llvm-project/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp
Eli Friedman 4f5d67b3e4
[AArch64] "Support" debug info for SVE types on Windows. (#147865)
There isn't any way to encode a variable in an SVE register, and there
isn't any way to encode a scalable offset, and as far as I know that's
unlikely to change in the near future. So suppress any debug info which
would require those encodings.

This isn't ideal, but we need to ship something which doesn't crash.

Alternatively, for Z registers, we could emit debug info assuming the
vector length is 128 bits, but that seems like it would lead to
unintuitive results.

The change to AArch64FrameLowering is needed to avoid a crash. But we
can't actually test that the returned offset is correct: LiveDebugValues
performs the query, then discards the result.
2025-07-13 16:06:27 -07:00

1378 lines
57 KiB
C++

//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "AArch64RegisterInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64InstPrinter.h"
#include "Utils/AArch64SMEAttributes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/Triple.h"
using namespace llvm;
#define GET_CC_REGISTER_LISTS
#include "AArch64GenCallingConv.inc"
#define GET_REGINFO_TARGET_DESC
#include "AArch64GenRegisterInfo.inc"
AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT, unsigned HwMode)
: AArch64GenRegisterInfo(AArch64::LR, 0, 0, 0, HwMode), TT(TT) {
AArch64_MC::initLLVMToCVRegMapping(this);
}
/// Return whether the register needs a CFI entry. Not all unwinders may know
/// about SVE registers, so we assume the lowest common denominator, i.e. the
/// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
/// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
/// returned in \p RegToUseForCFI.
bool AArch64RegisterInfo::regNeedsCFI(MCRegister Reg,
MCRegister &RegToUseForCFI) const {
if (AArch64::PPRRegClass.contains(Reg))
return false;
if (AArch64::ZPRRegClass.contains(Reg)) {
RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
return true;
}
return false;
}
RegToUseForCFI = Reg;
return true;
}
const MCPhysReg *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
assert(MF && "Invalid MachineFunction pointer.");
if (MF->getFunction().getCallingConv() == CallingConv::GHC)
// GHC set of callee saved regs is empty as all those regs are
// used for passing STG regs around
return CSR_AArch64_NoRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveNone)
return CSR_AArch64_NoneRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
return CSR_AArch64_AllRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::ARM64EC_Thunk_X64)
return CSR_Win_AArch64_Arm64EC_Thunk_SaveList;
// Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
// lists depending on that will need to have their Darwin variant as well.
if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
return getDarwinCalleeSavedRegs(MF);
if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
return CSR_Win_AArch64_CFGuard_Check_SaveList;
if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows()) {
if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
->supportSwiftError() &&
MF->getFunction().getAttributes().hasAttrSomewhere(
Attribute::SwiftError))
return CSR_Win_AArch64_AAPCS_SwiftError_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
return CSR_Win_AArch64_AAPCS_SwiftTail_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
return CSR_Win_AArch64_AAVPCS_SaveList;
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SVE_VectorCall)
return CSR_Win_AArch64_SVE_AAPCS_SaveList;
if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
return CSR_Win_AArch64_SVE_AAPCS_SaveList;
return CSR_Win_AArch64_AAPCS_SaveList;
}
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
return CSR_AArch64_AAVPCS_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
return CSR_AArch64_SVE_AAPCS_SaveList;
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is only "
"supported to improve calls to SME ACLE save/restore/disable-za "
"functions, and is not intended to be used beyond that scope.");
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 is "
"only supported to improve calls to SME ACLE __arm_get_current_vg "
"function, and is not intended to be used beyond that scope.");
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
"only supported to improve calls to SME ACLE __arm_sme_state "
"and is not intended to be used beyond that scope.");
if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
->supportSwiftError() &&
MF->getFunction().getAttributes().hasAttrSomewhere(
Attribute::SwiftError))
return CSR_AArch64_AAPCS_SwiftError_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
return CSR_AArch64_AAPCS_SwiftTail_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
return CSR_AArch64_RT_MostRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
return CSR_AArch64_RT_AllRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::Win64)
// This is for OSes other than Windows; Windows is a separate case further
// above.
return CSR_AArch64_AAPCS_X18_SaveList;
if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
return CSR_AArch64_SVE_AAPCS_SaveList;
return CSR_AArch64_AAPCS_SaveList;
}
const MCPhysReg *
AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
assert(MF && "Invalid MachineFunction pointer.");
assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
"Invalid subtarget for getDarwinCalleeSavedRegs");
if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
report_fatal_error(
"Calling convention CFGuard_Check is unsupported on Darwin.");
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
return CSR_Darwin_AArch64_AAVPCS_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
report_fatal_error(
"Calling convention SVE_VectorCall is unsupported on Darwin.");
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is "
"only supported to improve calls to SME ACLE save/restore/disable-za "
"functions, and is not intended to be used beyond that scope.");
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 is "
"only supported to improve calls to SME ACLE __arm_get_current_vg "
"function, and is not intended to be used beyond that scope.");
if (MF->getFunction().getCallingConv() ==
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
report_fatal_error(
"Calling convention "
"AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
"only supported to improve calls to SME ACLE __arm_sme_state "
"and is not intended to be used beyond that scope.");
if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
: CSR_Darwin_AArch64_CXX_TLS_SaveList;
if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
->supportSwiftError() &&
MF->getFunction().getAttributes().hasAttrSomewhere(
Attribute::SwiftError))
return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
return CSR_Darwin_AArch64_RT_AllRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::Win64)
return CSR_Darwin_AArch64_AAPCS_Win64_SaveList;
if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
return CSR_Darwin_AArch64_SVE_AAPCS_SaveList;
return CSR_Darwin_AArch64_AAPCS_SaveList;
}
const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
const MachineFunction *MF) const {
assert(MF && "Invalid MachineFunction pointer.");
if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
return nullptr;
}
void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
MachineFunction &MF) const {
const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
SmallVector<MCPhysReg, 32> UpdatedCSRs;
for (const MCPhysReg *I = CSRs; *I; ++I)
UpdatedCSRs.push_back(*I);
for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
}
}
// Register lists are zero-terminated.
