
This patch mostly affects performance of the code produced by HLIFR lowering. If MATMUL argument is an array slice, then HLFIR lowering passes the slice to the runtime, whereas FIR lowering would create a contiguous temporary for the slice. Performance might be better than the generic implementation for cases where the leading dimension is contiguous. This patch improves CPU2000/178.galgel making HLFIR version faster than FIR version (due to avoiding the temporary copies for MATMUL arguments). Reviewed By: klausler Differential Revision: https://reviews.llvm.org/D159134
383 lines
15 KiB
C++
383 lines
15 KiB
C++
//===-- runtime/matmul-transpose.cpp --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements a fused matmul-transpose operation
|
|
//
|
|
// There are two main entry points; one establishes a descriptor for the
|
|
// result and allocates it, and the other expects a result descriptor that
|
|
// points to existing storage.
|
|
//
|
|
// This implementation must handle all combinations of numeric types and
|
|
// kinds (100 - 165 cases depending on the target), plus all combinations
|
|
// of logical kinds (16). A single template undergoes many instantiations
|
|
// to cover all of the valid possibilities.
|
|
//
|
|
// The usefulness of this optimization should be reviewed once Matmul is swapped
|
|
// to use the faster BLAS routines.
|
|
|
|
#include "flang/Runtime/matmul-transpose.h"
|
|
#include "terminator.h"
|
|
#include "tools.h"
|
|
#include "flang/Runtime/c-or-cpp.h"
|
|
#include "flang/Runtime/cpp-type.h"
|
|
#include "flang/Runtime/descriptor.h"
|
|
#include <cstring>
|
|
|
|
namespace {
|
|
using namespace Fortran::runtime;
|
|
|
|
// Contiguous numeric TRANSPOSE(matrix)*matrix multiplication
|
|
// TRANSPOSE(matrix(n, rows)) * matrix(n,cols) ->
|
|
// matrix(rows, n) * matrix(n,cols) -> matrix(rows,cols)
|
|
// The transpose is implemented by swapping the indices of accesses into the LHS
|
|
//
|
|
// Straightforward algorithm:
|
|
// DO 1 I = 1, NROWS
|
|
// DO 1 J = 1, NCOLS
|
|
// RES(I,J) = 0
|
|
// DO 1 K = 1, N
|
|
// 1 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J)
|
|
//
|
|
// With loop distribution and transposition to avoid the inner sum
|
|
// reduction and to avoid non-unit strides:
|
|
// DO 1 I = 1, NROWS
|
|
// DO 1 J = 1, NCOLS
|
|
// 1 RES(I,J) = 0
|
|
// DO 2 J = 1, NCOLS
|
|
// DO 2 I = 1, NROWS
|
|
// DO 2 K = 1, N
|
|
// 2 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term
|
|
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
|
|
bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS>
|
|
inline static void MatrixTransposedTimesMatrix(
|
|
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
|
|
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
|
|
SubscriptValue n, std::size_t xColumnByteStride = 0,
|
|
std::size_t yColumnByteStride = 0) {
|
|
using ResultType = CppTypeFor<RCAT, RKIND>;
|
|
|
|
std::memset(product, 0, rows * cols * sizeof *product);
|
|
for (SubscriptValue j{0}; j < cols; ++j) {
|
|
for (SubscriptValue i{0}; i < rows; ++i) {
|
|
for (SubscriptValue k{0}; k < n; ++k) {
|
|
ResultType x_ki;
|
|
if constexpr (!X_HAS_STRIDED_COLUMNS) {
|
|
x_ki = static_cast<ResultType>(x[i * n + k]);
|
|
} else {
|
|
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
|
|
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
|
|
}
|
|
ResultType y_kj;
|
|
if constexpr (!Y_HAS_STRIDED_COLUMNS) {
|
|
y_kj = static_cast<ResultType>(y[j * n + k]);
|
|
} else {
|
|
y_kj = static_cast<ResultType>(reinterpret_cast<const YT *>(
|
|
reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]);
|
|
}
|
|
product[j * rows + i] += x_ki * y_kj;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
|
|
inline static void MatrixTransposedTimesMatrixHelper(
|
|
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
|
|
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
|
|
SubscriptValue n, std::optional<std::size_t> xColumnByteStride,
|
|
std::optional<std::size_t> yColumnByteStride) {
|
|
if (!xColumnByteStride) {
|
|
if (!yColumnByteStride) {
|
|
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, false>(
|
|
product, rows, cols, x, y, n);
|
|
} else {
|
|
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, true>(
|
|
