
Updated error message logic for undo function. Throws different errors for the case of there being nothing to undo, and for the case of requesting more undos than there are operations to undo. Fixes https://github.com/llvm/llvm-project/issues/143668
439 lines
15 KiB
C++
439 lines
15 KiB
C++
//===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Unit tests for Clang's Interpreter library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InterpreterTestFixture.h"
|
|
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclGroup.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/Frontend/CompilerInstance.h"
|
|
#include "clang/Frontend/TextDiagnosticPrinter.h"
|
|
#include "clang/Interpreter/Interpreter.h"
|
|
#include "clang/Interpreter/Value.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Sema.h"
|
|
|
|
#include "llvm/TargetParser/Host.h"
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace clang;
|
|
|
|
int Global = 42;
|
|
// JIT reports symbol not found on Windows without the visibility attribute.
|
|
REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
|
|
REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
|
|
|
|
namespace {
|
|
|
|
class InterpreterTest : public InterpreterTestBase {
|
|
// TODO: Collect common variables and utility functions here
|
|
};
|
|
|
|
using Args = std::vector<const char *>;
|
|
static std::unique_ptr<Interpreter>
|
|
createInterpreter(const Args &ExtraArgs = {},
|
|
DiagnosticConsumer *Client = nullptr) {
|
|
Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
|
|
llvm::append_range(ClangArgs, ExtraArgs);
|
|
auto CB = clang::IncrementalCompilerBuilder();
|
|
CB.SetCompilerArgs(ClangArgs);
|
|
auto CI = cantFail(CB.CreateCpp());
|
|
if (Client)
|
|
CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
|
|
return cantFail(clang::Interpreter::create(std::move(CI)));
|
|
}
|
|
|
|
static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
|
|
return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
|
|
}
|
|
|
|
TEST_F(InterpreterTest, Sanity) {
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
|
|
using PTU = PartialTranslationUnit;
|
|
|
|
PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
|
|
EXPECT_EQ(2U, DeclsSize(R1.TUPart));
|
|
|
|
PTU &R2(cantFail(Interp->Parse("int i;")));
|
|
EXPECT_EQ(1U, DeclsSize(R2.TUPart));
|
|
}
|
|
|
|
static std::string DeclToString(Decl *D) {
|
|
return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
|
|
}
|
|
|
|
TEST_F(InterpreterTest, IncrementalInputTopLevelDecls) {
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
|
|
// gtest doesn't expand into explicit bool conversions.
|
|
EXPECT_TRUE(!!R1);
|
|
auto R1DeclRange = R1->TUPart->decls();
|
|
EXPECT_EQ(2U, DeclsSize(R1->TUPart));
|
|
EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
|
|
EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
|
|
|
|
auto R2 = Interp->Parse("int var2 = f();");
|
|
EXPECT_TRUE(!!R2);
|
|
auto R2DeclRange = R2->TUPart->decls();
|
|
EXPECT_EQ(1U, DeclsSize(R2->TUPart));
|
|
EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
|
|
}
|
|
|
|
TEST_F(InterpreterTest, Errors) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
DiagnosticOptions DiagOpts;
|
|
auto DiagPrinter =
|
|
std::make_unique<TextDiagnosticPrinter>(DiagnosticsOS, DiagOpts);
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
|
|
using ::testing::HasSubstr;
|
|
EXPECT_THAT(DiagnosticOutput,
|
|
HasSubstr("error: unknown type name 'intentional_error'"));
|
|
EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
|
|
|
|
auto RecoverErr = Interp->Parse("int var1 = 42;");
|
|
EXPECT_TRUE(!!RecoverErr);
|
|
|
|
Err = Interp->Parse("try { throw 1; } catch { 0; }").takeError();
|
|
EXPECT_THAT(DiagnosticOutput, HasSubstr("error: expected '('"));
|
|
EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
|
|
|
|
RecoverErr = Interp->Parse("var1 = 424;");
|
|
EXPECT_TRUE(!!RecoverErr);
|
|
}
|
|
|
|
// Here we test whether the user can mix declarations and statements. The
|
|
// interpreter should be smart enough to recognize the declarations from the
|
|
// statements and wrap the latter into a declaration, producing valid code.
