
Image sample instructions that need more than 5 VGPRs for VAddr can use partial NSA for NSA encoding format. VGPRs that can not fit into the encoding are sequential after the last one. This patch adds assembly and disassembly parts. Differential Revision: https://reviews.llvm.org/D144033
2062 lines
75 KiB
C++
2062 lines
75 KiB
C++
//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// This file contains definition for AMDGPU ISA disassembler
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
|
|
|
|
#include "Disassembler/AMDGPUDisassembler.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIDefines.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "TargetInfo/AMDGPUTargetInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm-c/DisassemblerTypes.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDecoderOps.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/AMDHSAKernelDescriptor.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-disassembler"
|
|
|
|
#define SGPR_MAX \
|
|
(isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
|
|
: AMDGPU::EncValues::SGPR_MAX_SI)
|
|
|
|
using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
|
|
|
|
AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
|
|
MCContext &Ctx,
|
|
MCInstrInfo const *MCII) :
|
|
MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
|
|
TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
|
|
|
|
// ToDo: AMDGPUDisassembler supports only VI ISA.
|
|
if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
|
|
report_fatal_error("Disassembly not yet supported for subtarget");
|
|
}
|
|
|
|
inline static MCDisassembler::DecodeStatus
|
|
addOperand(MCInst &Inst, const MCOperand& Opnd) {
|
|
Inst.addOperand(Opnd);
|
|
return Opnd.isValid() ?
|
|
MCDisassembler::Success :
|
|
MCDisassembler::Fail;
|
|
}
|
|
|
|
static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
|
|
uint16_t NameIdx) {
|
|
int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
|
|
if (OpIdx != -1) {
|
|
auto I = MI.begin();
|
|
std::advance(I, OpIdx);
|
|
MI.insert(I, Op);
|
|
}
|
|
return OpIdx;
|
|
}
|
|
|
|
static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
|
|
uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
|
|
// Our branches take a simm16, but we need two extra bits to account for the
|
|
// factor of 4.
|
|
APInt SignedOffset(18, Imm * 4, true);
|
|
int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
|
|
|
|
if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
|
|
return MCDisassembler::Success;
|
|
return addOperand(Inst, MCOperand::createImm(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
int64_t Offset;
|
|
if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
|
|
Offset = Imm & 0xFFFFF;
|
|
} else { // GFX9+ supports 21-bit signed offsets.
|
|
Offset = SignExtend64<21>(Imm);
|
|
}
|
|
return addOperand(Inst, MCOperand::createImm(Offset));
|
|
}
|
|
|
|
static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeBoolReg(Val));
|
|
}
|
|
|
|
#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
|
|
static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \
|
|
uint64_t /*Addr*/, \
|
|
const MCDisassembler *Decoder) { \
|
|
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
|
|
return addOperand(Inst, DAsm->DecoderName(Imm)); \
|
|
}
|
|
|
|
// Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
|
|
// number of register. Used by VGPR only and AGPR only operands.
|
|
#define DECODE_OPERAND_REG_8(RegClass) \
|
|
static DecodeStatus Decode##RegClass##RegisterClass( \
|
|
MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \
|
|
const MCDisassembler *Decoder) { \
|
|
assert(Imm < (1 << 8) && "8-bit encoding"); \
|
|
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
|
|
return addOperand( \
|
|
Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \
|
|
}
|
|
|
|
#define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \
|
|
ImmWidth) \
|
|
static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \
|
|
const MCDisassembler *Decoder) { \
|
|
assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \
|
|
auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
|
|
return addOperand(Inst, \
|
|
DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \
|
|
MandatoryLiteral, ImmWidth)); \
|
|
}
|
|
|
|
// Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
|
|
// get register class. Used by SGPR only operands.
|
|
#define DECODE_OPERAND_REG_7(RegClass, OpWidth) \
|
|
DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
|
|
|
|
// Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
|
|
// Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
|
|
// Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
|
|
// Used by AV_ register classes (AGPR or VGPR only register operands).
|
|
#define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \
|
|
DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \
|
|
Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
|
|
|
|
// Decoder for Src(9-bit encoding) registers only.
|
|
#define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
|
|
|
|
// Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
|
|
// Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
|
|
// only.
|
|
#define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
|
|
|
|
// Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
|
|
// Imm{9} is acc, registers only.
|
|
#define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
|
|
|
|
// Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
|
|
// register from RegClass or immediate. Registers that don't belong to RegClass
|
|
// will be decoded and InstPrinter will report warning. Immediate will be
|
|
// decoded into constant of size ImmWidth, should match width of immediate used
|
|
// by OperandType (important for floating point types).
|
|
#define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \
|
|
false, ImmWidth)
|
|
|
|
// Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
|
|
// and decode using 'enum10' from decodeSrcOp.
|
|
#define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \
|
|
Imm | 512, false, ImmWidth)
|
|
|
|
#define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \
|
|
DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \
|
|
OpWidth, Imm, true, ImmWidth)
|
|
|
|
// Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
|
|
// when RegisterClass is used as an operand. Most often used for destination
|
|
// operands.
|
|
|
|
DECODE_OPERAND_REG_8(VGPR_32)
|
|
DECODE_OPERAND_REG_8(VGPR_32_Lo128)
|
|
DECODE_OPERAND_REG_8(VReg_64)
|
|
DECODE_OPERAND_REG_8(VReg_96)
|
|
DECODE_OPERAND_REG_8(VReg_128)
|
|
DECODE_OPERAND_REG_8(VReg_256)
|
|
DECODE_OPERAND_REG_8(VReg_288)
|
|
DECODE_OPERAND_REG_8(VReg_352)
|
|
DECODE_OPERAND_REG_8(VReg_384)
|
|
DECODE_OPERAND_REG_8(VReg_512)
|
|
DECODE_OPERAND_REG_8(VReg_1024)
|
|
|
|
DECODE_OPERAND_REG_7(SReg_32, OPW32)
|
|
DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
|
|
DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
|
|
DECODE_OPERAND_REG_7(SReg_64, OPW64)
|
|
DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
|
|
DECODE_OPERAND_REG_7(SReg_128, OPW128)
|
|
DECODE_OPERAND_REG_7(SReg_256, OPW256)
|
|
DECODE_OPERAND_REG_7(SReg_512, OPW512)
|
|
|
|
DECODE_OPERAND_REG_8(AGPR_32)
|
|
DECODE_OPERAND_REG_8(AReg_64)
|
|
DECODE_OPERAND_REG_8(AReg_128)
|
|
DECODE_OPERAND_REG_8(AReg_256)
|
|
DECODE_OPERAND_REG_8(AReg_512)
|
|
DECODE_OPERAND_REG_8(AReg_1024)
|
|
|
|
DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
|
|
DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
|
|
|
|
// Decoders for register only source RegisterOperands that use use 9-bit Src
|
|
// encoding: 'decodeOperand_<RegClass>'.
