llvm-project/llvm/lib/Target/RISCV/RISCVGatherScatterLowering.cpp
Philip Reames d4773c6a3d [RISCV] Fix a crash in RISCVGatherScatterLowering
We were assuming that the constant must always be fixed length when this is not required.  Such code is unlikely after optimization, which is why we didn't see this previously.
2023-04-15 21:27:17 -07:00

556 lines
19 KiB
C++

//===- RISCVGatherScatterLowering.cpp - Gather/Scatter lowering -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass custom lowers llvm.gather and llvm.scatter instructions to
// RISC-V intrinsics.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/Local.h"
#include <optional>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "riscv-gather-scatter-lowering"
namespace {
class RISCVGatherScatterLowering : public FunctionPass {
const RISCVSubtarget *ST = nullptr;
const RISCVTargetLowering *TLI = nullptr;
LoopInfo *LI = nullptr;
const DataLayout *DL = nullptr;
SmallVector<WeakTrackingVH> MaybeDeadPHIs;
// Cache of the BasePtr and Stride determined from this GEP. When a GEP is
// used by multiple gathers/scatters, this allow us to reuse the scalar
// instructions we created for the first gather/scatter for the others.
DenseMap<GetElementPtrInst *, std::pair<Value *, Value *>> StridedAddrs;
public:
static char ID; // Pass identification, replacement for typeid
RISCVGatherScatterLowering() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
AU.addRequired<LoopInfoWrapperPass>();
}
StringRef getPassName() const override {
return "RISC-V gather/scatter lowering";
}
private:
bool isLegalTypeAndAlignment(Type *DataType, Value *AlignOp);
bool tryCreateStridedLoadStore(IntrinsicInst *II, Type *DataType, Value *Ptr,
Value *AlignOp);
std::pair<Value *, Value *> determineBaseAndStride(GetElementPtrInst *GEP,
IRBuilder<> &Builder);
bool matchStridedRecurrence(Value *Index, Loop *L, Value *&Stride,
PHINode *&BasePtr, BinaryOperator *&Inc,
IRBuilder<> &Builder);
};
} // end anonymous namespace
char RISCVGatherScatterLowering::ID = 0;
INITIALIZE_PASS(RISCVGatherScatterLowering, DEBUG_TYPE,
"RISC-V gather/scatter lowering pass", false, false)
FunctionPass *llvm::createRISCVGatherScatterLoweringPass() {
return new RISCVGatherScatterLowering();
}
bool RISCVGatherScatterLowering::isLegalTypeAndAlignment(Type *DataType,
Value *AlignOp) {
Type *ScalarType = DataType->getScalarType();
if (!TLI->isLegalElementTypeForRVV(ScalarType))
return false;
MaybeAlign MA = cast<ConstantInt>(AlignOp)->getMaybeAlignValue();
if (MA && MA->value() < DL->getTypeStoreSize(ScalarType).getFixedValue())
return false;
// FIXME: Let the backend type legalize by splitting/widening?
EVT DataVT = TLI->getValueType(*DL, DataType);
if (!TLI->isTypeLegal(DataVT))
return false;
return true;
}
// TODO: Should we consider the mask when looking for a stride?
static std::pair<Value *, Value *> matchStridedConstant(Constant *StartC) {
if (!isa<FixedVectorType>(StartC->getType()))
return std::make_pair(nullptr, nullptr);
unsigned NumElts = cast<FixedVectorType>(StartC->getType())->getNumElements();
// Check that the start value is a strided constant.
auto *StartVal =
dyn_cast_or_null<ConstantInt>(StartC->getAggregateElement((unsigned)0));
if (!StartVal)
return std::make_pair(nullptr, nullptr);
APInt StrideVal(StartVal->getValue().getBitWidth(), 0);
ConstantInt *Prev = StartVal;
for (unsigned i = 1; i != NumElts; ++i) {
auto *C = dyn_cast_or_null<ConstantInt>(StartC->getAggregateElement(i));
if (!C)
return std::make_pair(nullptr, nullptr);
APInt LocalStride = C->getValue() - Prev->getValue();
if (i == 1)
StrideVal = LocalStride;
else if (StrideVal != LocalStride)
return std::make_pair(nullptr, nullptr);
Prev = C;
}
Value *Stride = ConstantInt::get(StartVal->getType(), StrideVal);
return std::make_pair(StartVal, Stride);
}
static std::pair<Value *, Value *> matchStridedStart(Value *Start,
IRBuilder<> &Builder) {
// Base case, start is a strided constant.
auto *StartC = dyn_cast<Constant>(Start);
if (StartC)
return matchStridedConstant(StartC);
// Base case, start is a stepvector
if (match(Start, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
auto *Ty = Start->getType()->getScalarType();
return std::make_pair(ConstantInt::get(Ty, 0), ConstantInt::get(Ty, 1));
}
// Not a constant, maybe it's a strided constant with a splat added or
// multipled.