|
|
|
|
TEST_F(InterpreterTest, DeclsAndStatements) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
DiagnosticOptions DiagOpts;
|
|
auto DiagPrinter =
|
|
std::make_unique<TextDiagnosticPrinter>(DiagnosticsOS, DiagOpts);
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
auto R1 = Interp->Parse(
|
|
"int var1 = 42; extern \"C\" int printf(const char*, ...);");
|
|
// gtest doesn't expand into explicit bool conversions.
|
|
EXPECT_TRUE(!!R1);
|
|
|
|
auto *PTU1 = R1->TUPart;
|
|
EXPECT_EQ(2U, DeclsSize(PTU1));
|
|
|
|
auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
|
|
EXPECT_TRUE(!!R2);
|
|
}
|
|
|
|
TEST_F(InterpreterTest, UndoCommand) {
|
|
Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
|
|
|
|
// Create the diagnostic engine with unowned consumer.
|
|
std::string DiagnosticOutput;
|
|
llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
|
|
DiagnosticOptions DiagOpts;
|
|
auto DiagPrinter =
|
|
std::make_unique<TextDiagnosticPrinter>(DiagnosticsOS, DiagOpts);
|
|
|
|
auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
|
|
|
|
// Fail to undo.
|
|
auto Err1 = Interp->Undo();
|
|
EXPECT_EQ("Operation failed. No input left to undo",
|
|
llvm::toString(std::move(Err1)));
|
|
auto Err2 = Interp->Parse("int foo = 42;");
|
|
EXPECT_TRUE(!!Err2);
|
|
auto Err3 = Interp->Undo(2);
|
|
EXPECT_EQ("Operation failed. Wanted to undo 2 inputs, only have 1.",
|
|
llvm::toString(std::move(Err3)));
|
|
|
|
// Succeed to undo.
|
|
auto Err4 = Interp->Parse("int x = 42;");
|
|
EXPECT_TRUE(!!Err4);
|
|
auto Err5 = Interp->Undo();
|
|
EXPECT_FALSE(Err5);
|
|
auto Err6 = Interp->Parse("int x = 24;");
|
|
EXPECT_TRUE(!!Err6);
|
|
auto Err7 = Interp->Parse("#define X 42");
|
|
EXPECT_TRUE(!!Err7);
|
|
auto Err8 = Interp->Undo();
|
|
EXPECT_FALSE(Err8);
|
|
auto Err9 = Interp->Parse("#define X 24");
|
|
EXPECT_TRUE(!!Err9);
|
|
|
|
// Undo input contains errors.
|
|
auto Err10 = Interp->Parse("int y = ;");
|
|
EXPECT_FALSE(!!Err10);
|
|
EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
|
|
auto Err11 = Interp->Parse("int y = 42;");
|
|
EXPECT_TRUE(!!Err11);
|
|
auto Err12 = Interp->Undo();
|
|
EXPECT_FALSE(Err12);
|
|
}
|
|
|
|
static std::string MangleName(NamedDecl *ND) {
|
|
ASTContext &C = ND->getASTContext();
|
|
std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
|
|
std::string mangledName;
|
|
llvm::raw_string_ostream RawStr(mangledName);
|
|
MangleC->mangleName(ND, RawStr);
|
|
return mangledName;
|
|
}
|
|
|
|
TEST_F(InterpreterTest, FindMangledNameSymbol) {
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter();
|
|
|
|
auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
|
|
EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
|
|
auto R1DeclRange = PTU.TUPart->decls();
|
|
|
|
NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
|
|
// Lower the PTU
|
|
if (llvm::Error Err = Interp->Execute(PTU)) {
|
|
// We cannot execute on the platform.
|
|
consumeError(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
std::string MangledName = MangleName(FD);
|
|
auto Addr = Interp->getSymbolAddress(MangledName);
|
|
EXPECT_FALSE(!Addr);
|
|
EXPECT_NE(0U, Addr->getValue());
|
|
GlobalDecl GD(FD);
|
|
EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
|
|
cantFail(
|
|
Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
|
|
Addr = Interp->getSymbolAddress("printf");
|
|
EXPECT_FALSE(!Addr);
|
|
|
|
// FIXME: Re-enable when we investigate the way we handle dllimports on Win.