|
|
|
|
DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
|
|
DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
|
|
DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
|
|
DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
|
|
DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
|
|
|
|
DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
|
|
|
|
DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
|
|
DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
|
|
DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
|
|
|
|
// Decoders for register or immediate RegisterOperands that use 9-bit Src
|
|
// encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
|
|
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
|
|
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
|
|
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
|
|
DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
|
|
|
|
static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
|
|
uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
|
|
uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
|
|
}
|
|
|
|
static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
|
|
uint64_t Addr, const void *Decoder) {
|
|
const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
|
|
return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
|
|
}
|
|
|
|
static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
|
|
const MCRegisterInfo *MRI) {
|
|
if (OpIdx < 0)
|
|
return false;
|
|
|
|
const MCOperand &Op = Inst.getOperand(OpIdx);
|
|
if (!Op.isReg())
|
|
return false;
|
|
|
|
unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
|
|
auto Reg = Sub ? Sub : Op.getReg();
|
|
return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
|
|
}
|
|
|
|
static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
|
|
AMDGPUDisassembler::OpWidthTy Opw,
|
|
const MCDisassembler *Decoder) {
|
|
auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
|
|
if (!DAsm->isGFX90A()) {
|
|
Imm &= 511;
|
|
} else {
|
|
// If atomic has both vdata and vdst their register classes are tied.
|
|
// The bit is decoded along with the vdst, first operand. We need to
|
|
// change register class to AGPR if vdst was AGPR.
|
|
// If a DS instruction has both data0 and data1 their register classes
|
|
// are also tied.
|
|
unsigned Opc = Inst.getOpcode();
|
|
uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
|
|
uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
|
|
: AMDGPU::OpName::vdata;
|
|
const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
|
|
int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
|
|
if ((int)Inst.getNumOperands() == DataIdx) {
|
|
int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
|
|
if (IsAGPROperand(Inst, DstIdx, MRI))
|
|
Imm |= 512;
|
|
}
|
|
|
|
if (TSFlags & SIInstrFlags::DS) {
|
|
int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
|
|
if ((int)Inst.getNumOperands() == Data2Idx &&
|
|
IsAGPROperand(Inst, DataIdx, MRI))
|
|
Imm |= 512;
|
|
}
|
|
}
|
|
return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
|
|
}
|
|
|
|
static DecodeStatus
|
|
DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
return decodeOperand_AVLdSt_Any(Inst, Imm,
|
|
AMDGPUDisassembler::OPW32, Decoder);
|
|
}
|
|
|
|
static DecodeStatus
|
|
DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
return decodeOperand_AVLdSt_Any(Inst, Imm,
|
|
AMDGPUDisassembler::OPW64, Decoder);
|
|
}
|
|
|
|
static DecodeStatus
|
|
DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
return decodeOperand_AVLdSt_Any(Inst, Imm,
|
|
AMDGPUDisassembler::OPW96, Decoder);
|
|
}
|
|
|
|
static DecodeStatus
|
|
DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
return decodeOperand_AVLdSt_Any(Inst, Imm,
|
|
AMDGPUDisassembler::OPW128, Decoder);
|
|
}
|
|
|
|
static DecodeStatus
|
|
DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
|
|
const MCDisassembler *Decoder) {
|
|
return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
|
|
Decoder);
|
|
}
|
|
|
|
#define DECODE_SDWA(DecName) \
|
|
DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
|
|
|
|
DECODE_SDWA(Src32)
|
|
DECODE_SDWA(Src16)
|
|
DECODE_SDWA(VopcDst)
|
|
|
|
#include "AMDGPUGenDisassemblerTables.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
|
|
assert(Bytes.size() >= sizeof(T));
|
|
const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
|
|
Bytes = Bytes.slice(sizeof(T));
|
|
return Res;
|
|
}
|
|
|
|
static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
|
|
assert(Bytes.size() >= 12);
|
|
uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
|
|
Bytes.data());
|
|
Bytes = Bytes.slice(8);
|
|
uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
|
|
Bytes.data());
|
|
Bytes = Bytes.slice(4);
|
|
return DecoderUInt128(Lo, Hi);
|
|
}
|
|
|
|
// The disassembler is greedy, so we need to check FI operand value to
|
|
// not parse a dpp if the correct literal is not set. For dpp16 the
|
|
// autogenerated decoder checks the dpp literal
|
|
static bool isValidDPP8(const MCInst &MI) {
|
|
using namespace llvm::AMDGPU::DPP;
|
|
int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
|
|
assert(FiIdx != -1);
|
|
if ((unsigned)FiIdx >= MI.getNumOperands())
|
|
return false;
|
|
unsigned Fi = MI.getOperand(FiIdx).getImm();
|
|
return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
|
|
ArrayRef<uint8_t> Bytes_,
|
|
uint64_t Address,
|
|
raw_ostream &CS) const {
|
|
CommentStream = &CS;
|
|
bool IsSDWA = false;
|
|
|
|
unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
|
|
Bytes = Bytes_.slice(0, MaxInstBytesNum);
|
|
|
|
DecodeStatus Res = MCDisassembler::Fail;
|
|
do {
|
|
// ToDo: better to switch encoding length using some bit predicate
|
|
// but it is unknown yet, so try all we can
|
|
|
|
// Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
|
|
// encodings
|
|
if (isGFX11Plus() && Bytes.size() >= 12 ) {
|
|
DecoderUInt128 DecW = eat12Bytes(Bytes);
|
|
Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
|
|
Address);
|
|
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
MI = MCInst(); // clear
|
|
Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
|
|
Address);
|
|
if (Res) {
|
|
if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
|
|
convertVOP3PDPPInst(MI);
|
|
else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
|
|
convertVOPCDPPInst(MI); // Special VOP3 case
|
|
else {
|
|
assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
|
|
convertVOP3DPPInst(MI); // Regular VOP3 case
|
|
}
|
|
break;
|
|
}
|
|
Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
// Reinitialize Bytes
|
|
Bytes = Bytes_.slice(0, MaxInstBytesNum);
|
|
|
|
if (Bytes.size() >= 8) {
|
|
const uint64_t QW = eatBytes<uint64_t>(Bytes);
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
|
|
Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
|
|
if (Res) {
|
|
if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
|
|
== -1)
|
|
break;
|
|
if (convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
MI = MCInst(); // clear
|
|
}
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
|
|
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
MI = MCInst(); // clear
|
|
|
|
Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
|
|
if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
|
|
break;
|
|
MI = MCInst(); // clear
|
|
|
|
Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
|
|
if (Res) {
|
|
if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
|
|
convertVOPCDPPInst(MI);
|
|
break;
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
|
|
if (Res) { IsSDWA = true; break; }
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
|
|
Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
|
|
// Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
|
|
// v_mad_mixhi_f16 for FMA variants. Try to decode using this special
|
|
// table first so we print the correct name.
|
|
if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
|
|
Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Reinitialize Bytes as DPP64 could have eaten too much
|
|
Bytes = Bytes_.slice(0, MaxInstBytesNum);
|
|
|
|
// Try decode 32-bit instruction
|
|
if (Bytes.size() < 4) break;
|
|
const uint32_t DW = eatBytes<uint32_t>(Bytes);
|
|
Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
|
|
Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
|
|
Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
|
|
if (Res) break;
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
|
|
if (Res) break;
|
|
|
|
if (Bytes.size() < 4) break;
|
|
const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
|
|
Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
|
|
Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
}
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
|
|
if (Res) break;
|
|
|
|
Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
|
|
if (Res)
|
|
break;
|
|
|
|
Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
|
|
} while (false);
|
|
|
|
if (Res && AMDGPU::isMAC(MI.getOpcode())) {
|
|
// Insert dummy unused src2_modifiers.
