
AMDGPUPerfHintAnalysis doesn't set the memory bound attribute if FuncInfo::InstCost outweighs MemInstCost even if we have a basic block with relatively high global memory access. GCNSchedStrategy could revert optimal scheduling in favour of occupancy which seems to degrade performance for some kernels. This change introduces the HasDenseGlobalMemAcc metric in the heuristic that makes the analysis more conservative in these cases. This fixes SWDEV-334259/SWDEV-343932 Differential Revision: https://reviews.llvm.org/D129759
431 lines
14 KiB
C++
431 lines
14 KiB
C++
//===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Analyzes if a function potentially memory bound and if a kernel
|
|
/// kernel may benefit from limiting number of waves to reduce cache thrashing.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUPerfHintAnalysis.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-perf-hint"
|
|
|
|
static cl::opt<unsigned>
|
|
MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
|
|
cl::desc("Function mem bound threshold in %"));
|
|
|
|
static cl::opt<unsigned>
|
|
LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
|
|
cl::desc("Kernel limit wave threshold in %"));
|
|
|
|
static cl::opt<unsigned>
|
|
IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
|
|
cl::desc("Indirect access memory instruction weight"));
|
|
|
|
static cl::opt<unsigned>
|
|
LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
|
|
cl::desc("Large stride memory access weight"));
|
|
|
|
static cl::opt<unsigned>
|
|
LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
|
|
cl::desc("Large stride memory access threshold"));
|
|
|
|
STATISTIC(NumMemBound, "Number of functions marked as memory bound");
|
|
STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
|
|
|
|
char llvm::AMDGPUPerfHintAnalysis::ID = 0;
|
|
char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
|
|
|
|
INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
|
|
"Analysis if a function is memory bound", true, true)
|
|
|
|
namespace {
|
|
|
|
struct AMDGPUPerfHint {
|
|
friend AMDGPUPerfHintAnalysis;
|
|
|
|
public:
|
|
AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
|
|
const TargetLowering *TLI_)
|
|
: FIM(FIM_), DL(nullptr), TLI(TLI_) {}
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
private:
|
|
struct MemAccessInfo {
|
|
const Value *V = nullptr;
|
|
const Value *Base = nullptr;
|
|
int64_t Offset = 0;
|
|
MemAccessInfo() = default;
|
|
bool isLargeStride(MemAccessInfo &Reference) const;
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
Printable print() const {
|
|
return Printable([this](raw_ostream &OS) {
|
|
OS << "Value: " << *V << '\n'
|
|
<< "Base: " << *Base << " Offset: " << Offset << '\n';
|
|
});
|
|
}
|
|
#endif
|
|
};
|
|
|
|
MemAccessInfo makeMemAccessInfo(Instruction *) const;
|
|
|
|
MemAccessInfo LastAccess; // Last memory access info
|
|
|
|
AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
|
|
|
|
const DataLayout *DL;
|
|
|
|
const TargetLowering *TLI;
|
|
|
|
AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
|
|
static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
|
|
static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
|
|
|
|
bool isIndirectAccess(const Instruction *Inst) const;
|
|
|
|
/// Check if the instruction is large stride.
|
|
/// The purpose is to identify memory access pattern like:
|
|
/// x = a[i];
|
|
/// y = a[i+1000];
|
|
/// z = a[i+2000];
|
|
/// In the above example, the second and third memory access will be marked
|
|
/// large stride memory access.
