOp /*op*/) {
// The last field holds the value buffer.
return tuple.getInputs().size() - 1;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into an actual buffer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToBufferConverter::SparseTensorTypeToBufferConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorType);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
SparseCastConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorLoadConverter,
SparseExpandConverter, SparseCompressConverter,
SparsePushBackConverter, SparseToPointersConverter,
SparseToIndicesConverter, SparseToValuesConverter>(
typeConverter, patterns.getContext());
}