llvm-project/llvm/lib/Target/PowerPC/PPCTLSDynamicCall.cpp
Jay Foad 3ff319c690 [PowerPC] PPCTLSDynamicCall does not preserve LiveIntervals
According to D127731, PPCTLSDynamicCall does not preserve
LiveIntervals, so stop claiming that it does and remove the code
that tried to repair them. NFCI.

Differential Revision: https://reviews.llvm.org/D128421
2022-07-05 20:09:42 +01:00

220 lines
8.0 KiB
C++

//===---------- PPCTLSDynamicCall.cpp - TLS Dynamic Call Fixup ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass expands ADDItls{ld,gd}LADDR[32] machine instructions into
// separate ADDItls[gd]L[32] and GETtlsADDR[32] instructions, both of
// which define GPR3. A copy is added from GPR3 to the target virtual
// register of the original instruction. The GETtlsADDR[32] is really
// a call instruction, so its target register is constrained to be GPR3.
// This is not true of ADDItls[gd]L[32], but there is a legacy linker
// optimization bug that requires the target register of the addi of
// a local- or general-dynamic TLS access sequence to be GPR3.
//
// This is done in a late pass so that TLS variable accesses can be
// fully commoned by MachineCSE.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-tls-dynamic-call"
namespace {
struct PPCTLSDynamicCall : public MachineFunctionPass {
static char ID;
PPCTLSDynamicCall() : MachineFunctionPass(ID) {
initializePPCTLSDynamicCallPass(*PassRegistry::getPassRegistry());
}
const PPCInstrInfo *TII;
protected:
bool processBlock(MachineBasicBlock &MBB) {
bool Changed = false;
bool NeedFence = true;
bool Is64Bit = MBB.getParent()->getSubtarget<PPCSubtarget>().isPPC64();
bool IsAIX = MBB.getParent()->getSubtarget<PPCSubtarget>().isAIXABI();
bool IsPCREL = false;
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
I != IE;) {
MachineInstr &MI = *I;
IsPCREL = isPCREL(MI);
if (MI.getOpcode() != PPC::ADDItlsgdLADDR &&
MI.getOpcode() != PPC::ADDItlsldLADDR &&
MI.getOpcode() != PPC::ADDItlsgdLADDR32 &&
MI.getOpcode() != PPC::ADDItlsldLADDR32 &&
MI.getOpcode() != PPC::TLSGDAIX &&
MI.getOpcode() != PPC::TLSGDAIX8 && !IsPCREL) {
// Although we create ADJCALLSTACKDOWN and ADJCALLSTACKUP
// as scheduling fences, we skip creating fences if we already
// have existing ADJCALLSTACKDOWN/UP to avoid nesting,
// which causes verification error with -verify-machineinstrs.
if (MI.getOpcode() == PPC::ADJCALLSTACKDOWN)
NeedFence = false;
else if (MI.getOpcode() == PPC::ADJCALLSTACKUP)
NeedFence = true;
++I;
continue;
}
LLVM_DEBUG(dbgs() << "TLS Dynamic Call Fixup:\n " << MI);
Register OutReg = MI.getOperand(0).getReg();
Register InReg = PPC::NoRegister;
Register GPR3 = Is64Bit ? PPC::X3 : PPC::R3;
Register GPR4 = Is64Bit ? PPC::X4 : PPC::R4;
if (!IsPCREL)
InReg = MI.getOperand(1).getReg();
DebugLoc DL = MI.getDebugLoc();
unsigned Opc1, Opc2;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Opcode inconsistency error");
case PPC::ADDItlsgdLADDR:
Opc1 = PPC::ADDItlsgdL;
Opc2 = PPC::GETtlsADDR;
break;
case PPC::ADDItlsldLADDR:
Opc1 = PPC::ADDItlsldL;
Opc2 = PPC::GETtlsldADDR;
break;
case PPC::ADDItlsgdLADDR32:
Opc1 = PPC::ADDItlsgdL32;
Opc2 = PPC::GETtlsADDR32;
break;
case PPC::ADDItlsldLADDR32:
Opc1 = PPC::ADDItlsldL32;