UpdatedCSRs.push_back(0);
MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
}
const TargetRegisterClass *
AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
unsigned Idx) const {
// edge case for GPR/FPR register classes
if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
return &AArch64::FPR32RegClass;
else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
return &AArch64::FPR64RegClass;
// Forward to TableGen's default version.
return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
}
const uint32_t *
AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
"Invalid subtarget for getDarwinCallPreservedMask");
if (CC == CallingConv::CXX_FAST_TLS)
return CSR_Darwin_AArch64_CXX_TLS_RegMask;
if (CC == CallingConv::AArch64_VectorCall)
return CSR_Darwin_AArch64_AAVPCS_RegMask;
if (CC == CallingConv::AArch64_SVE_VectorCall)
return CSR_Darwin_AArch64_SVE_AAPCS_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
if (CC == CallingConv::CFGuard_Check)
report_fatal_error(
"Calling convention CFGuard_Check is unsupported on Darwin.");
if (MF.getSubtarget<AArch64Subtarget>()
.getTargetLowering()
->supportSwiftError() &&
MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
if (CC == CallingConv::SwiftTail)
return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
if (CC == CallingConv::PreserveMost)
return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
if (CC == CallingConv::PreserveAll)
return CSR_Darwin_AArch64_RT_AllRegs_RegMask;
return CSR_Darwin_AArch64_AAPCS_RegMask;
}
const uint32_t *
AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (CC == CallingConv::GHC)
// This is academic because all GHC calls are (supposed to be) tail calls
return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
if (CC == CallingConv::PreserveNone)
return SCS ? CSR_AArch64_NoneRegs_SCS_RegMask
: CSR_AArch64_NoneRegs_RegMask;
if (CC == CallingConv::AnyReg)
return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
// All the following calling conventions are handled differently on Darwin.
if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
if (SCS)
report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
return getDarwinCallPreservedMask(MF, CC);
}
if (CC == CallingConv::AArch64_VectorCall)
return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
if (CC == CallingConv::AArch64_SVE_VectorCall)
return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
: CSR_AArch64_SVE_AAPCS_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1_RegMask;
if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
if (CC == CallingConv::CFGuard_Check)
return CSR_Win_AArch64_CFGuard_Check_RegMask;
if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
->supportSwiftError() &&
MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
: CSR_AArch64_AAPCS_SwiftError_RegMask;
if (CC == CallingConv::SwiftTail) {
if (SCS)
report_fatal_error("ShadowCallStack attribute not supported with swifttail");
return CSR_AArch64_AAPCS_SwiftTail_RegMask;
}
if (CC == CallingConv::PreserveMost)
return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
: CSR_AArch64_RT_MostRegs_RegMask;
if (CC == CallingConv::PreserveAll)
return SCS ? CSR_AArch64_RT_AllRegs_SCS_RegMask
: CSR_AArch64_RT_AllRegs_RegMask;
return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
}
const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
const MachineFunction &MF) const {
if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
return CSR_AArch64_AAPCS_RegMask;
return nullptr;
}
const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
if (TT.isOSDarwin())
return CSR_Darwin_AArch64_TLS_RegMask;
assert(TT.isOSBinFormatELF() && "Invalid target");
return CSR_AArch64_TLS_ELF_RegMask;
}
void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
const uint32_t **Mask) const {
uint32_t *UpdatedMask = MF.allocateRegMask();
unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
for (MCPhysReg SubReg :
subregs_inclusive(AArch64::GPR64commonRegClass.getRegister(i))) {
// See TargetRegisterInfo::getCallPreservedMask for how to interpret the
// register mask.