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src2_modifiers);
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
|
|
(SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
|
|
int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::cpol);
|
|
if (CPolPos != -1) {
|
|
unsigned CPol =
|
|
(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
|
|
AMDGPU::CPol::GLC : 0;
|
|
if (MI.getNumOperands() <= (unsigned)CPolPos) {
|
|
insertNamedMCOperand(MI, MCOperand::createImm(CPol),
|
|
AMDGPU::OpName::cpol);
|
|
} else if (CPol) {
|
|
MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
|
|
(SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
|
|
(STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
|
|
// GFX90A lost TFE, its place is occupied by ACC.
|
|
int TFEOpIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
|
|
if (TFEOpIdx != -1) {
|
|
auto TFEIter = MI.begin();
|
|
std::advance(TFEIter, TFEOpIdx);
|
|
MI.insert(TFEIter, MCOperand::createImm(0));
|
|
}
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags &
|
|
(SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
|
|
int SWZOpIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
|
|
if (SWZOpIdx != -1) {
|
|
auto SWZIter = MI.begin();
|
|
std::advance(SWZIter, SWZOpIdx);
|
|
MI.insert(SWZIter, MCOperand::createImm(0));
|
|
}
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
|
|
int VAddr0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
|
|
int RsrcIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
|
|
unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
|
|
if (VAddr0Idx >= 0 && NSAArgs > 0) {
|
|
unsigned NSAWords = (NSAArgs + 3) / 4;
|
|
if (Bytes.size() < 4 * NSAWords) {
|
|
Res = MCDisassembler::Fail;
|
|
} else {
|
|
for (unsigned i = 0; i < NSAArgs; ++i) {
|
|
const unsigned VAddrIdx = VAddr0Idx + 1 + i;
|
|
auto VAddrRCID =
|
|
MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
|
|
MI.insert(MI.begin() + VAddrIdx,
|
|
createRegOperand(VAddrRCID, Bytes[i]));
|
|
}
|
|
Bytes = Bytes.slice(4 * NSAWords);
|
|
}
|
|
}
|
|
|
|
if (Res)
|
|
Res = convertMIMGInst(MI);
|
|
}
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
|
|
Res = convertEXPInst(MI);
|
|
|
|
if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
|
|
Res = convertVINTERPInst(MI);
|
|
|
|
if (Res && IsSDWA)
|
|
Res = convertSDWAInst(MI);
|
|
|
|
int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdst_in);
|
|
if (VDstIn_Idx != -1) {
|
|
int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
|
|
MCOI::OperandConstraint::TIED_TO);
|
|
if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
|
|
!MI.getOperand(VDstIn_Idx).isReg() ||
|
|
MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
|
|
if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
|
|
MI.erase(&MI.getOperand(VDstIn_Idx));
|
|
insertNamedMCOperand(MI,
|
|
MCOperand::createReg(MI.getOperand(Tied).getReg()),
|
|
AMDGPU::OpName::vdst_in);
|
|
}
|
|
}
|
|
|
|
int ImmLitIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
|
|
bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
|
|
if (Res && ImmLitIdx != -1 && !IsSOPK)
|
|
Res = convertFMAanyK(MI, ImmLitIdx);
|
|
|
|
// if the opcode was not recognized we'll assume a Size of 4 bytes
|
|
// (unless there are fewer bytes left)
|
|
Size = Res ? (MaxInstBytesNum - Bytes.size())
|
|
: std::min((size_t)4, Bytes_.size());
|
|
return Res;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
|
|
// The MCInst still has these fields even though they are no longer encoded
|
|
// in the GFX11 instruction.
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
|
|
if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
|
|
MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
|
|
MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
|
|
MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
|
|
// The MCInst has this field that is not directly encoded in the
|
|
// instruction.
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
|
|
STI.hasFeature(AMDGPU::FeatureGFX10)) {
|
|
if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
|
|
// VOPC - insert clamp
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
|
|
} else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
|
|
int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
|
|
if (SDst != -1) {
|
|
// VOPC - insert VCC register as sdst
|
|
insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
|
|
AMDGPU::OpName::sdst);
|
|
} else {
|
|
// VOP1/2 - insert omod if present in instruction
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
|
|
}
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
struct VOPModifiers {
|
|
unsigned OpSel = 0;
|
|
unsigned OpSelHi = 0;
|
|
unsigned NegLo = 0;
|
|
unsigned NegHi = 0;
|
|
};
|
|
|
|
// Reconstruct values of VOP3/VOP3P operands such as op_sel.
|
|
// Note that these values do not affect disassembler output,
|
|
// so this is only necessary for consistency with src_modifiers.
|
|
static VOPModifiers collectVOPModifiers(const MCInst &MI,
|
|
bool IsVOP3P = false) {
|
|
VOPModifiers Modifiers;
|
|
unsigned Opc = MI.getOpcode();
|
|
const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
|
|
AMDGPU::OpName::src1_modifiers,
|
|
AMDGPU::OpName::src2_modifiers};
|
|
for (int J = 0; J < 3; ++J) {
|
|
int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
|
|
if (OpIdx == -1)
|
|
continue;
|
|
|
|
unsigned Val = MI.getOperand(OpIdx).getImm();
|
|
|
|
Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
|
|
if (IsVOP3P) {
|
|
Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
|
|
Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
|
|
Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
|
|
} else if (J == 0) {
|
|
Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
|
|
}
|
|
}
|
|
|
|
return Modifiers;
|
|
}
|
|
|
|
// MAC opcodes have special old and src2 operands.
|
|
// src2 is tied to dst, while old is not tied (but assumed to be).
|
|
bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
|
|
constexpr int DST_IDX = 0;
|
|
auto Opcode = MI.getOpcode();
|
|
const auto &Desc = MCII->get(Opcode);
|
|
auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
|
|
|
|
if (OldIdx != -1 && Desc.getOperandConstraint(
|
|
OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
|
|
assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
|
|
assert(Desc.getOperandConstraint(
|
|
AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
|
|
MCOI::OperandConstraint::TIED_TO) == DST_IDX);
|
|
(void)DST_IDX;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Create dummy old operand and insert dummy unused src2_modifiers
|
|
void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
|
|
assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
|
|
insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src2_modifiers);
|
|
}
|
|
|
|
// We must check FI == literal to reject not genuine dpp8 insts, and we must
|
|
// first add optional MI operands to check FI
|
|
DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
|
|
convertVOP3PDPPInst(MI);
|
|
} else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
|
|
AMDGPU::isVOPC64DPP(Opc)) {
|
|
convertVOPCDPPInst(MI);
|
|
} else {
|
|
if (isMacDPP(MI))
|
|
convertMacDPPInst(MI);
|
|
|
|
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
|
|
auto Mods = collectVOPModifiers(MI);
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
|
|
AMDGPU::OpName::op_sel);
|
|
} else {
|
|
// Insert dummy unused src modifiers.