|
|
bool isLargeStride(const Instruction *Inst);
|
|
|
|
bool isGlobalAddr(const Value *V) const;
|
|
bool isLocalAddr(const Value *V) const;
|
|
bool isGlobalLoadUsedInBB(const Instruction &) const;
|
|
};
|
|
|
|
static std::pair<const Value *, const Type *> getMemoryInstrPtrAndType(
|
|
const Instruction *Inst) {
|
|
if (auto LI = dyn_cast<LoadInst>(Inst))
|
|
return {LI->getPointerOperand(), LI->getType()};
|
|
if (auto SI = dyn_cast<StoreInst>(Inst))
|
|
return {SI->getPointerOperand(), SI->getValueOperand()->getType()};
|
|
if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst))
|
|
return {AI->getPointerOperand(), AI->getCompareOperand()->getType()};
|
|
if (auto AI = dyn_cast<AtomicRMWInst>(Inst))
|
|
return {AI->getPointerOperand(), AI->getValOperand()->getType()};
|
|
if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst))
|
|
return {MI->getRawDest(), Type::getInt8Ty(MI->getContext())};
|
|
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
|
|
LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
|
|
SmallSet<const Value *, 32> WorkSet;
|
|
SmallSet<const Value *, 32> Visited;
|
|
if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) {
|
|
if (isGlobalAddr(MO))
|
|
WorkSet.insert(MO);
|
|
}
|
|
|
|
while (!WorkSet.empty()) {
|
|
const Value *V = *WorkSet.begin();
|
|
WorkSet.erase(*WorkSet.begin());
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << " check: " << *V << '\n');
|
|
|
|
if (auto LD = dyn_cast<LoadInst>(V)) {
|
|
auto M = LD->getPointerOperand();
|
|
if (isGlobalAddr(M)) {
|
|
LLVM_DEBUG(dbgs() << " is IA\n");
|
|
return true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
|
|
auto P = GEP->getPointerOperand();
|
|
WorkSet.insert(P);
|
|
for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
|
|
WorkSet.insert(GEP->getOperand(I));
|
|
continue;
|
|
}
|
|
|
|
if (auto U = dyn_cast<UnaryInstruction>(V)) {
|
|
WorkSet.insert(U->getOperand(0));
|
|
continue;
|
|
}
|
|
|
|
if (auto BO = dyn_cast<BinaryOperator>(V)) {
|
|
WorkSet.insert(BO->getOperand(0));
|
|
WorkSet.insert(BO->getOperand(1));
|
|
continue;
|
|
}
|
|
|
|
if (auto S = dyn_cast<SelectInst>(V)) {
|
|
WorkSet.insert(S->getFalseValue());
|
|
WorkSet.insert(S->getTrueValue());
|
|
continue;
|
|
}
|
|
|
|
if (auto E = dyn_cast<ExtractElementInst>(V)) {
|
|
WorkSet.insert(E->getVectorOperand());
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " dropped\n");
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " is not IA\n");
|
|
return false;
|
|
}
|
|
|
|
// Returns true if the global load `I` is used in its own basic block.
|
|
bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const {
|
|
const auto *Ld = dyn_cast<LoadInst>(&I);
|
|
if (!Ld)
|
|
return false;
|
|
if (!isGlobalAddr(Ld->getPointerOperand()))
|
|
return false;
|
|
|
|
for (const User *Usr : Ld->users()) {
|
|
if (const Instruction *UsrInst = dyn_cast<Instruction>(Usr)) {
|
|
if (UsrInst->getParent() == I.getParent())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
|
|
AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];
|
|
|
|
LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
|
|
|
|
for (auto &B : F) {
|
|
LastAccess = MemAccessInfo();
|
|
unsigned UsedGlobalLoadsInBB = 0;
|
|
for (auto &I : B) {
|
|
if (const Type *Ty = getMemoryInstrPtrAndType(&I).second) {
|
|
unsigned Size = divideCeil(Ty->getPrimitiveSizeInBits(), 32);
|
|
// TODO: Check if the global load and its user are close to each other
|
|
// instead (Or do this analysis in GCNSchedStrategy?).
|
|
if (isGlobalLoadUsedInBB(I))
|
|
UsedGlobalLoadsInBB += Size;
|
|
if (isIndirectAccess(&I))
|
|
FI.IAMInstCost += Size;
|
|
if (isLargeStride(&I))
|
|
FI.LSMInstCost += Size;
|
|
FI.MemInstCost += Size;
|
|
FI.InstCost += Size;
|
|
continue;
|
|
}
|
|
if (auto *CB = dyn_cast<CallBase>(&I)) {
|
|
Function *Callee = CB->getCalledFunction();
|
|
if (!Callee || Callee->isDeclaration()) {
|
|
++FI.InstCost;
|
|
continue;
|
|
}
|
|
if (&F == Callee) // Handle immediate recursion
|
|
continue;
|
|
|
|
auto Loc = FIM.find(Callee);
|
|
if (Loc == FIM.end())
|
|
continue;
|
|
|
|
FI.MemInstCost += Loc->second.MemInstCost;
|
|
FI.InstCost += Loc->second.InstCost;
|
|
FI.IAMInstCost += Loc->second.IAMInstCost;
|
|
FI.LSMInstCost += Loc->second.LSMInstCost;
|
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
|
|
AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
|
|
AM.HasBaseReg = !AM.BaseGV;
|
|
