
With D134950, targets get notified when a virtual register is created and/or cloned. Targets can do the needful with the delegate callback. AMDGPU propagates the virtual register flags maintained in the target file itself. They are useful to identify a certain type of machine operands while inserting spill stores and reloads. Since RegAllocFast spills the physical register itself, there is no way its virtual register can be mapped back to retrieve the flags. It can be solved by passing the virtual register as an additional argument. This argument has no use when the spill interfaces are called during the greedy allocator or even the PrologEpilogInserter and can pass a null register in such cases. Reviewed By: arsenm Differential Revision: https://reviews.llvm.org/D138656
442 lines
15 KiB
C++
442 lines
15 KiB
C++
//===- ARCInstrInfo.cpp - ARC Instruction Information -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the ARC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARCInstrInfo.h"
|
|
#include "ARC.h"
|
|
#include "ARCMachineFunctionInfo.h"
|
|
#include "ARCSubtarget.h"
|
|
#include "MCTargetDesc/ARCInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "ARCGenInstrInfo.inc"
|
|
|
|
#define DEBUG_TYPE "arc-inst-info"
|
|
|
|
enum AddrIncType {
|
|
NoAddInc = 0,
|
|
PreInc = 1,
|
|
PostInc = 2,
|
|
Scaled = 3
|
|
};
|
|
|
|
enum TSFlagsConstants {
|
|
TSF_AddrModeOff = 0,
|
|
TSF_AddModeMask = 3
|
|
};
|
|
|
|
// Pin the vtable to this file.
|
|
void ARCInstrInfo::anchor() {}
|
|
|
|
ARCInstrInfo::ARCInstrInfo(const ARCSubtarget &ST)
|
|
: ARCGenInstrInfo(ARC::ADJCALLSTACKDOWN, ARC::ADJCALLSTACKUP), RI(ST) {}
|
|
|
|
static bool isZeroImm(const MachineOperand &Op) {
|
|
return Op.isImm() && Op.getImm() == 0;
|
|
}
|
|
|
|
static bool isLoad(int Opcode) {
|
|
return Opcode == ARC::LD_rs9 || Opcode == ARC::LDH_rs9 ||
|
|
Opcode == ARC::LDB_rs9;
|
|
}
|
|
|
|
static bool isStore(int Opcode) {
|
|
return Opcode == ARC::ST_rs9 || Opcode == ARC::STH_rs9 ||
|
|
Opcode == ARC::STB_rs9;
|
|
}
|
|
|
|
/// If the specified machine instruction is a direct
|
|
/// load from a stack slot, return the virtual or physical register number of
|
|
/// the destination along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than loading from the stack slot.
|
|
unsigned ARCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
int Opcode = MI.getOpcode();
|
|
if (isLoad(Opcode)) {
|
|
if ((MI.getOperand(1).isFI()) && // is a stack slot
|
|
(MI.getOperand(2).isImm()) && // the imm is zero
|
|
(isZeroImm(MI.getOperand(2)))) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// If the specified machine instruction is a direct
|
|
/// store to a stack slot, return the virtual or physical register number of
|
|
/// the source reg along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than storing to the stack slot.
|
|
unsigned ARCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
int Opcode = MI.getOpcode();
|
|
if (isStore(Opcode)) {
|
|
if ((MI.getOperand(1).isFI()) && // is a stack slot
|
|
(MI.getOperand(2).isImm()) && // the imm is zero
|
|
(isZeroImm(MI.getOperand(2)))) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
|
|
static ARCCC::CondCode getOppositeBranchCondition(ARCCC::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Illegal condition code!");
|
|
case ARCCC::EQ:
|
|
return ARCCC::NE;
|
|
case ARCCC::NE:
|
|
return ARCCC::EQ;
|
|
case ARCCC::LO:
|
|
return ARCCC::HS;
|
|
case ARCCC::HS:
|
|
return ARCCC::LO;
|
|
case ARCCC::GT:
|
|
return ARCCC::LE;
|
|
case ARCCC::GE:
|
|
return ARCCC::LT;
|
|
case ARCCC::VS:
|
|
return ARCCC::VC;
|
|
case ARCCC::VC:
|
|
return ARCCC::VS;
|
|
case ARCCC::LT:
|
|
return ARCCC::GE;
|
|
case ARCCC::LE:
|
|
return ARCCC::GT;
|
|
case ARCCC::HI:
|
|
return ARCCC::LS;
|
|
case ARCCC::LS:
|
|
return ARCCC::HI;
|
|
case ARCCC::NZ:
|
|
return ARCCC::Z;
|
|
case ARCCC::Z:
|
|
return ARCCC::NZ;
|
|
}
|
|
}
|
|
|
|
static bool isUncondBranchOpcode(int Opc) { return Opc == ARC::BR; }
|
|
|
|
static bool isCondBranchOpcode(int Opc) {
|
|
return Opc == ARC::BRcc_rr_p || Opc == ARC::BRcc_ru6_p;
|
|
}
|
|
|
|
static bool isJumpOpcode(int Opc) { return Opc == ARC::J; }
|
|
|
|
/// Analyze the branching code at the end of MBB, returning
|
|
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
|
|
/// implemented for a target). Upon success, this returns false and returns
|
|
/// with the following information in various cases:
|
|
///
|
|
/// 1. If this block ends with no branches (it just falls through to its succ)
|
|
/// just return false, leaving TBB/FBB null.