UpdatedMask[SubReg / 32] |= 1u << (SubReg % 32);
}
}
}
*Mask = UpdatedMask;
}
const uint32_t *AArch64RegisterInfo::getSMStartStopCallPreservedMask() const {
return CSR_AArch64_SMStartStop_RegMask;
}
const uint32_t *
AArch64RegisterInfo::SMEABISupportRoutinesCallPreservedMaskFromX0() const {
return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
}
const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
return CSR_AArch64_NoRegs_RegMask;
}
const uint32_t *
AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
// This should return a register mask that is the same as that returned by
// getCallPreservedMask but that additionally preserves the register used for
// the first i64 argument (which must also be the register used to return a
// single i64 return value)
//
// In case that the calling convention does not use the same register for
// both, the function should return NULL (does not currently apply)
assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
return CSR_AArch64_AAPCS_ThisReturn_RegMask;
}
const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
return CSR_AArch64_StackProbe_Windows_RegMask;
}
std::optional<std::string>
AArch64RegisterInfo::explainReservedReg(const MachineFunction &MF,
MCRegister PhysReg) const {
if (hasBasePointer(MF) && MCRegisterInfo::regsOverlap(PhysReg, AArch64::X19))
return std::string("X19 is used as the frame base pointer register.");
if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
bool warn = false;
if (MCRegisterInfo::regsOverlap(PhysReg, AArch64::X13) ||
MCRegisterInfo::regsOverlap(PhysReg, AArch64::X14) ||
MCRegisterInfo::regsOverlap(PhysReg, AArch64::X23) ||
MCRegisterInfo::regsOverlap(PhysReg, AArch64::X24) ||
MCRegisterInfo::regsOverlap(PhysReg, AArch64::X28))
warn = true;
for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
if (MCRegisterInfo::regsOverlap(PhysReg, i))
warn = true;
if (warn)
return std::string(AArch64InstPrinter::getRegisterName(PhysReg)) +
" is clobbered by asynchronous signals when using Arm64EC.";
}
return {};
}
BitVector
AArch64RegisterInfo::getStrictlyReservedRegs(const MachineFunction &MF) const {
const AArch64FrameLowering *TFI = getFrameLowering(MF);
// FIXME: avoid re-calculating this every time.
BitVector Reserved(getNumRegs());
markSuperRegs(Reserved, AArch64::WSP);
markSuperRegs(Reserved, AArch64::WZR);
if (TFI->isFPReserved(MF))
markSuperRegs(Reserved, AArch64::W29);
if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
// x13, x14, x23, x24, x28, and v16-v31 are clobbered by asynchronous
// signals, so we can't ever use them.
markSuperRegs(Reserved, AArch64::W13);
markSuperRegs(Reserved, AArch64::W14);
markSuperRegs(Reserved, AArch64::W23);
markSuperRegs(Reserved, AArch64::W24);
markSuperRegs(Reserved, AArch64::W28);
for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
markSuperRegs(Reserved, i);
}
for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
}
if (hasBasePointer(MF))
markSuperRegs(Reserved, AArch64::W19);
// SLH uses register W16/X16 as the taint register.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
markSuperRegs(Reserved, AArch64::W16);
// FFR is modelled as global state that cannot be allocated.
if (MF.getSubtarget<AArch64Subtarget>().hasSVE())
Reserved.set(AArch64::FFR);
// SME tiles are not allocatable.
if (MF.getSubtarget<AArch64Subtarget>().hasSME()) {
for (MCPhysReg SubReg : subregs_inclusive(AArch64::ZA))
Reserved.set(SubReg);
}
// VG cannot be allocated
Reserved.set(AArch64::VG);
if (MF.getSubtarget<AArch64Subtarget>().hasSME2()) {
for (MCSubRegIterator SubReg(AArch64::ZT0, this, /*self=*/true);
SubReg.isValid(); ++SubReg)
Reserved.set(*SubReg);
}
markSuperRegs(Reserved, AArch64::FPCR);
markSuperRegs(Reserved, AArch64::FPMR);
markSuperRegs(Reserved, AArch64::FPSR);
if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) {
markSuperRegs(Reserved, AArch64::X27);
markSuperRegs(Reserved, AArch64::X28);
markSuperRegs(Reserved, AArch64::W27);
markSuperRegs(Reserved, AArch64::W28);
}
assert(checkAllSuperRegsMarked(Reserved));
// Add _HI registers after checkAllSuperRegsMarked as this check otherwise
// becomes considerably more expensive.
Reserved.set(AArch64::WSP_HI);
Reserved.set(AArch64::WZR_HI);
static_assert(AArch64::W30_HI - AArch64::W0_HI == 30,
"Unexpected order of registers");
Reserved.set(AArch64::W0_HI, AArch64::W30_HI);
static_assert(AArch64::B31_HI - AArch64::B0_HI == 31,
"Unexpected order of registers");
Reserved.set(AArch64::B0_HI, AArch64::B31_HI);
static_assert(AArch64::H31_HI - AArch64::H0_HI == 31,
"Unexpected order of registers");
Reserved.set(AArch64::H0_HI, AArch64::H31_HI);
static_assert(AArch64::S31_HI - AArch64::S0_HI == 31,
"Unexpected order of registers");
Reserved.set(AArch64::S0_HI, AArch64::S31_HI);
static_assert(AArch64::D31_HI - AArch64::D0_HI == 31,
"Unexpected order of registers");
Reserved.set(AArch64::D0_HI, AArch64::D31_HI);
static_assert(AArch64::Q31_HI - AArch64::Q0_HI == 31,
"Unexpected order of registers");
Reserved.set(AArch64::Q0_HI, AArch64::Q31_HI);
return Reserved;
}
BitVector
AArch64RegisterInfo::getUserReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
// ReserveXRegister is set for registers manually reserved
// through +reserve-x#i.