product, rows, cols, x, y, n, 0, *yColumnByteStride);
|
|
}
|
|
} else {
|
|
if (!yColumnByteStride) {
|
|
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, false>(
|
|
product, rows, cols, x, y, n, *xColumnByteStride);
|
|
} else {
|
|
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, true>(
|
|
product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Contiguous numeric matrix*vector multiplication
|
|
// matrix(rows,n) * column vector(n) -> column vector(rows)
|
|
// Straightforward algorithm:
|
|
// DO 1 I = 1, NROWS
|
|
// RES(I) = 0
|
|
// DO 1 K = 1, N
|
|
// 1 RES(I) = RES(I) + X(K,I)*Y(K)
|
|
// With loop distribution and transposition to avoid the inner
|
|
// sum reduction and to avoid non-unit strides:
|
|
// DO 1 I = 1, NROWS
|
|
// 1 RES(I) = 0
|
|
// DO 2 I = 1, NROWS
|
|
// DO 2 K = 1, N
|
|
// 2 RES(I) = RES(I) + X(K,I)*Y(K)
|
|
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
|
|
bool X_HAS_STRIDED_COLUMNS>
|
|
inline static void MatrixTransposedTimesVector(
|
|
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
|
|
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
|
|
std::size_t xColumnByteStride = 0) {
|
|
using ResultType = CppTypeFor<RCAT, RKIND>;
|
|
std::memset(product, 0, rows * sizeof *product);
|
|
for (SubscriptValue i{0}; i < rows; ++i) {
|
|
for (SubscriptValue k{0}; k < n; ++k) {
|
|
ResultType x_ki;
|
|
if constexpr (!X_HAS_STRIDED_COLUMNS) {
|
|
x_ki = static_cast<ResultType>(x[i * n + k]);
|
|
} else {
|
|
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
|
|
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
|
|
}
|
|
ResultType y_k = static_cast<ResultType>(y[k]);
|
|
product[i] += x_ki * y_k;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
|
|
inline static void MatrixTransposedTimesVectorHelper(
|
|
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
|
|
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
|
|
std::optional<std::size_t> xColumnByteStride) {
|
|
if (!xColumnByteStride) {
|
|
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, false>(
|
|
product, rows, n, x, y);
|
|
} else {
|
|
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, true>(
|
|
product, rows, n, x, y, *xColumnByteStride);
|
|
}
|
|
}
|
|
|
|
// Implements an instance of MATMUL for given argument types.
|
|
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
|
|
typename YT>
|
|
inline static void DoMatmulTranspose(
|
|
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
|
|
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
|
|
int xRank{x.rank()};
|
|
int yRank{y.rank()};
|
|
int resRank{xRank + yRank - 2};
|
|
if (xRank * yRank != 2 * resRank) {
|
|
terminator.Crash(
|
|
"MATMUL-TRANSPOSE: bad argument ranks (%d * %d)", xRank, yRank);
|
|
}
|
|
SubscriptValue extent[2]{x.GetDimension(1).Extent(),
|
|
resRank == 2 ? y.GetDimension(1).Extent() : 0};
|
|
if constexpr (IS_ALLOCATING) {
|
|
result.Establish(
|
|
RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
|
|
for (int j{0}; j < resRank; ++j) {
|
|
result.GetDimension(j).SetBounds(1, extent[j]);
|
|
}
|
|
if (int stat{result.Allocate()}) {
|
|
terminator.Crash(
|
|
"MATMUL-TRANSPOSE: could not allocate memory for result; STAT=%d",
|
|
stat);
|
|
}
|
|
} else {
|
|
RUNTIME_CHECK(terminator, resRank == result.rank());
|
|
RUNTIME_CHECK(
|
|
terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND));
|
|
RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
|
|
RUNTIME_CHECK(terminator,
|
|
resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
|
|
}
|
|
SubscriptValue n{x.GetDimension(0).Extent()};
|
|
if (n != y.GetDimension(0).Extent()) {
|
|
terminator.Crash(
|
|
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
|
|
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(x.GetDimension(1).Extent()),
|
|
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
|
|
}
|
|
using WriteResult =
|
|
CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
|
|
RKIND>;
|
|
const SubscriptValue rows{extent[0]};
|
|
const SubscriptValue cols{extent[1]};
|
|
if constexpr (RCAT != TypeCategory::Logical) {
|
|
if (x.IsContiguous(1) && y.IsContiguous(1) &&
|
|
(IS_ALLOCATING || result.IsContiguous())) {
|
|
// Contiguous numeric matrices (maybe with columns
|
|
// separated by a stride).