|
|
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
|
|
/// the destination block.
|
|
/// 3. If this block ends with a conditional branch and it falls through to a
|
|
/// successor block, it sets TBB to be the branch destination block and a
|
|
/// list of operands that evaluate the condition. These operands can be
|
|
/// passed to other TargetInstrInfo methods to create new branches.
|
|
/// 4. If this block ends with a conditional branch followed by an
|
|
/// unconditional branch, it returns the 'true' destination in TBB, the
|
|
/// 'false' destination in FBB, and a list of operands that evaluate the
|
|
/// condition. These operands can be passed to other TargetInstrInfo
|
|
/// methods to create new branches.
|
|
///
|
|
/// Note that RemoveBranch and insertBranch must be implemented to support
|
|
/// cases where this method returns success.
|
|
///
|
|
/// If AllowModify is true, then this routine is allowed to modify the basic
|
|
/// block (e.g. delete instructions after the unconditional branch).
|
|
|
|
bool ARCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
TBB = FBB = nullptr;
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
|
|
while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
|
|
// Flag to be raised on unanalyzeable instructions. This is useful in cases
|
|
// where we want to clean up on the end of the basic block before we bail
|
|
// out.
|
|
bool CantAnalyze = false;
|
|
|
|
// Skip over DEBUG values and predicated nonterminators.
|
|
while (I->isDebugInstr() || !I->isTerminator()) {
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
|
|
if (isJumpOpcode(I->getOpcode())) {
|
|
// Indirect branches and jump tables can't be analyzed, but we still want
|
|
// to clean up any instructions at the tail of the basic block.
|
|
CantAnalyze = true;
|
|
} else if (isUncondBranchOpcode(I->getOpcode())) {
|
|
TBB = I->getOperand(0).getMBB();
|
|
} else if (isCondBranchOpcode(I->getOpcode())) {
|
|
// Bail out if we encounter multiple conditional branches.
|
|
if (!Cond.empty())
|
|
return true;
|
|
|
|
assert(!FBB && "FBB should have been null.");
|
|
FBB = TBB;
|
|
TBB = I->getOperand(0).getMBB();
|
|
Cond.push_back(I->getOperand(1));
|
|
Cond.push_back(I->getOperand(2));
|
|
Cond.push_back(I->getOperand(3));
|
|
} else if (I->isReturn()) {
|
|
// Returns can't be analyzed, but we should run cleanup.
|
|
CantAnalyze = !isPredicated(*I);
|
|
} else {
|
|
// We encountered other unrecognized terminator. Bail out immediately.
|
|
return true;
|
|
}
|
|
|
|
// Cleanup code - to be run for unpredicated unconditional branches and
|
|
// returns.
|
|
if (!isPredicated(*I) && (isUncondBranchOpcode(I->getOpcode()) ||
|
|
isJumpOpcode(I->getOpcode()) || I->isReturn())) {
|
|
// Forget any previous condition branch information - it no longer
|
|
// applies.
|
|
Cond.clear();
|
|
FBB = nullptr;
|
|
|
|
// If we can modify the function, delete everything below this
|
|
// unconditional branch.
|
|
if (AllowModify) {
|
|
MachineBasicBlock::iterator DI = std::next(I);
|
|
while (DI != MBB.end()) {
|
|
MachineInstr &InstToDelete = *DI;
|
|
++DI;
|
|
InstToDelete.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CantAnalyze)
|
|
return true;
|
|
|
|
if (I == MBB.begin())
|
|
return false;
|
|
|
|
--I;
|
|
}
|
|
|
|
// We made it past the terminators without bailing out - we must have
|
|
// analyzed this branch successfully.