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src0_modifiers);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src1_modifiers);
|
|
}
|
|
}
|
|
return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
|
|
if (isMacDPP(MI))
|
|
convertMacDPPInst(MI);
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
|
|
auto Mods = collectVOPModifiers(MI);
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
|
|
AMDGPU::OpName::op_sel);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
// Note that before gfx10, the MIMG encoding provided no information about
|
|
// VADDR size. Consequently, decoded instructions always show address as if it
|
|
// has 1 dword, which could be not really so.
|
|
DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
|
|
|
|
int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdst);
|
|
|
|
int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::vdata);
|
|
int VAddr0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
|
|
int RsrcIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
|
|
int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::dmask);
|
|
|
|
int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::tfe);
|
|
int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
|
AMDGPU::OpName::d16);
|
|
|
|
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
|
|
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
|
|
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
|
|
|
|
assert(VDataIdx != -1);
|
|
if (BaseOpcode->BVH) {
|
|
// Add A16 operand for intersect_ray instructions
|
|
if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
|
|
addOperand(MI, MCOperand::createImm(1));
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
bool IsAtomic = (VDstIdx != -1);
|
|
bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
|
|
bool IsNSA = false;
|
|
bool IsPartialNSA = false;
|
|
unsigned AddrSize = Info->VAddrDwords;
|
|
|
|
if (isGFX10Plus()) {
|
|
unsigned DimIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
|
|
int A16Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
|
|
const AMDGPU::MIMGDimInfo *Dim =
|
|
AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
|
|
const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
|
|
|
|
AddrSize =
|
|
AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
|
|
|
|
IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
|
|
Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
|
|
if (!IsNSA) {
|
|
if (AddrSize > 12)
|
|
AddrSize = 16;
|
|
} else {
|
|
if (AddrSize > Info->VAddrDwords) {
|
|
if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
|
|
// The NSA encoding does not contain enough operands for the
|
|
// combination of base opcode / dimension. Should this be an error?
|
|
return MCDisassembler::Success;
|
|
}
|
|
IsPartialNSA = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
|
|
unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
|
|
|
|
bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
|
|
if (D16 && AMDGPU::hasPackedD16(STI)) {
|
|
DstSize = (DstSize + 1) / 2;
|
|
}
|
|
|
|
if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
|
|
DstSize += 1;
|
|
|
|
if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
|
|
return MCDisassembler::Success;
|
|
|
|
int NewOpcode =
|
|
AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
|
|
if (NewOpcode == -1)
|
|
return MCDisassembler::Success;
|
|
|
|
// Widen the register to the correct number of enabled channels.
|
|
unsigned NewVdata = AMDGPU::NoRegister;
|
|
if (DstSize != Info->VDataDwords) {
|
|
auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
|
|
|
|
// Get first subregister of VData
|
|
unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
|
|
unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
|
|
Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
|
|
|
|
NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
|
|
&MRI.getRegClass(DataRCID));
|
|
if (NewVdata == AMDGPU::NoRegister) {
|
|
// It's possible to encode this such that the low register + enabled
|
|
// components exceeds the register count.
|
|
return MCDisassembler::Success;
|
|
}
|
|
}
|
|
|
|
// If not using NSA on GFX10+, widen vaddr0 address register to correct size.
|
|
// If using partial NSA on GFX11+ widen last address register.
|
|
int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
|
|
unsigned NewVAddrSA = AMDGPU::NoRegister;
|
|
if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
|
|
AddrSize != Info->VAddrDwords) {
|
|
unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
|
|
unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
|
|
VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
|
|
|
|
auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
|
|
NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
|
|
&MRI.getRegClass(AddrRCID));
|
|
if (!NewVAddrSA)
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
MI.setOpcode(NewOpcode);
|
|
|
|
if (NewVdata != AMDGPU::NoRegister) {
|
|
MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
|
|
|
|
if (IsAtomic) {
|
|
// Atomic operations have an additional operand (a copy of data)
|
|
MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
|
|
}
|
|
}
|
|
|
|
if (NewVAddrSA) {
|
|
MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
|
|
} else if (IsNSA) {
|
|
assert(AddrSize <= Info->VAddrDwords);
|
|
MI.erase(MI.begin() + VAddr0Idx + AddrSize,
|
|
MI.begin() + VAddr0Idx + Info->VAddrDwords);
|
|
}
|
|
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
// Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
|
|
// decoder only adds to src_modifiers, so manually add the bits to the other
|
|
// operands.