if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
|
|
GEP->getPointerAddressSpace()))
|
|
// Offset will likely be folded into load or store
|
|
continue;
|
|
++FI.InstCost;
|
|
} else {
|
|
++FI.InstCost;
|
|
}
|
|
}
|
|
|
|
if (!FI.HasDenseGlobalMemAcc) {
|
|
unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size();
|
|
if (GlobalMemAccPercentage > 50) {
|
|
LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since "
|
|
<< B.getName() << " has " << GlobalMemAccPercentage
|
|
<< "% global memory access\n");
|
|
FI.HasDenseGlobalMemAcc = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return &FI;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::runOnFunction(Function &F) {
|
|
const Module &M = *F.getParent();
|
|
DL = &M.getDataLayout();
|
|
|
|
if (F.hasFnAttribute("amdgpu-wave-limiter") &&
|
|
F.hasFnAttribute("amdgpu-memory-bound"))
|
|
return false;
|
|
|
|
const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);
|
|
|
|
LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost
|
|
<< '\n'
|
|
<< " IAMInst cost: " << Info->IAMInstCost << '\n'
|
|
<< " LSMInst cost: " << Info->LSMInstCost << '\n'
|
|
<< " TotalInst cost: " << Info->InstCost << '\n');
|
|
|
|
bool Changed = false;
|
|
|
|
if (isMemBound(*Info)) {
|
|
LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
|
|
NumMemBound++;
|
|
F.addFnAttr("amdgpu-memory-bound", "true");
|
|
Changed = true;
|
|
}
|
|
|
|
if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
|
|
LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
|
|
NumLimitWave++;
|
|
F.addFnAttr("amdgpu-wave-limiter", "true");
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
|
|
// Reverting optimal scheduling in favour of occupancy with basic block(s)
|
|
// having dense global memory access can potentially hurt performance.
|
|
if (FI.HasDenseGlobalMemAcc)
|
|
return true;
|
|
|
|
return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
|
|
return ((FI.MemInstCost + FI.IAMInstCost * IAWeight +
|
|
FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
|
|
if (auto PT = dyn_cast<PointerType>(V->getType())) {
|
|
unsigned As = PT->getAddressSpace();
|
|
// Flat likely points to global too.
|
|
return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
|
|
if (auto PT = dyn_cast<PointerType>(V->getType()))
|
|
return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
|
|
LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
|
|
|
|
MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
|
|
bool IsLargeStride = MAI.isLargeStride(LastAccess);
|
|
if (MAI.Base)
|
|
LastAccess = std::move(MAI);
|
|
|
|
return IsLargeStride;
|
|
}
|
|
|
|
AMDGPUPerfHint::MemAccessInfo
|
|
AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
|
|
MemAccessInfo MAI;
|
|
const Value *MO = getMemoryInstrPtrAndType(Inst).first;
|
|
|
|
LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
|
|
// Do not treat local-addr memory access as large stride.
|
|
if (isLocalAddr(MO))
|
|
return MAI;
|
|
|
|
MAI.V = MO;
|
|
MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
|
|
return MAI;
|
|
}
|
|
|
|
bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
|
|
MemAccessInfo &Reference) const {
|
|
|
|
if (!Base || !Reference.Base || Base != Reference.Base)
|
|
return false;
|
|
|
|
uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
|
|
: Reference.Offset - Offset;
|
|
bool Result = Diff > LargeStrideThresh;
|
|
LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
|
|
<< print() << "<=>\n"
|
|
<< Reference.print() << "Result:" << Result << '\n');
|
|
return Result;
|
|
}
|
|
} // namespace
|
|
|
|
bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) {
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
const TargetMachine &TM = TPC->getTM<TargetMachine>();
|
|
|
|
bool Changed = false;
|
|
for (CallGraphNode *I : SCC) {
|
|
Function *F = I->getFunction();
|
|
if (!F || F->isDeclaration())
|
|
continue;
|
|
|
|
const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F);
|
|
AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
|
|
|
|
if (Analyzer.runOnFunction(*F))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
|
|
auto FI = FIM.find(F);
|
|
if (FI == FIM.end())
|
|
return false;
|
|
|
|
return AMDGPUPerfHint::isMemBound(FI->second);
|
|
}
|
|
|
|
bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
|
|
auto FI = FIM.find(F);
|
|
if (FI == FIM.end())
|
|
return false;
|
|
|
|
return AMDGPUPerfHint::needLimitWave(FI->second);
|
|
}
|