if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
}
return Reserved;
}
BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReservedForRA(i))
markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
}
if (MF.getSubtarget<AArch64Subtarget>().isLRReservedForRA()) {
// In order to prevent the register allocator from using LR, we need to
// mark it as reserved. However we don't want to keep it reserved throughout
// the pipeline since it prevents other infrastructure from reasoning about
// it's liveness. We use the NoVRegs property instead of IsSSA because
// IsSSA is removed before VirtRegRewriter runs.
if (!MF.getProperties().hasNoVRegs())
markSuperRegs(Reserved, AArch64::LR);
}
assert(checkAllSuperRegsMarked(Reserved));
// Handle strictlyReservedRegs separately to avoid re-evaluating the assert,
// which becomes considerably expensive when considering the _HI registers.
Reserved |= getStrictlyReservedRegs(MF);
return Reserved;
}
bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
MCRegister Reg) const {
return getReservedRegs(MF)[Reg];
}
bool AArch64RegisterInfo::isUserReservedReg(const MachineFunction &MF,
MCRegister Reg) const {
return getUserReservedRegs(MF)[Reg];
}
bool AArch64RegisterInfo::isStrictlyReservedReg(const MachineFunction &MF,
MCRegister Reg) const {
return getStrictlyReservedRegs(MF)[Reg];
}
bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
return isStrictlyReservedReg(MF, r);
});
}
void AArch64RegisterInfo::emitReservedArgRegCallError(
const MachineFunction &MF) const {
const Function &F = MF.getFunction();
F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
" function calls if any of the argument registers is reserved.")});
}
bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
MCRegister PhysReg) const {
// SLH uses register X16 as the taint register but it will fallback to a different
// method if the user clobbers it. So X16 is not reserved for inline asm but is
// for normal codegen.
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening) &&
MCRegisterInfo::regsOverlap(PhysReg, AArch64::X16))
return true;
// ZA/ZT0 registers are reserved but may be permitted in the clobber list.
if (PhysReg == AArch64::ZA || PhysReg == AArch64::ZT0)
return true;
return !isReservedReg(MF, PhysReg);
}
const TargetRegisterClass *
AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
unsigned Kind) const {
return &AArch64::GPR64spRegClass;
}
const TargetRegisterClass *
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &AArch64::CCRRegClass)
return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
return RC;
}
unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// In the presence of variable sized objects or funclets, if the fixed stack
// size is large enough that referencing from the FP won't result in things
// being in range relatively often, we can use a base pointer to allow access
// from the other direction like the SP normally works.
//
// Furthermore, if both variable sized objects are present, and the
// stack needs to be dynamically re-aligned, the base pointer is the only
// reliable way to reference the locals.
if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
if (hasStackRealignment(MF))
return true;
auto &ST = MF.getSubtarget<AArch64Subtarget>();
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
if (ST.hasSVE() || ST.isStreaming()) {
// Frames that have variable sized objects and scalable SVE objects,
// should always use a basepointer.
if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
return true;
}
// Frames with hazard padding can have a large offset between the frame
// pointer and GPR locals, which includes the emergency spill slot. If the
// emergency spill slot is not within range of the load/store instructions
// (which have a signed 9-bit range), we will fail to compile if it is used.
// Since hasBasePointer() is called before we know if we have hazard padding
// or an emergency spill slot we need to enable the basepointer
// conservatively.
if (ST.getStreamingHazardSize() &&
!AFI->getSMEFnAttrs().hasNonStreamingInterfaceAndBody()) {
return true;
}
// Conservatively estimate whether the negative offset from the frame
// pointer will be sufficient to reach. If a function has a smallish
// frame, it's less likely to have lots of spills and callee saved
// space, so it's all more likely to be within range of the frame pointer.
// If it's wrong, we'll materialize the constant and still get to the
// object; it's just suboptimal. Negative offsets use the unscaled
// load/store instructions, which have a 9-bit signed immediate.