|
|
return false;
|
|
}
|
|
|
|
unsigned ARCInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
assert(!BytesRemoved && "Code size not handled");
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (!isUncondBranchOpcode(I->getOpcode()) &&
|
|
!isCondBranchOpcode(I->getOpcode()))
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin())
|
|
return 1;
|
|
--I;
|
|
if (!isCondBranchOpcode(I->getOpcode()))
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
void ARCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
assert(ARC::GPR32RegClass.contains(SrcReg) &&
|
|
"Only GPR32 src copy supported.");
|
|
assert(ARC::GPR32RegClass.contains(DestReg) &&
|
|
"Only GPR32 dest copy supported.");
|
|
BuildMI(MBB, I, DL, get(ARC::MOV_rr), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
void ARCInstrInfo::storeRegToStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register SrcReg,
|
|
bool IsKill, int FrameIndex, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI, Register VReg) const {
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex),
|
|
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex),
|
|
MFI.getObjectAlign(FrameIndex));
|
|
|
|
assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
|
|
assert(TRI->getSpillSize(*RC) == 4 &&
|
|
"Only support 4-byte stores to stack now.");
|
|
assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
|
|
"Only support GPR32 stores to stack now.");
|
|
LLVM_DEBUG(dbgs() << "Created store reg=" << printReg(SrcReg, TRI)
|
|
<< " to FrameIndex=" << FrameIndex << "\n");
|
|
BuildMI(MBB, I, DL, get(ARC::ST_rs9))
|
|
.addReg(SrcReg, getKillRegState(IsKill))
|
|
.addFrameIndex(FrameIndex)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
void ARCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI,
|
|
Register VReg) const {
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex),
|
|
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
|
|
MFI.getObjectAlign(FrameIndex));
|
|
|
|
assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
|
|
assert(TRI->getSpillSize(*RC) == 4 &&
|
|
"Only support 4-byte loads from stack now.");
|
|
assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
|
|
"Only support GPR32 stores to stack now.");
|
|
LLVM_DEBUG(dbgs() << "Created load reg=" << printReg(DestReg, TRI)
|
|
<< " from FrameIndex=" << FrameIndex << "\n");
|
|
BuildMI(MBB, I, DL, get(ARC::LD_rs9))
|
|
.addReg(DestReg, RegState::Define)
|
|
.addFrameIndex(FrameIndex)
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
/// Return the inverse opcode of the specified Branch instruction.
|
|
bool ARCInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert((Cond.size() == 3) && "Invalid ARC branch condition!");
|
|
Cond[2].setImm(getOppositeBranchCondition((ARCCC::CondCode)Cond[2].getImm()));
|
|
return false;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
ARCInstrInfo::loadImmediate(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, unsigned Reg,
|
|
uint64_t Value) const {
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
if (isInt<12>(Value)) {
|
|
return BuildMI(MBB, MI, DL, get(ARC::MOV_rs12), Reg)
|
|
.addImm(Value)
|
|
.getInstr();
|
|
}
|
|
llvm_unreachable("Need Arc long immediate instructions.");
|
|
}
|
|
|
|
unsigned ARCInstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL, int *BytesAdded) const {
|
|
assert(!BytesAdded && "Code size not handled.");
|
|
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 3 || Cond.size() == 0) &&
|
|
"ARC branch conditions have two components!");
|
|
|
|
if (Cond.empty()) {
|
|
BuildMI(&MBB, DL, get(ARC::BR)).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
int BccOpc = Cond[1].isImm() ? ARC::BRcc_ru6_p : ARC::BRcc_rr_p;
|
|
MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(BccOpc));
|
|
MIB.addMBB(TBB);
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
MIB.add(Cond[i]);
|
|
}
|
|
|
|
// One-way conditional branch.
|
|
if (!FBB) {
|
|
return 1;
|
|
}
|
|
|
|
// Two-way conditional branch.
|
|
BuildMI(&MBB, DL, get(ARC::BR)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
unsigned ARCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
if (MI.isInlineAsm()) {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const char *AsmStr = MI.getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
}
|
|
return MI.getDesc().getSize();
|
|
}
|
|
|
|
bool ARCInstrInfo::isPostIncrement(const MachineInstr &MI) const {
|
|
const MCInstrDesc &MID = MI.getDesc();
|
|
const uint64_t F = MID.TSFlags;
|
|
return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PostInc;
|
|
}
|
|
|
|
bool ARCInstrInfo::isPreIncrement(const MachineInstr &MI) const {
|
|
const MCInstrDesc &MID = MI.getDesc();
|
|
const uint64_t F = MID.TSFlags;
|
|
return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PreInc;
|
|
}
|
|
|
|
bool ARCInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
|
|
unsigned &BasePos,
|
|
unsigned &OffsetPos) const {
|
|
if (!MI.mayLoad() && !MI.mayStore())
|
|
return false;
|
|
|
|
BasePos = 1;
|
|
OffsetPos = 2;
|
|
|
|
if (isPostIncrement(MI) || isPreIncrement(MI)) {
|
|
BasePos++;
|
|
OffsetPos++;
|
|
}
|
|
|
|
if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
|
|
return false;
|
|
|
|
return true;
|
|
}
|