|
|
std::optional<std::size_t> xColumnByteStride;
|
|
if (!x.IsContiguous()) {
|
|
// X's columns are strided.
|
|
SubscriptValue xAt[2]{};
|
|
x.GetLowerBounds(xAt);
|
|
xAt[1]++;
|
|
xColumnByteStride = x.SubscriptsToByteOffset(xAt);
|
|
}
|
|
std::optional<std::size_t> yColumnByteStride;
|
|
if (!y.IsContiguous()) {
|
|
// Y's columns are strided.
|
|
SubscriptValue yAt[2]{};
|
|
y.GetLowerBounds(yAt);
|
|
yAt[1]++;
|
|
yColumnByteStride = y.SubscriptsToByteOffset(yAt);
|
|
}
|
|
if (resRank == 2) { // M*M -> M
|
|
// TODO: use BLAS-3 GEMM for supported types.
|
|
MatrixTransposedTimesMatrixHelper<RCAT, RKIND, XT, YT>(
|
|
result.template OffsetElement<WriteResult>(), rows, cols,
|
|
x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride,
|
|
yColumnByteStride);
|
|
return;
|
|
}
|
|
if (xRank == 2) { // M*V -> V
|
|
// TODO: use BLAS-2 GEMM for supported types.
|
|
MatrixTransposedTimesVectorHelper<RCAT, RKIND, XT, YT>(
|
|
result.template OffsetElement<WriteResult>(), rows, n,
|
|
x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride);
|
|
return;
|
|
}
|
|
// else V*M -> V (not allowed because TRANSPOSE() is only defined for rank
|
|
// 1 matrices
|
|
terminator.Crash(
|
|
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
|
|
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(n),
|
|
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
|
|
return;
|
|
}
|
|
}
|
|
// General algorithms for LOGICAL and noncontiguity
|
|
SubscriptValue xLB[2], yLB[2], resLB[2];
|
|
x.GetLowerBounds(xLB);
|
|
y.GetLowerBounds(yLB);
|
|
result.GetLowerBounds(resLB);
|
|
using ResultType = CppTypeFor<RCAT, RKIND>;
|
|
if (resRank == 2) { // M*M -> M
|
|
for (SubscriptValue i{0}; i < rows; ++i) {
|
|
for (SubscriptValue j{0}; j < cols; ++j) {
|
|
ResultType res_ij;
|
|
if constexpr (RCAT == TypeCategory::Logical) {
|
|
res_ij = false;
|
|
} else {
|
|
res_ij = 0;
|
|
}
|
|
|
|
for (SubscriptValue k{0}; k < n; ++k) {
|
|
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
|
|
SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]};
|
|
if constexpr (RCAT == TypeCategory::Logical) {
|
|
ResultType x_ki = IsLogicalElementTrue(x, xAt);
|
|
ResultType y_kj = IsLogicalElementTrue(y, yAt);
|
|
res_ij = res_ij || (x_ki && y_kj);
|
|
} else {
|
|
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
|
|
ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt));
|
|
res_ij += x_ki * y_kj;
|
|
}
|
|
}
|
|
SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]};
|
|
*result.template Element<WriteResult>(resAt) = res_ij;
|
|
}
|
|
}
|
|
} else if (xRank == 2) { // M*V -> V
|
|
for (SubscriptValue i{0}; i < rows; ++i) {
|
|
ResultType res_i;
|
|
if constexpr (RCAT == TypeCategory::Logical) {
|
|
res_i = false;
|
|
} else {
|
|
res_i = 0;
|
|
}
|
|
|
|
for (SubscriptValue k{0}; k < n; ++k) {
|
|
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
|
|
SubscriptValue yAt[1]{k + yLB[0]};
|
|
if constexpr (RCAT == TypeCategory::Logical) {
|
|
ResultType x_ki = IsLogicalElementTrue(x, xAt);
|
|
ResultType y_k = IsLogicalElementTrue(y, yAt);