return MFI.getLocalFrameSize() >= 256;
}
return false;
}
bool AArch64RegisterInfo::isArgumentRegister(const MachineFunction &MF,
MCRegister Reg) const {
CallingConv::ID CC = MF.getFunction().getCallingConv();
const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
bool IsVarArg = STI.isCallingConvWin64(MF.getFunction().getCallingConv(),
MF.getFunction().isVarArg());
auto HasReg = [](ArrayRef<MCRegister> RegList, MCRegister Reg) {
return llvm::is_contained(RegList, Reg);
};
switch (CC) {
default:
report_fatal_error("Unsupported calling convention.");
case CallingConv::GHC:
return HasReg(CC_AArch64_GHC_ArgRegs, Reg);
case CallingConv::PreserveNone:
if (!MF.getFunction().isVarArg())
return HasReg(CC_AArch64_Preserve_None_ArgRegs, Reg);
[[fallthrough]];
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::PreserveMost:
case CallingConv::PreserveAll:
case CallingConv::CXX_FAST_TLS:
case CallingConv::Swift:
case CallingConv::SwiftTail:
case CallingConv::Tail:
if (STI.isTargetWindows()) {
if (IsVarArg)
return HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
switch (CC) {
default:
return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
case CallingConv::Swift:
case CallingConv::SwiftTail:
return HasReg(CC_AArch64_Win64PCS_Swift_ArgRegs, Reg) ||
HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
}
}
if (!STI.isTargetDarwin()) {
switch (CC) {
default:
return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
case CallingConv::Swift:
case CallingConv::SwiftTail:
return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg) ||
HasReg(CC_AArch64_AAPCS_Swift_ArgRegs, Reg);
}
}
if (!IsVarArg) {
switch (CC) {
default:
return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg);
case CallingConv::Swift:
case CallingConv::SwiftTail:
return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg) ||
HasReg(CC_AArch64_DarwinPCS_Swift_ArgRegs, Reg);
}
}
if (STI.isTargetILP32())
return HasReg(CC_AArch64_DarwinPCS_ILP32_VarArg_ArgRegs, Reg);
return HasReg(CC_AArch64_DarwinPCS_VarArg_ArgRegs, Reg);
case CallingConv::Win64:
if (IsVarArg)
HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
case CallingConv::CFGuard_Check:
return HasReg(CC_AArch64_Win64_CFGuard_Check_ArgRegs, Reg);
case CallingConv::AArch64_VectorCall:
case CallingConv::AArch64_SVE_VectorCall:
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1:
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
if (STI.isTargetWindows())
return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
}
}
Register
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const AArch64FrameLowering *TFI = getFrameLowering(MF);
return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
}
bool AArch64RegisterInfo::requiresRegisterScavenging(
const MachineFunction &MF) const {
return true;
}
bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &MF) const {
return true;
}
bool
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
// This function indicates whether the emergency spillslot should be placed
// close to the beginning of the stackframe (closer to FP) or the end
// (closer to SP).
//
// The beginning works most reliably if we have a frame pointer.
// In the presence of any non-constant space between FP and locals,
// (e.g. in case of stack realignment or a scalable SVE area), it is
// better to use SP or BP.
const AArch64FrameLowering &TFI = *getFrameLowering(MF);
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
AFI->hasCalculatedStackSizeSVE()) &&
"Expected SVE area to be calculated by this point");
return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE() &&
!AFI->hasStackHazardSlotIndex();
}
bool AArch64RegisterInfo::requiresFrameIndexScavenging(
const MachineFunction &MF) const {
return true;
}
bool
AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
return true;
return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
}
/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
int64_t Offset) const {
for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
assert(i < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
if (!MI->mayLoad() && !MI->mayStore())
return false;
// Without a virtual base register, if the function has variable sized
// objects, all fixed-size local references will be via the frame pointer,
// Approximate the offset and see if it's legal for the instruction.
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
const AArch64FrameLowering *TFI = getFrameLowering(MF);
MachineFrameInfo &MFI = MF.getFrameInfo();
// Estimate an offset from the frame pointer.
// Conservatively assume all GPR callee-saved registers get pushed.
// FP, LR, X19-X28, D8-D15. 64-bits each.
int64_t FPOffset = Offset - 16 * 20;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset += MFI.getLocalFrameSize();
// Assume that we'll have at least some spill slots allocated.
// FIXME: This is a total SWAG number. We should run some statistics
// and pick a real one.
Offset += 128; // 128 bytes of spill slots
// If there is a frame pointer, try using it.
// The FP is only available if there is no dynamic realignment. We
// don't know for sure yet whether we'll need that, so we guess based
// on whether there are any local variables that would trigger it.
if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
return false;
// If we can reference via the stack pointer or base pointer, try that.
// FIXME: This (and the code that resolves the references) can be improved
// to only disallow SP relative references in the live range of
// the VLA(s). In practice, it's unclear how much difference that
// would make, but it may be worth doing.
if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
return false;
// If even offset 0 is illegal, we don't want a virtual base register.
if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
return false;
// The offset likely isn't legal; we want to allocate a virtual base register.
return true;
}
bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Register BaseReg,
int64_t Offset) const {
assert(MI && "Unable to get the legal offset for nil instruction.");
StackOffset SaveOffset = StackOffset::getFixed(Offset);
return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
}
/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
/// at the beginning of the basic block.
Register
AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MachineFunction &MF = *MBB->getParent();
const AArch64InstrInfo *TII =
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx)
.addImm(Offset)
.addImm(Shifter);
return BaseReg;
}
void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
int64_t Offset) const {
// ARM doesn't need the general 64-bit offsets
StackOffset Off = StackOffset::getFixed(Offset);
unsigned i = 0;
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
const MachineFunction *MF = MI.getParent()->getParent();
const AArch64InstrInfo *TII =
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
assert(Done && "Unable to resolve frame index!");
(void)Done;
}
// Create a scratch register for the frame index elimination in an instruction.
// This function has special handling of stack tagging loop pseudos, in which
// case it can also change the instruction opcode.
static Register
createScratchRegisterForInstruction(MachineInstr &MI, unsigned FIOperandNum,
const AArch64InstrInfo *TII) {
// ST*Gloop have a reserved scratch register in operand 1. Use it, and also
// replace the instruction with the writeback variant because it will now
// satisfy the operand constraints for it.