Opc2 = PPC::GETtlsldADDR32;
break;
case PPC::TLSGDAIX8:
// TLSGDAIX8 is expanded to two copies and GET_TLS_ADDR, so we only
// set Opc2 here.
Opc2 = PPC::GETtlsADDR64AIX;
break;
case PPC::TLSGDAIX:
// TLSGDAIX is expanded to two copies and GET_TLS_ADDR, so we only
// set Opc2 here.
Opc2 = PPC::GETtlsADDR32AIX;
break;
case PPC::PADDI8pc:
assert(IsPCREL && "Expecting General/Local Dynamic PCRel");
Opc1 = PPC::PADDI8pc;
Opc2 = MI.getOperand(2).getTargetFlags() ==
PPCII::MO_GOT_TLSGD_PCREL_FLAG
? PPC::GETtlsADDRPCREL
: PPC::GETtlsldADDRPCREL;
}
// We create ADJCALLSTACKUP and ADJCALLSTACKDOWN around _tls_get_addr
// as scheduling fence to avoid it is scheduled before
// mflr in the prologue and the address in LR is clobbered (PR25839).
// We don't really need to save data to the stack - the clobbered
// registers are already saved when the SDNode (e.g. PPCaddiTlsgdLAddr)
// gets translated to the pseudo instruction (e.g. ADDItlsgdLADDR).
if (NeedFence)
BuildMI(MBB, I, DL, TII->get(PPC::ADJCALLSTACKDOWN)).addImm(0)
.addImm(0);
if (IsAIX) {
// The variable offset and region handle are copied in r4 and r3. The
// copies are followed by GETtlsADDR32AIX/GETtlsADDR64AIX.
BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), GPR4)
.addReg(MI.getOperand(1).getReg());
BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), GPR3)
.addReg(MI.getOperand(2).getReg());
BuildMI(MBB, I, DL, TII->get(Opc2), GPR3).addReg(GPR3).addReg(GPR4);
} else {
MachineInstr *Addi;
if (IsPCREL) {
Addi = BuildMI(MBB, I, DL, TII->get(Opc1), GPR3).addImm(0);
} else {
// Expand into two ops built prior to the existing instruction.
assert(InReg != PPC::NoRegister && "Operand must be a register");
Addi = BuildMI(MBB, I, DL, TII->get(Opc1), GPR3).addReg(InReg);
}
Addi->addOperand(MI.getOperand(2));
MachineInstr *Call =
(BuildMI(MBB, I, DL, TII->get(Opc2), GPR3).addReg(GPR3));
if (IsPCREL)
Call->addOperand(MI.getOperand(2));
else
Call->addOperand(MI.getOperand(3));
}
if (NeedFence)
BuildMI(MBB, I, DL, TII->get(PPC::ADJCALLSTACKUP)).addImm(0).addImm(0);
BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), OutReg)
.addReg(GPR3);
// Move past the original instruction and remove it.
++I;
MI.removeFromParent();
Changed = true;
}
return Changed;
}
public:
bool isPCREL(const MachineInstr &MI) {
return (MI.getOpcode() == PPC::PADDI8pc) &&
(MI.getOperand(2).getTargetFlags() ==
PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
MI.getOperand(2).getTargetFlags() ==
PPCII::MO_GOT_TLSLD_PCREL_FLAG);
}
bool runOnMachineFunction(MachineFunction &MF) override {
TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
bool Changed = false;
for (MachineBasicBlock &B : llvm::make_early_inc_range(MF))
if (processBlock(B))
Changed = true;
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.addRequired<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
INITIALIZE_PASS_BEGIN(PPCTLSDynamicCall, DEBUG_TYPE,
"PowerPC TLS Dynamic Call Fixup", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(PPCTLSDynamicCall, DEBUG_TYPE,
"PowerPC TLS Dynamic Call Fixup", false, false)
char PPCTLSDynamicCall::ID = 0;
FunctionPass*
llvm::createPPCTLSDynamicCallPass() { return new PPCTLSDynamicCall(); }