|
|
DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
|
|
auto Mods = collectVOPModifiers(MI, true);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
|
|
AMDGPU::OpName::op_sel);
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
|
|
AMDGPU::OpName::op_sel_hi);
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
|
|
AMDGPU::OpName::neg_lo);
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
|
|
AMDGPU::OpName::neg_hi);
|
|
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
// Create dummy old operand and insert optional operands
|
|
DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
unsigned DescNumOps = MCII->get(Opc).getNumOperands();
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
|
|
insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src0_modifiers);
|
|
|
|
if (MI.getNumOperands() < DescNumOps &&
|
|
AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
|
|
insertNamedMCOperand(MI, MCOperand::createImm(0),
|
|
AMDGPU::OpName::src1_modifiers);
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
|
|
int ImmLitIdx) const {
|
|
assert(HasLiteral && "Should have decoded a literal");
|
|
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
|
|
unsigned DescNumOps = Desc.getNumOperands();
|
|
insertNamedMCOperand(MI, MCOperand::createImm(Literal),
|
|
AMDGPU::OpName::immDeferred);
|
|
assert(DescNumOps == MI.getNumOperands());
|
|
for (unsigned I = 0; I < DescNumOps; ++I) {
|
|
auto &Op = MI.getOperand(I);
|
|
auto OpType = Desc.operands()[I].OperandType;
|
|
bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
|
|
OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
|
|
if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
|
|
IsDeferredOp)
|
|
Op.setImm(Literal);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
|
|
return getContext().getRegisterInfo()->
|
|
getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::errOperand(unsigned V,
|
|
const Twine& ErrMsg) const {
|
|
*CommentStream << "Error: " + ErrMsg;
|
|
|
|
// ToDo: add support for error operands to MCInst.h
|
|
// return MCOperand::createError(V);
|
|
return MCOperand();
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
|
|
return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
|
|
unsigned Val) const {
|
|
const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
|
|
if (Val >= RegCl.getNumRegs())
|
|
return errOperand(Val, Twine(getRegClassName(RegClassID)) +
|
|
": unknown register " + Twine(Val));
|
|
return createRegOperand(RegCl.getRegister(Val));
|
|
}
|
|
|
|
inline
|
|
MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
|
|
unsigned Val) const {
|
|
// ToDo: SI/CI have 104 SGPRs, VI - 102
|
|
// Valery: here we accepting as much as we can, let assembler sort it out
|
|
int shift = 0;
|
|
switch (SRegClassID) {
|
|
case AMDGPU::SGPR_32RegClassID:
|
|
case AMDGPU::TTMP_32RegClassID:
|
|
break;
|
|
case AMDGPU::SGPR_64RegClassID:
|
|
case AMDGPU::TTMP_64RegClassID:
|
|
shift = 1;
|
|
break;
|
|
case AMDGPU::SGPR_128RegClassID:
|
|
case AMDGPU::TTMP_128RegClassID:
|
|
// ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
case AMDGPU::SGPR_256RegClassID:
|
|
case AMDGPU::TTMP_256RegClassID:
|
|
// ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
case AMDGPU::SGPR_288RegClassID:
|
|
case AMDGPU::TTMP_288RegClassID:
|
|
case AMDGPU::SGPR_320RegClassID:
|
|
case AMDGPU::TTMP_320RegClassID:
|
|
case AMDGPU::SGPR_352RegClassID:
|
|
case AMDGPU::TTMP_352RegClassID:
|
|
case AMDGPU::SGPR_384RegClassID:
|
|
case AMDGPU::TTMP_384RegClassID:
|
|
case AMDGPU::SGPR_512RegClassID:
|
|
case AMDGPU::TTMP_512RegClassID:
|
|
shift = 2;
|
|
break;
|
|
// ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
|
|
// this bundle?
|
|
default:
|
|
llvm_unreachable("unhandled register class");
|
|
}
|
|
|
|
if (Val % (1 << shift)) {
|
|
*CommentStream << "Warning: " << getRegClassName(SRegClassID)
|
|
<< ": scalar reg isn't aligned " << Val;
|
|
}
|
|
|
|
return createRegOperand(SRegClassID, Val >> shift);
|
|
}
|
|
|
|
// Decode Literals for insts which always have a literal in the encoding
|
|
MCOperand
|
|
AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
|
|
if (HasLiteral) {
|
|
assert(
|
|
AMDGPU::hasVOPD(STI) &&
|
|
"Should only decode multiple kimm with VOPD, check VSrc operand types");
|
|
if (Literal != Val)
|
|
return errOperand(Val, "More than one unique literal is illegal");
|
|
}
|
|
HasLiteral = true;
|
|
Literal = Val;
|
|
return MCOperand::createImm(Literal);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
|
|
// For now all literal constants are supposed to be unsigned integer
|
|
// ToDo: deal with signed/unsigned 64-bit integer constants
|
|
// ToDo: deal with float/double constants
|
|
if (!HasLiteral) {
|
|
if (Bytes.size() < 4) {
|
|
return errOperand(0, "cannot read literal, inst bytes left " +
|
|
Twine(Bytes.size()));
|
|
}
|
|
HasLiteral = true;
|
|
Literal = eatBytes<uint32_t>(Bytes);
|
|
}
|
|
return MCOperand::createImm(Literal);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
|
|
return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
|
|
(static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
|
|
(INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
|
|
// Cast prevents negative overflow.
|
|
}
|
|
|
|
static int64_t getInlineImmVal32(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return llvm::bit_cast<uint32_t>(0.5f);
|
|
case 241:
|
|
return llvm::bit_cast<uint32_t>(-0.5f);
|
|
case 242:
|
|
return llvm::bit_cast<uint32_t>(1.0f);
|
|
case 243:
|
|
return llvm::bit_cast<uint32_t>(-1.0f);
|
|
case 244:
|
|
return llvm::bit_cast<uint32_t>(2.0f);
|
|
case 245:
|
|
return llvm::bit_cast<uint32_t>(-2.0f);
|
|
case 246:
|
|
return llvm::bit_cast<uint32_t>(4.0f);
|
|
case 247:
|
|
return llvm::bit_cast<uint32_t>(-4.0f);
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3e22f983;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
static int64_t getInlineImmVal64(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return llvm::bit_cast<uint64_t>(0.5);
|
|
case 241:
|
|
return llvm::bit_cast<uint64_t>(-0.5);
|
|
case 242:
|
|
return llvm::bit_cast<uint64_t>(1.0);
|
|
case 243:
|
|
return llvm::bit_cast<uint64_t>(-1.0);
|
|
case 244:
|
|
return llvm::bit_cast<uint64_t>(2.0);
|
|
case 245:
|
|
return llvm::bit_cast<uint64_t>(-2.0);
|
|
case 246:
|
|
return llvm::bit_cast<uint64_t>(4.0);
|
|
case 247:
|
|
return llvm::bit_cast<uint64_t>(-4.0);
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3fc45f306dc9c882;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
static int64_t getInlineImmVal16(unsigned Imm) {
|
|
switch (Imm) {
|
|
case 240:
|
|
return 0x3800;
|
|
case 241:
|
|
return 0xB800;
|
|
case 242:
|
|
return 0x3C00;
|
|
case 243:
|
|
return 0xBC00;
|
|
case 244:
|
|
return 0x4000;
|
|
case 245:
|
|
return 0xC000;
|
|
case 246:
|
|
return 0x4400;
|
|
case 247:
|
|
return 0xC400;
|
|
case 248: // 1 / (2 * PI)
|
|
return 0x3118;
|
|
default:
|
|
llvm_unreachable("invalid fp inline imm");
|
|
}
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
|
|
assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
|
|
&& Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
|
|
|
|
// ToDo: case 248: 1/(2*PI) - is allowed only on VI
|
|
// ImmWidth 0 is a default case where operand should not allow immediates.
|
|
// Imm value is still decoded into 32 bit immediate operand, inst printer will
|
|
// use it to print verbose error message.