Register ScratchReg;
if (MI.getOpcode() == AArch64::STGloop ||
MI.getOpcode() == AArch64::STZGloop) {
assert(FIOperandNum == 3 &&
"Wrong frame index operand for STGloop/STZGloop");
unsigned Op = MI.getOpcode() == AArch64::STGloop ? AArch64::STGloop_wback
: AArch64::STZGloop_wback;
ScratchReg = MI.getOperand(1).getReg();
MI.getOperand(3).ChangeToRegister(ScratchReg, false, false, true);
MI.setDesc(TII->get(Op));
MI.tieOperands(1, 3);
} else {
ScratchReg =
MI.getMF()->getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
MI.getOperand(FIOperandNum)
.ChangeToRegister(ScratchReg, false, false, true);
}
return ScratchReg;
}
void AArch64RegisterInfo::getOffsetOpcodes(
const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
// The smallest scalable element supported by scaled SVE addressing
// modes are predicates, which are 2 scalable bytes in size. So the scalable
// byte offset must always be a multiple of 2.
assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
// Add fixed-sized offset using existing DIExpression interface.
DIExpression::appendOffset(Ops, Offset.getFixed());
unsigned VG = getDwarfRegNum(AArch64::VG, true);
int64_t VGSized = Offset.getScalable() / 2;
if (VGSized > 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(VGSized);
Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_plus);
} else if (VGSized < 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(-VGSized);
Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_minus);
}
}
bool AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const AArch64InstrInfo *TII =
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
const AArch64FrameLowering *TFI = getFrameLowering(MF);
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
bool Tagged =
MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
Register FrameReg;
// Special handling of dbg_value, stackmap patchpoint statepoint instructions.
if (MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT ||
MI.getOpcode() == TargetOpcode::STATEPOINT) {
StackOffset Offset =
TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
/*PreferFP=*/true,
/*ForSimm=*/false);
Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
return false;
}
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
MachineOperand &FI = MI.getOperand(FIOperandNum);
StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
assert(!Offset.getScalable() &&
"Frame offsets with a scalable component are not supported");
FI.ChangeToImmediate(Offset.getFixed());
return false;
}
StackOffset Offset;
if (MI.getOpcode() == AArch64::TAGPstack) {
// TAGPstack must use the virtual frame register in its 3rd operand.
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
FrameReg = MI.getOperand(3).getReg();
Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
AFI->getTaggedBasePointerOffset());
} else if (Tagged) {
StackOffset SPOffset = StackOffset::getFixed(
MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
if (MFI.hasVarSizedObjects() ||
isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
(AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
// Can't update to SP + offset in place. Precalculate the tagged pointer
// in a scratch register.
Offset = TFI->resolveFrameIndexReference(
MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
Register ScratchReg =
MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
TII);
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(0);
MI.getOperand(FIOperandNum)
.ChangeToRegister(ScratchReg, false, false, true);
return false;
}
FrameReg = AArch64::SP;
Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
(int64_t)MFI.getStackSize());
} else {
Offset = TFI->resolveFrameIndexReference(
MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
}
// Modify MI as necessary to handle as much of 'Offset' as possible
if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
return true;
assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
"Emergency spill slot is out of reach");
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above. Handle the rest, providing a register that is
// SP+LargeImm.
Register ScratchReg =
createScratchRegisterForInstruction(MI, FIOperandNum, TII);
emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
return false;
}
unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const AArch64FrameLowering *TFI = getFrameLowering(MF);
switch (RC->getID()) {
default:
return 0;
case AArch64::GPR32RegClassID:
case AArch64::GPR32spRegClassID:
case AArch64::GPR32allRegClassID:
case AArch64::GPR64spRegClassID:
case AArch64::GPR64allRegClassID:
case AArch64::GPR64RegClassID:
case AArch64::GPR32commonRegClassID:
case AArch64::GPR64commonRegClassID:
return 32 - 1 // XZR/SP
- (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
- MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
- hasBasePointer(MF); // X19
case AArch64::FPR8RegClassID:
case AArch64::FPR16RegClassID:
case AArch64::FPR32RegClassID:
case AArch64::FPR64RegClassID:
case AArch64::FPR128RegClassID:
return 32;
case AArch64::MatrixIndexGPR32_8_11RegClassID:
case AArch64::MatrixIndexGPR32_12_15RegClassID:
return 4;
case AArch64::DDRegClassID:
case AArch64::DDDRegClassID:
case AArch64::DDDDRegClassID:
case AArch64::QQRegClassID:
case AArch64::QQQRegClassID:
case AArch64::QQQQRegClassID:
return 32;
case AArch64::FPR128_loRegClassID:
case AArch64::FPR64_loRegClassID:
case AArch64::FPR16_loRegClassID:
return 16;
case AArch64::FPR128_0to7RegClassID:
return 8;
}
}
// FORM_TRANSPOSED_REG_TUPLE nodes are created to improve register allocation
// where a consecutive multi-vector tuple is constructed from the same indices
// of multiple strided loads. This may still result in unnecessary copies
// between the loads and the tuple. Here we try to return a hint to assign the
// contiguous ZPRMulReg starting at the same register as the first operand of
// the pseudo, which should be a subregister of the first strided load.