auto *BO = dyn_cast<BinaryOperator>(Start);
if (!BO || (BO->getOpcode() != Instruction::Add &&
BO->getOpcode() != Instruction::Mul))
return std::make_pair(nullptr, nullptr);
// Look for an operand that is splatted.
unsigned OtherIndex = 1;
Value *Splat = getSplatValue(BO->getOperand(0));
if (!Splat) {
Splat = getSplatValue(BO->getOperand(1));
OtherIndex = 0;
}
if (!Splat)
return std::make_pair(nullptr, nullptr);
Value *Stride;
std::tie(Start, Stride) = matchStridedStart(BO->getOperand(OtherIndex),
Builder);
if (!Start)
return std::make_pair(nullptr, nullptr);
Builder.SetInsertPoint(BO);
Builder.SetCurrentDebugLocation(DebugLoc());
// Add the splat value to the start or multiply the start and stride by the
// splat.
if (BO->getOpcode() == Instruction::Add) {
Start = Builder.CreateAdd(Start, Splat);
} else {
assert(BO->getOpcode() == Instruction::Mul && "Unexpected opcode");
Start = Builder.CreateMul(Start, Splat);
Stride = Builder.CreateMul(Stride, Splat);
}
return std::make_pair(Start, Stride);
}
// Recursively, walk about the use-def chain until we find a Phi with a strided
// start value. Build and update a scalar recurrence as we unwind the recursion.
// We also update the Stride as we unwind. Our goal is to move all of the
// arithmetic out of the loop.
bool RISCVGatherScatterLowering::matchStridedRecurrence(Value *Index, Loop *L,
Value *&Stride,
PHINode *&BasePtr,
BinaryOperator *&Inc,
IRBuilder<> &Builder) {
// Our base case is a Phi.
if (auto *Phi = dyn_cast<PHINode>(Index)) {
// A phi node we want to perform this function on should be from the
// loop header.
if (Phi->getParent() != L->getHeader())
return false;
Value *Step, *Start;
if (!matchSimpleRecurrence(Phi, Inc, Start, Step) ||
Inc->getOpcode() != Instruction::Add)
return false;
assert(Phi->getNumIncomingValues() == 2 && "Expected 2 operand phi.");
unsigned IncrementingBlock = Phi->getIncomingValue(0) == Inc ? 0 : 1;
assert(Phi->getIncomingValue(IncrementingBlock) == Inc &&
"Expected one operand of phi to be Inc");
// Only proceed if the step is loop invariant.
if (!L->isLoopInvariant(Step))
return false;
// Step should be a splat.
Step = getSplatValue(Step);
if (!Step)
return false;
std::tie(Start, Stride) = matchStridedStart(Start, Builder);
if (!Start)
return false;
assert(Stride != nullptr);
// Build scalar phi and increment.
BasePtr =
PHINode::Create(Start->getType(), 2, Phi->getName() + ".scalar", Phi);
Inc = BinaryOperator::CreateAdd(BasePtr, Step, Inc->getName() + ".scalar",
Inc);
BasePtr->addIncoming(Start, Phi->getIncomingBlock(1 - IncrementingBlock));
BasePtr->addIncoming(Inc, Phi->getIncomingBlock(IncrementingBlock));
// Note that this Phi might be eligible for removal.
MaybeDeadPHIs.push_back(Phi);
return true;
}
// Otherwise look for binary operator.
auto *BO = dyn_cast<BinaryOperator>(Index);
if (!BO)
return false;
if (BO->getOpcode() != Instruction::Add &&
BO->getOpcode() != Instruction::Or &&
BO->getOpcode() != Instruction::Mul &&
BO->getOpcode() != Instruction::Shl)
return false;
// Only support shift by constant.
if (BO->getOpcode() == Instruction::Shl && !isa<Constant>(BO->getOperand(1)))
return false;
// We need to be able to treat Or as Add.
if (BO->getOpcode() == Instruction::Or &&
!haveNoCommonBitsSet(BO->getOperand(0), BO->getOperand(1), *DL))
return false;
// We should have one operand in the loop and one splat.
Value *OtherOp;
if (isa<Instruction>(BO->getOperand(0)) &&
L->contains(cast<Instruction>(BO->getOperand(0)))) {
Index = cast<Instruction>(BO->getOperand(0));
OtherOp = BO->getOperand(1);
} else if (isa<Instruction>(BO->getOperand(1)) &&
L->contains(cast<Instruction>(BO->getOperand(1)))) {
Index = cast<Instruction>(BO->getOperand(1));
OtherOp = BO->getOperand(0);
} else {
return false;
}
// Make sure other op is loop invariant.
if (!L->isLoopInvariant(OtherOp))
return false;
// Make sure we have a splat.