|
|
switch (ImmWidth) {
|
|
case 0:
|
|
case 32:
|
|
return MCOperand::createImm(getInlineImmVal32(Imm));
|
|
case 64:
|
|
return MCOperand::createImm(getInlineImmVal64(Imm));
|
|
case 16:
|
|
return MCOperand::createImm(getInlineImmVal16(Imm));
|
|
default:
|
|
llvm_unreachable("implement me");
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return VGPR_32RegClassID;
|
|
case OPW64:
|
|
case OPWV232: return VReg_64RegClassID;
|
|
case OPW96: return VReg_96RegClassID;
|
|
case OPW128: return VReg_128RegClassID;
|
|
case OPW160: return VReg_160RegClassID;
|
|
case OPW256: return VReg_256RegClassID;
|
|
case OPW288: return VReg_288RegClassID;
|
|
case OPW320: return VReg_320RegClassID;
|
|
case OPW352: return VReg_352RegClassID;
|
|
case OPW384: return VReg_384RegClassID;
|
|
case OPW512: return VReg_512RegClassID;
|
|
case OPW1024: return VReg_1024RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return AGPR_32RegClassID;
|
|
case OPW64:
|
|
case OPWV232: return AReg_64RegClassID;
|
|
case OPW96: return AReg_96RegClassID;
|
|
case OPW128: return AReg_128RegClassID;
|
|
case OPW160: return AReg_160RegClassID;
|
|
case OPW256: return AReg_256RegClassID;
|
|
case OPW288: return AReg_288RegClassID;
|
|
case OPW320: return AReg_320RegClassID;
|
|
case OPW352: return AReg_352RegClassID;
|
|
case OPW384: return AReg_384RegClassID;
|
|
case OPW512: return AReg_512RegClassID;
|
|
case OPW1024: return AReg_1024RegClassID;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return SGPR_32RegClassID;
|
|
case OPW64:
|
|
case OPWV232: return SGPR_64RegClassID;
|
|
case OPW96: return SGPR_96RegClassID;
|
|
case OPW128: return SGPR_128RegClassID;
|
|
case OPW160: return SGPR_160RegClassID;
|
|
case OPW256: return SGPR_256RegClassID;
|
|
case OPW288: return SGPR_288RegClassID;
|
|
case OPW320: return SGPR_320RegClassID;
|
|
case OPW352: return SGPR_352RegClassID;
|
|
case OPW384: return SGPR_384RegClassID;
|
|
case OPW512: return SGPR_512RegClassID;
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
|
|
using namespace AMDGPU;
|
|
|
|
assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
|
|
switch (Width) {
|
|
default: // fall
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return TTMP_32RegClassID;
|
|
case OPW64:
|
|
case OPWV232: return TTMP_64RegClassID;
|
|
case OPW128: return TTMP_128RegClassID;
|
|
case OPW256: return TTMP_256RegClassID;
|
|
case OPW288: return TTMP_288RegClassID;
|
|
case OPW320: return TTMP_320RegClassID;
|
|
case OPW352: return TTMP_352RegClassID;
|
|
case OPW384: return TTMP_384RegClassID;
|
|
case OPW512: return TTMP_512RegClassID;
|
|
}
|
|
}
|
|
|
|
int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
|
|
unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
|
|
|
|
return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
|
|
bool MandatoryLiteral,
|
|
unsigned ImmWidth) const {
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
assert(Val < 1024); // enum10
|
|
|
|
bool IsAGPR = Val & 512;
|
|
Val &= 511;
|
|
|
|
if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
|
|
return createRegOperand(IsAGPR ? getAgprClassId(Width)
|
|
: getVgprClassId(Width), Val - VGPR_MIN);
|
|
}
|
|
if (Val <= SGPR_MAX) {
|
|
// "SGPR_MIN <= Val" is always true and causes compilation warning.
|
|
static_assert(SGPR_MIN == 0);
|
|
return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
|
|
}
|
|
|
|
int TTmpIdx = getTTmpIdx(Val);
|
|
if (TTmpIdx >= 0) {
|
|
return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
|
|
}
|
|
|
|
if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
|
|
return decodeIntImmed(Val);
|
|
|
|
if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
|
|
return decodeFPImmed(ImmWidth, Val);
|
|
|
|
if (Val == LITERAL_CONST) {
|
|
if (MandatoryLiteral)
|
|
// Keep a sentinel value for deferred setting
|
|
return MCOperand::createImm(LITERAL_CONST);
|
|
else
|
|
return decodeLiteralConstant();
|
|
}
|
|
|
|
switch (Width) {
|
|
case OPW32:
|
|
case OPW16:
|
|
case OPWV216:
|
|
return decodeSpecialReg32(Val);
|
|
case OPW64:
|
|
case OPWV232:
|
|
return decodeSpecialReg64(Val);
|
|
default:
|
|
llvm_unreachable("unexpected immediate type");
|
|
}
|
|
}
|
|
|
|
// Bit 0 of DstY isn't stored in the instruction, because it's always the
|
|
// opposite of bit 0 of DstX.
|
|
MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
|
|
unsigned Val) const {
|
|
int VDstXInd =
|
|
AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
|
|
assert(VDstXInd != -1);
|
|
assert(Inst.getOperand(VDstXInd).isReg());
|
|
unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
|
|
Val |= ~XDstReg & 1;
|
|
auto Width = llvm::AMDGPUDisassembler::OPW32;
|
|
return createRegOperand(getVgprClassId(Width), Val);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
|
|
using namespace AMDGPU;
|
|
|
|
switch (Val) {
|
|
// clang-format off
|
|
case 102: return createRegOperand(FLAT_SCR_LO);
|
|
case 103: return createRegOperand(FLAT_SCR_HI);
|
|
case 104: return createRegOperand(XNACK_MASK_LO);
|
|
case 105: return createRegOperand(XNACK_MASK_HI);
|
|
case 106: return createRegOperand(VCC_LO);
|
|
case 107: return createRegOperand(VCC_HI);
|
|
case 108: return createRegOperand(TBA_LO);
|
|
case 109: return createRegOperand(TBA_HI);
|
|
case 110: return createRegOperand(TMA_LO);
|
|
case 111: return createRegOperand(TMA_HI);
|
|
case 124:
|
|
return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
|
|
case 125:
|
|
return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
|
|
case 126: return createRegOperand(EXEC_LO);
|
|
case 127: return createRegOperand(EXEC_HI);
|
|
case 235: return createRegOperand(SRC_SHARED_BASE_LO);
|
|
case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
|
|
case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
|
|
case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
|
|
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
|
|
case 251: return createRegOperand(SRC_VCCZ);
|
|
case 252: return createRegOperand(SRC_EXECZ);
|
|
case 253: return createRegOperand(SRC_SCC);
|
|
case 254: return createRegOperand(LDS_DIRECT);
|
|
default: break;
|
|
// clang-format on
|
|
}
|
|
return errOperand(Val, "unknown operand encoding " + Twine(Val));
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
|
|
using namespace AMDGPU;
|
|
|
|
switch (Val) {
|
|
case 102: return createRegOperand(FLAT_SCR);
|
|
case 104: return createRegOperand(XNACK_MASK);
|
|
case 106: return createRegOperand(VCC);
|
|
case 108: return createRegOperand(TBA);
|
|
case 110: return createRegOperand(TMA);
|
|
case 124:
|
|
if (isGFX11Plus())
|
|
return createRegOperand(SGPR_NULL);
|
|
break;
|
|
case 125:
|
|
if (!isGFX11Plus())
|
|
return createRegOperand(SGPR_NULL);
|
|
break;
|
|
case 126: return createRegOperand(EXEC);
|
|
case 235: return createRegOperand(SRC_SHARED_BASE);
|
|
case 236: return createRegOperand(SRC_SHARED_LIMIT);
|
|
case 237: return createRegOperand(SRC_PRIVATE_BASE);
|
|
case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
|
|
case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
|
|
case 251: return createRegOperand(SRC_VCCZ);
|
|
case 252: return createRegOperand(SRC_EXECZ);
|
|
case 253: return createRegOperand(SRC_SCC);
|
|
default: break;
|
|
}
|
|
return errOperand(Val, "unknown operand encoding " + Twine(Val));
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
|
|
const unsigned Val,
|
|
unsigned ImmWidth) const {
|
|
using namespace AMDGPU::SDWA;
|
|
using namespace AMDGPU::EncValues;
|
|
|
|
if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
|
|
STI.hasFeature(AMDGPU::FeatureGFX10)) {
|
|
// XXX: cast to int is needed to avoid stupid warning:
|
|
// compare with unsigned is always true
|
|
if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
|
|
Val <= SDWA9EncValues::SRC_VGPR_MAX) {
|
|
return createRegOperand(getVgprClassId(Width),
|
|
Val - SDWA9EncValues::SRC_VGPR_MIN);
|
|
}
|
|
if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
|
|
Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
|
|
: SDWA9EncValues::SRC_SGPR_MAX_SI)) {
|
|
return createSRegOperand(getSgprClassId(Width),
|
|
Val - SDWA9EncValues::SRC_SGPR_MIN);
|
|
}