//
// For example, if the first strided load has been assigned $z16_z20_z24_z28
// and the operands of the pseudo are each accessing subregister zsub2, we
// should look through through Order to find a contiguous register which
// begins with $z24 (i.e. $z24_z25_z26_z27).
//
bool AArch64RegisterInfo::getRegAllocationHints(
Register VirtReg, ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
auto &ST = MF.getSubtarget<AArch64Subtarget>();
if (!ST.hasSME() || !ST.isStreaming())
return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
VRM);
// The SVE calling convention preserves registers Z8-Z23. As a result, there
// are no ZPR2Strided or ZPR4Strided registers that do not overlap with the
// callee-saved registers and so by default these will be pushed to the back
// of the allocation order for the ZPRStridedOrContiguous classes.
// If any of the instructions which define VirtReg are used by the
// FORM_TRANSPOSED_REG_TUPLE pseudo, we want to favour reducing copy
// instructions over reducing the number of clobbered callee-save registers,
// so we add the strided registers as a hint.
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned RegID = MRI.getRegClass(VirtReg)->getID();
if (RegID == AArch64::ZPR2StridedOrContiguousRegClassID ||
RegID == AArch64::ZPR4StridedOrContiguousRegClassID) {
// Look through uses of the register for FORM_TRANSPOSED_REG_TUPLE.
for (const MachineInstr &Use : MRI.use_nodbg_instructions(VirtReg)) {
if (Use.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO &&
Use.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO)
continue;
unsigned UseOps = Use.getNumOperands() - 1;
const TargetRegisterClass *StridedRC;
switch (RegID) {
case AArch64::ZPR2StridedOrContiguousRegClassID:
StridedRC = &AArch64::ZPR2StridedRegClass;
break;
case AArch64::ZPR4StridedOrContiguousRegClassID:
StridedRC = &AArch64::ZPR4StridedRegClass;
break;
default:
llvm_unreachable("Unexpected RegID");
}
SmallVector<MCPhysReg, 4> StridedOrder;
for (MCPhysReg Reg : Order)
if (StridedRC->contains(Reg))
StridedOrder.push_back(Reg);
int OpIdx = Use.findRegisterUseOperandIdx(VirtReg, this);
assert(OpIdx != -1 && "Expected operand index from register use.");
unsigned TupleID = MRI.getRegClass(Use.getOperand(0).getReg())->getID();
bool IsMulZPR = TupleID == AArch64::ZPR2Mul2RegClassID ||
TupleID == AArch64::ZPR4Mul4RegClassID;
const MachineOperand *AssignedRegOp = llvm::find_if(
make_range(Use.operands_begin() + 1, Use.operands_end()),
[&VRM](const MachineOperand &Op) {
return VRM->hasPhys(Op.getReg());
});
// Example:
//
// When trying to find a suitable register allocation for VirtReg %v2 in:
//
// %v0:zpr2stridedorcontiguous = ld1 p0/z, [...]
// %v1:zpr2stridedorcontiguous = ld1 p0/z, [...]
// %v2:zpr2stridedorcontiguous = ld1 p0/z, [...]
// %v3:zpr2stridedorcontiguous = ld1 p0/z, [...]
// %v4:zpr4mul4 = FORM_TRANSPOSED_X4 %v0:0, %v1:0, %v2:0, %v3:0
//
// One such suitable allocation would be:
//
// { z0, z8 } = ld1 p0/z, [...]
// { z1, z9 } = ld1 p0/z, [...]
// { z2, z10 } = ld1 p0/z, [...]
// { z3, z11 } = ld1 p0/z, [...]
// { z0, z1, z2, z3 } =
// FORM_TRANSPOSED_X4 {z0, z8}:0, {z1, z9}:0, {z2, z10}:0, {z3, z11}:0
//
// Below we distinguish two cases when trying to find a register:
// * None of the registers used by FORM_TRANSPOSED_X4 have been assigned
// yet. In this case the code muse ensure that there are at least UseOps
// free consecutive registers. If IsMulZPR is true, then the first of
// registers must also be a multiple of UseOps, e.g. { z0, z1, z2, z3 }
// is valid but { z1, z2, z3, z5 } is not.
// * One or more of the registers used by FORM_TRANSPOSED_X4 is already
// assigned a physical register, which means only checking that a
// consecutive range of free tuple registers exists which includes
// the assigned register.
// e.g. in the example above, if { z0, z8 } is already allocated for
// %v0, we just need to ensure that { z1, z9 }, { z2, z10 } and
// { z3, z11 } are also free. If so, we add { z2, z10 }.
if (AssignedRegOp == Use.operands_end()) {
// There are no registers already assigned to any of the pseudo
// operands. Look for a valid starting register for the group.
for (unsigned I = 0; I < StridedOrder.size(); ++I) {
MCPhysReg Reg = StridedOrder[I];
// If the FORM_TRANSPOSE nodes use the ZPRMul classes, the starting
// register of the first load should be a multiple of 2 or 4.
unsigned SubRegIdx = Use.getOperand(OpIdx).getSubReg();
if (IsMulZPR && (getSubReg(Reg, SubRegIdx) - AArch64::Z0) % UseOps !=
((unsigned)OpIdx - 1))
continue;
// In the example above, if VirtReg is the third operand of the
// tuple (%v2) and Reg == Z2_Z10, then we need to make sure that
// Z0_Z8, Z1_Z9 and Z3_Z11 are also available.