Value *SplatOp = getSplatValue(OtherOp);
if (!SplatOp)
return false;
// Recurse up the use-def chain.
if (!matchStridedRecurrence(Index, L, Stride, BasePtr, Inc, Builder))
return false;
// Locate the Step and Start values from the recurrence.
unsigned StepIndex = Inc->getOperand(0) == BasePtr ? 1 : 0;
unsigned StartBlock = BasePtr->getOperand(0) == Inc ? 1 : 0;
Value *Step = Inc->getOperand(StepIndex);
Value *Start = BasePtr->getOperand(StartBlock);
// We need to adjust the start value in the preheader.
Builder.SetInsertPoint(
BasePtr->getIncomingBlock(StartBlock)->getTerminator());
Builder.SetCurrentDebugLocation(DebugLoc());
switch (BO->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case Instruction::Add:
case Instruction::Or: {
// An add only affects the start value. It's ok to do this for Or because
// we already checked that there are no common set bits.
// If the start value is Zero, just take the SplatOp.
if (isa<ConstantInt>(Start) && cast<ConstantInt>(Start)->isZero())
Start = SplatOp;
else
Start = Builder.CreateAdd(Start, SplatOp, "start");
BasePtr->setIncomingValue(StartBlock, Start);
break;
}
case Instruction::Mul: {
// If the start is zero we don't need to multiply.
if (!isa<ConstantInt>(Start) || !cast<ConstantInt>(Start)->isZero())
Start = Builder.CreateMul(Start, SplatOp, "start");
Step = Builder.CreateMul(Step, SplatOp, "step");
// If the Stride is 1 just take the SplatOpt.
if (isa<ConstantInt>(Stride) && cast<ConstantInt>(Stride)->isOne())
Stride = SplatOp;
else
Stride = Builder.CreateMul(Stride, SplatOp, "stride");
Inc->setOperand(StepIndex, Step);
BasePtr->setIncomingValue(StartBlock, Start);
break;
}
case Instruction::Shl: {
// If the start is zero we don't need to shift.
if (!isa<ConstantInt>(Start) || !cast<ConstantInt>(Start)->isZero())
Start = Builder.CreateShl(Start, SplatOp, "start");
Step = Builder.CreateShl(Step, SplatOp, "step");
Stride = Builder.CreateShl(Stride, SplatOp, "stride");
Inc->setOperand(StepIndex, Step);
BasePtr->setIncomingValue(StartBlock, Start);
break;
}
}
return true;
}
std::pair<Value *, Value *>
RISCVGatherScatterLowering::determineBaseAndStride(GetElementPtrInst *GEP,
IRBuilder<> &Builder) {
auto I = StridedAddrs.find(GEP);
if (I != StridedAddrs.end())
return I->second;
SmallVector<Value *, 2> Ops(GEP->operands());
// Base pointer needs to be a scalar.
if (Ops[0]->getType()->isVectorTy())
return std::make_pair(nullptr, nullptr);
std::optional<unsigned> VecOperand;
unsigned TypeScale = 0;
// Look for a vector operand and scale.
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
if (!Ops[i]->getType()->isVectorTy())
continue;
if (VecOperand)
return std::make_pair(nullptr, nullptr);
VecOperand = i;
TypeSize TS = DL->getTypeAllocSize(GTI.getIndexedType());
if (TS.isScalable())
return std::make_pair(nullptr, nullptr);
TypeScale = TS.getFixedValue();
}
// We need to find a vector index to simplify.
if (!VecOperand)
return std::make_pair(nullptr, nullptr);
// We can't extract the stride if the arithmetic is done at a different size
// than the pointer type. Adding the stride later may not wrap correctly.
// Technically we could handle wider indices, but I don't expect that in
// practice.
Value *VecIndex = Ops[*VecOperand];
Type *VecIntPtrTy = DL->getIntPtrType(GEP->getType());
if (VecIndex->getType() != VecIntPtrTy)
return std::make_pair(nullptr, nullptr);
// Handle the non-recursive case. This is what we see if the vectorizer
// decides to use a scalar IV + vid on demand instead of a vector IV.
auto [Start, Stride] = matchStridedStart(VecIndex, Builder);
if (Start) {
assert(Stride);
Builder.SetInsertPoint(GEP);
// Replace the vector index with the scalar start and build a scalar GEP.
Ops[*VecOperand] = Start;
Type *SourceTy = GEP->getSourceElementType();
Value *BasePtr =
Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
// Convert stride to pointer size if needed.