|
|
#ifndef _WIN32
|
|
EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
|
|
#endif // _WIN32
|
|
}
|
|
|
|
static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
|
|
std::string Name = TD->getQualifiedNameAsString();
|
|
Value Addr;
|
|
// FIXME: Consider providing an option in clang::Value to take ownership of
|
|
// the memory created from the interpreter.
|
|
// cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
|
|
|
|
// The lifetime of the temporary is extended by the clang::Value.
|
|
cantFail(Interp.ParseAndExecute(Name + "()", &Addr));
|
|
return Addr;
|
|
}
|
|
|
|
static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
|
|
Sema &SemaRef = Interp.getCompilerInstance()->getSema();
|
|
ASTContext &C = SemaRef.getASTContext();
|
|
DeclarationName DeclName = &C.Idents.get(Name);
|
|
LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
|
|
SemaRef.LookupName(R, SemaRef.TUScope);
|
|
assert(!R.empty());
|
|
return R.getFoundDecl();
|
|
}
|
|
|
|
TEST_F(InterpreterTest, InstantiateTemplate) {
|
|
// FIXME: We cannot yet handle delayed template parsing. If we run with
|
|
// -fdelayed-template-parsing we try adding the newly created decl to the
|
|
// active PTU which causes an assert.
|
|
std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
|
|
|
|
llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
|
|
"class A {};"
|
|
"struct B {"
|
|
" template<typename T>"
|
|
" static int callme(T) { return 42; }"
|
|
"};"));
|
|
auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
|
|
auto PTUDeclRange = PTU.TUPart->decls();
|
|
EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
|
|
|
|
// Lower the PTU
|
|
if (llvm::Error Err = Interp->Execute(PTU)) {
|
|
// We cannot execute on the platform.
|
|
consumeError(std::move(Err));
|
|
return;
|
|
}
|
|
|
|
TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
|
|
Value NewA = AllocateObject(TD, *Interp);
|
|
|
|
// Find back the template specialization
|
|
VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
|
|
UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
|
|
NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
|
|
|
|
std::string MangledName = MangleName(TmpltSpec);
|
|
typedef int (*TemplateSpecFn)(void *);
|
|
auto fn =
|
|
cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
|
|
EXPECT_EQ(42, fn(NewA.getPtr()));
|
|
}
|
|
|
|
TEST_F(InterpreterTest, Value) {
|
|
std::vector<const char *> Args = {"-fno-sized-deallocation"};
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
|
|
|
|
Value V1;
|
|
llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("x", &V1));
|
|
EXPECT_TRUE(V1.isValid());
|
|
EXPECT_TRUE(V1.hasValue());
|
|
EXPECT_EQ(V1.getInt(), 42);
|
|
EXPECT_EQ(V1.convertTo<int>(), 42);
|
|
EXPECT_TRUE(V1.getType()->isIntegerType());
|
|
EXPECT_EQ(V1.getKind(), Value::K_Int);
|
|
EXPECT_FALSE(V1.isManuallyAlloc());
|
|
|
|
Value V1b;
|
|
llvm::cantFail(Interp->ParseAndExecute("char c = 42;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("c", &V1b));
|
|
EXPECT_TRUE(V1b.getKind() == Value::K_Char_S ||
|
|
V1b.getKind() == Value::K_Char_U);
|
|
|
|
Value V2;
|
|
llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("y", &V2));
|
|
EXPECT_TRUE(V2.isValid());
|
|
EXPECT_TRUE(V2.hasValue());
|
|
EXPECT_EQ(V2.getDouble(), 3.14);
|
|
EXPECT_EQ(V2.convertTo<double>(), 3.14);
|
|
EXPECT_TRUE(V2.getType()->isFloatingType());
|
|
EXPECT_EQ(V2.getKind(), Value::K_Double);
|
|
EXPECT_FALSE(V2.isManuallyAlloc());
|
|
|
|
Value V3;
|
|
llvm::cantFail(Interp->ParseAndExecute(
|
|
"struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
|
|
llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
|
|
EXPECT_TRUE(V3.isValid());
|
|
EXPECT_TRUE(V3.hasValue());
|
|
EXPECT_TRUE(V3.getType()->isRecordType());
|
|
EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V3.isManuallyAlloc());
|
|
|
|
Value V4;
|
|
llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
|
|
llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
|
|
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
|
|
EXPECT_EQ(V4.getInt(), 42);
|
|
EXPECT_TRUE(V4.getType()->isIntegerType());
|
|
|
|
Value V5;
|
|
// Change the global from the compiled code.