|
|
res_i = res_i || (x_ki && y_k);
|
|
} else {
|
|
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
|
|
ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt));
|
|
res_i += x_ki * y_k;
|
|
}
|
|
}
|
|
SubscriptValue resAt[1]{i + resLB[0]};
|
|
*result.template Element<WriteResult>(resAt) = res_i;
|
|
}
|
|
} else { // V*M -> V
|
|
// TRANSPOSE(V) not allowed by fortran standard
|
|
terminator.Crash(
|
|
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
|
|
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(n),
|
|
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
|
|
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
|
|
}
|
|
}
|
|
|
|
// Maps the dynamic type information from the arguments' descriptors
|
|
// to the right instantiation of DoMatmul() for valid combinations of
|
|
// types.
|
|
template <bool IS_ALLOCATING> struct MatmulTranspose {
|
|
using ResultDescriptor =
|
|
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
|
|
template <TypeCategory XCAT, int XKIND> struct MM1 {
|
|
template <TypeCategory YCAT, int YKIND> struct MM2 {
|
|
void operator()(ResultDescriptor &result, const Descriptor &x,
|
|
const Descriptor &y, Terminator &terminator) const {
|
|
if constexpr (constexpr auto resultType{
|
|
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
|
|
if constexpr (Fortran::common::IsNumericTypeCategory(
|
|
resultType->first) ||
|
|
resultType->first == TypeCategory::Logical) {
|
|
return DoMatmulTranspose<IS_ALLOCATING, resultType->first,
|
|
resultType->second, CppTypeFor<XCAT, XKIND>,
|
|
CppTypeFor<YCAT, YKIND>>(result, x, y, terminator);
|
|
}
|
|
}
|
|
terminator.Crash("MATMUL-TRANSPOSE: bad operand types (%d(%d), %d(%d))",
|
|
static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
|
|
}
|
|
};
|
|
void operator()(ResultDescriptor &result, const Descriptor &x,
|
|
const Descriptor &y, Terminator &terminator, TypeCategory yCat,
|
|
int yKind) const {
|
|
ApplyType<MM2, void>(yCat, yKind, terminator, result, x, y, terminator);
|
|
}
|
|
};
|
|
void operator()(ResultDescriptor &result, const Descriptor &x,
|
|
const Descriptor &y, const char *sourceFile, int line) const {
|
|
Terminator terminator{sourceFile, line};
|
|
auto xCatKind{x.type().GetCategoryAndKind()};
|
|
auto yCatKind{y.type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
|
|
ApplyType<MM1, void>(xCatKind->first, xCatKind->second, terminator, result,
|
|
x, y, terminator, yCatKind->first, yCatKind->second);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace Fortran::runtime {
|
|
extern "C" {
|
|
void RTNAME(MatmulTranspose)(Descriptor &result, const Descriptor &x,
|
|
const Descriptor &y, const char *sourceFile, int line) {
|
|
MatmulTranspose<true>{}(result, x, y, sourceFile, line);
|
|
}
|
|
void RTNAME(MatmulTransposeDirect)(const Descriptor &result,
|
|
const Descriptor &x, const Descriptor &y, const char *sourceFile,
|
|
int line) {
|
|
MatmulTranspose<false>{}(result, x, y, sourceFile, line);
|
|
}
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|