|
|
if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
|
|
Val <= SDWA9EncValues::SRC_TTMP_MAX) {
|
|
return createSRegOperand(getTtmpClassId(Width),
|
|
Val - SDWA9EncValues::SRC_TTMP_MIN);
|
|
}
|
|
|
|
const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
|
|
|
|
if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
|
|
return decodeIntImmed(SVal);
|
|
|
|
if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
|
|
return decodeFPImmed(ImmWidth, SVal);
|
|
|
|
return decodeSpecialReg32(SVal);
|
|
} else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
|
|
return createRegOperand(getVgprClassId(Width), Val);
|
|
}
|
|
llvm_unreachable("unsupported target");
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
|
|
return decodeSDWASrc(OPW16, Val, 16);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
|
|
return decodeSDWASrc(OPW32, Val, 32);
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
|
|
using namespace AMDGPU::SDWA;
|
|
|
|
assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
|
|
STI.hasFeature(AMDGPU::FeatureGFX10)) &&
|
|
"SDWAVopcDst should be present only on GFX9+");
|
|
|
|
bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
|
|
|
|
if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
|
|
Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
|
|
|
|
int TTmpIdx = getTTmpIdx(Val);
|
|
if (TTmpIdx >= 0) {
|
|
auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
|
|
return createSRegOperand(TTmpClsId, TTmpIdx);
|
|
} else if (Val > SGPR_MAX) {
|
|
return IsWave64 ? decodeSpecialReg64(Val)
|
|
: decodeSpecialReg32(Val);
|
|
} else {
|
|
return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
|
|
}
|
|
} else {
|
|
return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
|
|
}
|
|
}
|
|
|
|
MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
|
|
return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
|
|
? decodeSrcOp(OPW64, Val)
|
|
: decodeSrcOp(OPW32, Val);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isVI() const {
|
|
return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX90A() const {
|
|
return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
|
|
|
|
bool AMDGPUDisassembler::isGFX10Plus() const {
|
|
return AMDGPU::isGFX10Plus(STI);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isGFX11() const {
|
|
return STI.hasFeature(AMDGPU::FeatureGFX11);
|
|
}
|
|
|
|
bool AMDGPUDisassembler::isGFX11Plus() const {
|
|
return AMDGPU::isGFX11Plus(STI);
|
|
}
|
|
|
|
|
|
bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
|
|
return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU specific symbol handling
|
|
//===----------------------------------------------------------------------===//
|
|
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
|
|
do { \
|
|
KdStream << Indent << DIRECTIVE " " \
|
|
<< ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
|
|
} while (0)
|
|
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
|
|
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
|
|
using namespace amdhsa;
|
|
StringRef Indent = "\t";
|
|
|
|
// We cannot accurately backward compute #VGPRs used from
|
|
// GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
|
|
// value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
|
|
// simply calculate the inverse of what the assembler does.
|
|
|
|
uint32_t GranulatedWorkitemVGPRCount =
|
|
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
|
|
COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
|
|
|
|
uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
|
|
AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
|
|
|
|
KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
|
|
|
|
// We cannot backward compute values used to calculate
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
|
|
// directives can't be computed:
|
|
// .amdhsa_reserve_vcc
|
|
// .amdhsa_reserve_flat_scratch
|
|
// .amdhsa_reserve_xnack_mask
|
|
// They take their respective default values if not specified in the assembly.
|
|
//
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT
|
|
// = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
|
|
//
|
|
// We compute the inverse as though all directives apart from NEXT_FREE_SGPR
|
|
// are set to 0. So while disassembling we consider that:
|
|
//
|
|
// GRANULATED_WAVEFRONT_SGPR_COUNT
|
|
// = f(NEXT_FREE_SGPR + 0 + 0 + 0)
|
|
//
|
|
// The disassembler cannot recover the original values of those 3 directives.
|
|
|
|
uint32_t GranulatedWavefrontSGPRCount =
|
|
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
|
|
COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
|
|
|
|
if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
|
|
return MCDisassembler::Fail;
|
|
|
|
uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
|
|
AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
|
|
|
|
KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
|
|
if (!hasArchitectedFlatScratch())
|
|
KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
|
|
KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
|
|
KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
|
|
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
|
|
PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
|
|
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
|
|
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
|
|
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
|
|
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
|
|
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (isGFX10Plus()) {
|
|
PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
|
|
COMPUTE_PGM_RSRC1_WGP_MODE);
|
|
PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
|
|
PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
|
|
}
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
|
|
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
|
|
using namespace amdhsa;
|
|
StringRef Indent = "\t";
|
|
if (hasArchitectedFlatScratch())
|
|
PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
|
|
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
|
|
else
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
|
|
COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
|
|
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
|
|
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
|
|
PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
|
|
COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
|
|
return MCDisassembler::Fail;
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
|
|
return MCDisassembler::Fail;
|
|
|
|
PRINT_DIRECTIVE(
|
|
".amdhsa_exception_fp_ieee_invalid_op",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
|
|
PRINT_DIRECTIVE(
|
|
".amdhsa_exception_fp_ieee_div_zero",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
|
|
PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
|
|
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
|
|
|
|
if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
#undef PRINT_DIRECTIVE
|
|
|
|
MCDisassembler::DecodeStatus
|
|
AMDGPUDisassembler::decodeKernelDescriptorDirective(
|
|
DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
|
|
raw_string_ostream &KdStream) const {
|
|
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
|
|
do { \
|
|
KdStream << Indent << DIRECTIVE " " \
|
|
<< ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
|
|
} while (0)
|
|
|
|
uint16_t TwoByteBuffer = 0;
|
|
uint32_t FourByteBuffer = 0;
|
|
|
|
StringRef ReservedBytes;
|
|
StringRef Indent = "\t";
|
|
|
|
assert(Bytes.size() == 64);
|
|
DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
|
|
|
|
switch (Cursor.tell()) {
|
|
case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
|
|
<< '\n';
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
KdStream << Indent << ".amdhsa_private_segment_fixed_size "
|
|
<< FourByteBuffer << '\n';
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::KERNARG_SIZE_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
KdStream << Indent << ".amdhsa_kernarg_size "
|
|
<< FourByteBuffer << '\n';
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED0_OFFSET:
|
|
// 4 reserved bytes, must be 0.