auto IsFreeConsecutiveReg = [&](unsigned UseOp) {
unsigned R = Reg - (OpIdx - 1) + UseOp;
return StridedRC->contains(R) &&
(UseOp == 0 ||
((getSubReg(R, AArch64::zsub0) - AArch64::Z0) ==
(getSubReg(R - 1, AArch64::zsub0) - AArch64::Z0) + 1)) &&
!Matrix->isPhysRegUsed(R);
};
if (all_of(iota_range<unsigned>(0U, UseOps, /*Inclusive=*/false),
IsFreeConsecutiveReg))
Hints.push_back(Reg);
}
} else {
// At least one operand already has a physical register assigned.
// Find the starting sub-register of this and use it to work out the
// correct strided register to suggest based on the current op index.
MCPhysReg TargetStartReg =
getSubReg(VRM->getPhys(AssignedRegOp->getReg()), AArch64::zsub0) +
(OpIdx - AssignedRegOp->getOperandNo());
for (unsigned I = 0; I < StridedOrder.size(); ++I)
if (getSubReg(StridedOrder[I], AArch64::zsub0) == TargetStartReg)
Hints.push_back(StridedOrder[I]);
}
if (!Hints.empty())
return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints,
MF, VRM);
}
}
for (MachineInstr &MI : MRI.def_instructions(VirtReg)) {
if (MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X2_PSEUDO &&
MI.getOpcode() != AArch64::FORM_TRANSPOSED_REG_TUPLE_X4_PSEUDO)
return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints,
MF, VRM);
unsigned FirstOpSubReg = MI.getOperand(1).getSubReg();
switch (FirstOpSubReg) {
case AArch64::zsub0:
case AArch64::zsub1:
case AArch64::zsub2:
case AArch64::zsub3:
break;
default:
continue;
}
// Look up the physical register mapped to the first operand of the pseudo.
Register FirstOpVirtReg = MI.getOperand(1).getReg();
if (!VRM->hasPhys(FirstOpVirtReg))
continue;
MCRegister TupleStartReg =
getSubReg(VRM->getPhys(FirstOpVirtReg), FirstOpSubReg);
for (unsigned I = 0; I < Order.size(); ++I)
if (MCRegister R = getSubReg(Order[I], AArch64::zsub0))
if (R == TupleStartReg)
Hints.push_back(Order[I]);
}
return TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF,
VRM);
}
unsigned AArch64RegisterInfo::getLocalAddressRegister(
const MachineFunction &MF) const {
const auto &MFI = MF.getFrameInfo();
if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
return AArch64::SP;
else if (hasStackRealignment(MF))
return getBaseRegister();
return getFrameRegister(MF);
}
/// SrcRC and DstRC will be morphed into NewRC if this returns true
bool AArch64RegisterInfo::shouldCoalesce(
MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
const TargetRegisterClass *DstRC, unsigned DstSubReg,
const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
if (MI->isCopy() &&
((DstRC->getID() == AArch64::GPR64RegClassID) ||
(DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
// Do not coalesce in the case of a 32-bit subregister copy
// which implements a 32 to 64 bit zero extension
// which relies on the upper 32 bits being zeroed.
return false;
auto IsCoalescerBarrier = [](const MachineInstr &MI) {
switch (MI.getOpcode()) {
case AArch64::COALESCER_BARRIER_FPR16:
case AArch64::COALESCER_BARRIER_FPR32:
case AArch64::COALESCER_BARRIER_FPR64:
case AArch64::COALESCER_BARRIER_FPR128:
return true;
default:
return false;
}
};
// For calls that temporarily have to toggle streaming mode as part of the
// call-sequence, we need to be more careful when coalescing copy instructions
// so that we don't end up coalescing the NEON/FP result or argument register
// with a whole Z-register, such that after coalescing the register allocator
// will try to spill/reload the entire Z register.
//
// We do this by checking if the node has any defs/uses that are
// COALESCER_BARRIER pseudos. These are 'nops' in practice, but they exist to
// instruct the coalescer to avoid coalescing the copy.
if (MI->isCopy() && SubReg != DstSubReg &&
(AArch64::ZPRRegClass.hasSubClassEq(DstRC) ||
AArch64::ZPRRegClass.hasSubClassEq(SrcRC))) {
unsigned SrcReg = MI->getOperand(1).getReg();
if (any_of(MRI.def_instructions(SrcReg), IsCoalescerBarrier))
return false;
unsigned DstReg = MI->getOperand(0).getReg();
if (any_of(MRI.use_nodbg_instructions(DstReg), IsCoalescerBarrier))
return false;
}
return true;
}
bool AArch64RegisterInfo::shouldAnalyzePhysregInMachineLoopInfo(
MCRegister R) const {
return R == AArch64::VG;
}
bool AArch64RegisterInfo::isIgnoredCVReg(MCRegister LLVMReg) const {
return (LLVMReg >= AArch64::Z0 && LLVMReg <= AArch64::Z31) ||
(LLVMReg >= AArch64::P0 && LLVMReg <= AArch64::P15);
}