Type *IntPtrTy = DL->getIntPtrType(BasePtr->getType());
assert(Stride->getType() == IntPtrTy && "Unexpected type");
// Scale the stride by the size of the indexed type.
if (TypeScale != 1)
Stride = Builder.CreateMul(Stride, ConstantInt::get(IntPtrTy, TypeScale));
auto P = std::make_pair(BasePtr, Stride);
StridedAddrs[GEP] = P;
return P;
}
// Make sure we're in a loop and that has a pre-header and a single latch.
Loop *L = LI->getLoopFor(GEP->getParent());
if (!L || !L->getLoopPreheader() || !L->getLoopLatch())
return std::make_pair(nullptr, nullptr);
BinaryOperator *Inc;
PHINode *BasePhi;
if (!matchStridedRecurrence(VecIndex, L, Stride, BasePhi, Inc, Builder))
return std::make_pair(nullptr, nullptr);
assert(BasePhi->getNumIncomingValues() == 2 && "Expected 2 operand phi.");
unsigned IncrementingBlock = BasePhi->getOperand(0) == Inc ? 0 : 1;
assert(BasePhi->getIncomingValue(IncrementingBlock) == Inc &&
"Expected one operand of phi to be Inc");
Builder.SetInsertPoint(GEP);
// Replace the vector index with the scalar phi and build a scalar GEP.
Ops[*VecOperand] = BasePhi;
Type *SourceTy = GEP->getSourceElementType();
Value *BasePtr =
Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
// Final adjustments to stride should go in the start block.
Builder.SetInsertPoint(
BasePhi->getIncomingBlock(1 - IncrementingBlock)->getTerminator());
// Convert stride to pointer size if needed.
Type *IntPtrTy = DL->getIntPtrType(BasePtr->getType());
assert(Stride->getType() == IntPtrTy && "Unexpected type");
// Scale the stride by the size of the indexed type.
if (TypeScale != 1)
Stride = Builder.CreateMul(Stride, ConstantInt::get(IntPtrTy, TypeScale));
auto P = std::make_pair(BasePtr, Stride);
StridedAddrs[GEP] = P;
return P;
}
bool RISCVGatherScatterLowering::tryCreateStridedLoadStore(IntrinsicInst *II,
Type *DataType,
Value *Ptr,
Value *AlignOp) {
// Make sure the operation will be supported by the backend.
if (!isLegalTypeAndAlignment(DataType, AlignOp))
return false;
// Pointer should be a GEP.
auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
if (!GEP)
return false;
IRBuilder<> Builder(GEP);
Value *BasePtr, *Stride;
std::tie(BasePtr, Stride) = determineBaseAndStride(GEP, Builder);
if (!BasePtr)
return false;
assert(Stride != nullptr);
Builder.SetInsertPoint(II);
CallInst *Call;
if (II->getIntrinsicID() == Intrinsic::masked_gather)
Call = Builder.CreateIntrinsic(
Intrinsic::riscv_masked_strided_load,
{DataType, BasePtr->getType(), Stride->getType()},
{II->getArgOperand(3), BasePtr, Stride, II->getArgOperand(2)});
else
Call = Builder.CreateIntrinsic(
Intrinsic::riscv_masked_strided_store,
{DataType, BasePtr->getType(), Stride->getType()},
{II->getArgOperand(0), BasePtr, Stride, II->getArgOperand(3)});
Call->takeName(II);
II->replaceAllUsesWith(Call);
II->eraseFromParent();
if (GEP->use_empty())
RecursivelyDeleteTriviallyDeadInstructions(GEP);
return true;
}
bool RISCVGatherScatterLowering::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<RISCVTargetMachine>();
ST = &TM.getSubtarget<RISCVSubtarget>(F);
if (!ST->hasVInstructions() || !ST->useRVVForFixedLengthVectors())
return false;
TLI = ST->getTargetLowering();
DL = &F.getParent()->getDataLayout();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
StridedAddrs.clear();
SmallVector<IntrinsicInst *, 4> Gathers;
SmallVector<IntrinsicInst *, 4> Scatters;
bool Changed = false;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
if (II && II->getIntrinsicID() == Intrinsic::masked_gather) {
Gathers.push_back(II);
} else if (II && II->getIntrinsicID() == Intrinsic::masked_scatter) {
Scatters.push_back(II);
}
}
}
// Rewrite gather/scatter to form strided load/store if possible.
for (auto *II : Gathers)
Changed |= tryCreateStridedLoadStore(
II, II->getType(), II->getArgOperand(0), II->getArgOperand(1));
for (auto *II : Scatters)
Changed |=
tryCreateStridedLoadStore(II, II->getArgOperand(0)->getType(),
II->getArgOperand(1), II->getArgOperand(2));
// Remove any dead phis.
while (!MaybeDeadPHIs.empty()) {
if (auto *Phi = dyn_cast_or_null<PHINode>(MaybeDeadPHIs.pop_back_val()))
RecursivelyDeleteDeadPHINode(Phi);
}
return Changed;
}