|
|
ReservedBytes = DE.getBytes(Cursor, 4);
|
|
for (int I = 0; I < 4; ++I) {
|
|
if (ReservedBytes[I] != 0) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
|
|
// KERNEL_CODE_ENTRY_BYTE_OFFSET
|
|
// So far no directive controls this for Code Object V3, so simply skip for
|
|
// disassembly.
|
|
DE.skip(Cursor, 8);
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED1_OFFSET:
|
|
// 20 reserved bytes, must be 0.
|
|
ReservedBytes = DE.getBytes(Cursor, 20);
|
|
for (int I = 0; I < 20; ++I) {
|
|
if (ReservedBytes[I] != 0) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
|
|
// COMPUTE_PGM_RSRC3
|
|
// - Only set for GFX10, GFX6-9 have this to be 0.
|
|
// - Currently no directives directly control this.
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (!isGFX10Plus() && FourByteBuffer) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
|
|
MCDisassembler::Fail) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
|
|
FourByteBuffer = DE.getU32(Cursor);
|
|
if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
|
|
MCDisassembler::Fail) {
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
|
|
using namespace amdhsa;
|
|
TwoByteBuffer = DE.getU16(Cursor);
|
|
|
|
if (!hasArchitectedFlatScratch())
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
|
|
if (!hasArchitectedFlatScratch())
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
|
|
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
|
|
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
|
|
|
|
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
|
|
return MCDisassembler::Fail;
|
|
|
|
// Reserved for GFX9
|
|
if (isGFX9() &&
|
|
(TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
|
|
return MCDisassembler::Fail;
|
|
} else if (isGFX10Plus()) {
|
|
PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
|
|
KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
|
|
}
|
|
|
|
if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
|
|
PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
|
|
KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
|
|
|
|
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
|
|
return MCDisassembler::Fail;
|
|
|
|
return MCDisassembler::Success;
|
|
|
|
case amdhsa::RESERVED2_OFFSET:
|
|
// 6 bytes from here are reserved, must be 0.
|
|
ReservedBytes = DE.getBytes(Cursor, 6);
|
|
for (int I = 0; I < 6; ++I) {
|
|
if (ReservedBytes[I] != 0)
|
|
return MCDisassembler::Fail;
|
|
}
|
|
return MCDisassembler::Success;
|
|
|
|
default:
|
|
llvm_unreachable("Unhandled index. Case statements cover everything.");
|
|
return MCDisassembler::Fail;
|
|
}
|
|
#undef PRINT_DIRECTIVE
|
|
}
|
|
|
|
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
|
|
StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
|
|
// CP microcode requires the kernel descriptor to be 64 aligned.
|
|
if (Bytes.size() != 64 || KdAddress % 64 != 0)
|
|
return MCDisassembler::Fail;
|
|
|
|
std::string Kd;
|
|
raw_string_ostream KdStream(Kd);
|
|
KdStream << ".amdhsa_kernel " << KdName << '\n';
|
|
|
|
DataExtractor::Cursor C(0);
|
|
while (C && C.tell() < Bytes.size()) {
|
|
MCDisassembler::DecodeStatus Status =
|
|
decodeKernelDescriptorDirective(C, Bytes, KdStream);
|
|
|
|
cantFail(C.takeError());
|
|
|
|
if (Status == MCDisassembler::Fail)
|
|
return MCDisassembler::Fail;
|
|
}
|
|
KdStream << ".end_amdhsa_kernel\n";
|
|
outs() << KdStream.str();
|
|
return MCDisassembler::Success;
|
|
}
|
|
|
|
std::optional<MCDisassembler::DecodeStatus>
|
|
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
|
|
ArrayRef<uint8_t> Bytes, uint64_t Address,
|
|
raw_ostream &CStream) const {
|
|
// Right now only kernel descriptor needs to be handled.
|
|
// We ignore all other symbols for target specific handling.
|
|
// TODO:
|
|
// Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
|
|
// Object V2 and V3 when symbols are marked protected.
|
|
|
|
// amd_kernel_code_t for Code Object V2.
|
|
if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
|
|
Size = 256;
|
|
return MCDisassembler::Fail;
|
|
}
|
|
|
|
// Code Object V3 kernel descriptors.
|
|
StringRef Name = Symbol.Name;
|
|
if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
|
|
Size = 64; // Size = 64 regardless of success or failure.
|
|
return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPUSymbolizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Try to find symbol name for specified label
|
|
bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
|
|
MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
|
|
uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
|
|
uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
|
|
|
|
if (!IsBranch) {
|
|
return false;
|
|
}
|
|
|
|
auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
|
|
if (!Symbols)
|
|
return false;
|
|
|
|
auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
|
|
return Val.Addr == static_cast<uint64_t>(Value) &&
|
|
Val.Type == ELF::STT_NOTYPE;
|
|
});
|
|
if (Result != Symbols->end()) {
|
|
auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
|
|
const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
|
|
Inst.addOperand(MCOperand::createExpr(Add));
|
|
return true;
|
|
}
|
|
// Add to list of referenced addresses, so caller can synthesize a label.
|
|
ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
|
|
int64_t Value,
|
|
uint64_t Address) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
|
|
LLVMOpInfoCallback /*GetOpInfo*/,
|
|
LLVMSymbolLookupCallback /*SymbolLookUp*/,
|
|
void *DisInfo,
|
|
MCContext *Ctx,
|
|
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
|
|
return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
|
|
}
|
|
|
|
static MCDisassembler *createAMDGPUDisassembler(const Target &T,
|
|
const MCSubtargetInfo &STI,
|
|
MCContext &Ctx) {
|
|
return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
|
|
}
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
|
|
TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
|
|
createAMDGPUDisassembler);
|
|
TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
|
|
createAMDGPUSymbolizer);
|
|
}
|