|
|
setGlobal(43);
|
|
llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
|
|
EXPECT_EQ(V5.getInt(), 43);
|
|
EXPECT_TRUE(V5.getType()->isIntegerType());
|
|
|
|
// Change the global from the interpreted code.
|
|
llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
|
|
EXPECT_EQ(getGlobal(), 44);
|
|
|
|
Value V6;
|
|
llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
|
|
llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
|
|
EXPECT_TRUE(V6.isValid());
|
|
EXPECT_FALSE(V6.hasValue());
|
|
EXPECT_TRUE(V6.getType()->isVoidType());
|
|
EXPECT_EQ(V6.getKind(), Value::K_Void);
|
|
EXPECT_FALSE(V2.isManuallyAlloc());
|
|
|
|
Value V7;
|
|
llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
|
|
EXPECT_TRUE(V7.isValid());
|
|
EXPECT_TRUE(V7.hasValue());
|
|
EXPECT_TRUE(V7.getType()->isFunctionProtoType());
|
|
EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_FALSE(V7.isManuallyAlloc());
|
|
|
|
Value V8;
|
|
llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
|
|
llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
|
|
EXPECT_TRUE(V8.isValid());
|
|
EXPECT_TRUE(V8.hasValue());
|
|
EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
|
|
EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V8.isManuallyAlloc());
|
|
|
|
Value V9;
|
|
llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
|
|
llvm::cantFail(
|
|
Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
|
|
llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
|
|
llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
|
|
EXPECT_TRUE(V9.isValid());
|
|
EXPECT_TRUE(V9.hasValue());
|
|
EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
|
|
EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
|
|
EXPECT_TRUE(V9.isManuallyAlloc());
|
|
|
|
Value V10;
|
|
llvm::cantFail(Interp->ParseAndExecute(
|
|
"enum D : unsigned int {Zero = 0, One}; One", &V10));
|
|
|
|
std::string prettyType;
|
|
llvm::raw_string_ostream OSType(prettyType);
|
|
V10.printType(OSType);
|
|
EXPECT_STREQ(prettyType.c_str(), "D");
|
|
|
|
// FIXME: We should print only the value or the constant not the type.
|
|
std::string prettyData;
|
|
llvm::raw_string_ostream OSData(prettyData);
|
|
V10.printData(OSData);
|
|
EXPECT_STREQ(prettyData.c_str(), "(One) : unsigned int 1");
|
|
|
|
std::string prettyPrint;
|
|
llvm::raw_string_ostream OSPrint(prettyPrint);
|
|
V10.print(OSPrint);
|
|
EXPECT_STREQ(prettyPrint.c_str(), "(D) (One) : unsigned int 1\n");
|
|
}
|
|
|
|
TEST_F(InterpreterTest, TranslationUnit_CanonicalDecl) {
|
|
std::vector<const char *> Args;
|
|
std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
|
|
|
|
Sema &sema = Interp->getCompilerInstance()->getSema();
|
|
|
|
llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
|
|
|
|
TranslationUnitDecl *TU =
|
|
sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl();
|
|
|
|
llvm::cantFail(Interp->ParseAndExecute("long y = 84;"));
|
|
|
|
EXPECT_EQ(TU,
|
|
sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
|
|
|
|
llvm::cantFail(Interp->ParseAndExecute("char z = 'z';"));
|
|
|
|
EXPECT_EQ(TU,
|
|
sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
|
|
}
|
|
|
|
} // end anonymous namespace
|