
With D134950, targets get notified when a virtual register is created and/or cloned. Targets can do the needful with the delegate callback. AMDGPU propagates the virtual register flags maintained in the target file itself. They are useful to identify a certain type of machine operands while inserting spill stores and reloads. Since RegAllocFast spills the physical register itself, there is no way its virtual register can be mapped back to retrieve the flags. It can be solved by passing the virtual register as an additional argument. This argument has no use when the spill interfaces are called during the greedy allocator or even the PrologEpilogInserter and can pass a null register in such cases. Reviewed By: arsenm Differential Revision: https://reviews.llvm.org/D138656
711 lines
25 KiB
C++
711 lines
25 KiB
C++
//===-- X86FastPreTileConfig.cpp - Fast Tile Register Configure------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file Pass to preconfig the shape of physical tile registers
|
|
/// It inserts ldtilecfg ahead of each group of tile registers. The algorithm
|
|
/// walk each instruction of basic block in reverse order. All the tile
|
|
/// registers that live out the basic block would be spilled and reloaded
|
|
/// before its user. It also check the depenedency of the shape to ensure
|
|
/// the shape is defined before ldtilecfg.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "fastpretileconfig"
|
|
|
|
STATISTIC(NumStores, "Number of stores added");
|
|
STATISTIC(NumLoads, "Number of loads added");
|
|
|
|
namespace {
|
|
|
|
class X86FastPreTileConfig : public MachineFunctionPass {
|
|
MachineFunction *MF = nullptr;
|
|
const X86Subtarget *ST = nullptr;
|
|
const TargetInstrInfo *TII = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
X86MachineFunctionInfo *X86FI = nullptr;
|
|
MachineFrameInfo *MFI = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
MachineBasicBlock *MBB = nullptr;
|
|
int CfgSS = -1;
|
|
struct PHIInfo {
|
|
Register Row;
|
|
Register Col;
|
|
Register StackAddr;
|
|
};
|
|
DenseMap<MachineInstr *, struct PHIInfo> VisitedPHIs;
|
|
|
|
/// Maps virtual regs to the frame index where these values are spilled.
|
|
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
|
|
|
|
/// Has a bit set for tile virtual register for which it was determined
|
|
/// that it is alive across blocks.
|
|
BitVector MayLiveAcrossBlocks;
|
|
|
|
int getStackSpaceFor(Register VirtReg);
|
|
void InitializeTileConfigStackSpace();
|
|
bool mayLiveOut(Register VirtReg, MachineInstr *CfgMI);
|
|
void spill(MachineBasicBlock::iterator Before, Register VirtReg, bool Kill);
|
|
void reload(MachineBasicBlock::iterator UseMI, Register VirtReg,
|
|
MachineOperand *RowMO, MachineOperand *ColMO);
|
|
void canonicalizePHIs(MachineBasicBlock &MBB);
|
|
void convertPHI(MachineBasicBlock *MBB, MachineInstr &PHI);
|
|
void convertPHIs(MachineBasicBlock &MBB);
|
|
bool configBasicBlock(MachineBasicBlock &MBB);
|
|
|
|
public:
|
|
X86FastPreTileConfig() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
|
|
|
|
/// Return the pass name.
|
|
StringRef getPassName() const override {
|
|
return "Fast Tile Register Preconfigure";
|
|
}
|
|
|
|
/// Perform tile register configure.
|
|
bool runOnMachineFunction(MachineFunction &MFunc) override;
|
|
|
|
static char ID;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char X86FastPreTileConfig::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(X86FastPreTileConfig, DEBUG_TYPE,
|
|
"Fast Tile Register Preconfigure", false, false)
|
|
INITIALIZE_PASS_END(X86FastPreTileConfig, DEBUG_TYPE,
|
|
"Fast Tile Register Preconfigure", false, false)
|
|
|
|
static bool dominates(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::const_iterator A,
|
|
MachineBasicBlock::const_iterator B) {
|
|
auto MBBEnd = MBB.end();
|
|
if (B == MBBEnd)
|
|
return true;
|
|
|
|
MachineBasicBlock::const_iterator I = MBB.begin();
|
|
for (; &*I != A && &*I != B; ++I)
|
|
;
|
|
|
|
return &*I == A;
|
|
}
|
|
|
|
/// This allocates space for the specified virtual register to be held on the
|
|
/// stack.
|
|
int X86FastPreTileConfig::getStackSpaceFor(Register VirtReg) {
|
|
// Find the location Reg would belong...
|
|
int SS = StackSlotForVirtReg[VirtReg];
|
|
// Already has space allocated?
|
|
if (SS != -1)
|
|
return SS;
|
|
|
|
// Allocate a new stack object for this spill location...
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
unsigned Size = TRI->getSpillSize(RC);
|
|
Align Alignment = TRI->getSpillAlign(RC);
|
|
int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
|
|
|
|
// Assign the slot.
|
|
StackSlotForVirtReg[VirtReg] = FrameIdx;
|
|
return FrameIdx;
|
|
}
|
|
|
|
/// Returns false if \p VirtReg is known to not live out of the current config.
|
|
/// If \p VirtReg live out of the current MBB, it must live out of the current
|
|
/// config
|
|
bool X86FastPreTileConfig::mayLiveOut(Register VirtReg, MachineInstr *CfgMI) {
|
|
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
|
|
return true;
|
|
|
|
for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
|
|
if (UseInst.getParent() != MBB) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
return true;
|
|
}
|
|
|
|
// The use and def are in the same MBB. If the tile register is
|
|
// reconfigured, it is crobbered and we need to spill and reload
|
|
// tile register.
|
|
if (CfgMI) {
|
|
if (dominates(*MBB, *CfgMI, UseInst)) {
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void X86FastPreTileConfig::InitializeTileConfigStackSpace() {
|
|
MachineBasicBlock &MBB = MF->front();
|
|
MachineInstr *MI = &*MBB.getFirstNonPHI();
|
|
DebugLoc DL;
|
|
if (ST->hasAVX512()) {
|
|
Register Zmm = MRI->createVirtualRegister(&X86::VR512RegClass);
|
|
BuildMI(MBB, MI, DL, TII->get(X86::AVX512_512_SET0), Zmm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSZmr)), CfgSS)
|
|
.addReg(Zmm);
|
|
} else if (ST->hasAVX2()) {
|
|
Register Ymm = MRI->createVirtualRegister(&X86::VR256RegClass);
|
|
BuildMI(MBB, MI, DL, TII->get(X86::AVX_SET0), Ymm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), CfgSS)
|
|
.addReg(Ymm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), CfgSS,
|
|
32)
|
|
.addReg(Ymm);
|
|
} else {
|
|
assert(ST->hasSSE2() && "AMX should assume SSE2 enabled");
|
|
unsigned StoreOpc = ST->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
|
|
Register Xmm = MRI->createVirtualRegister(&X86::VR128RegClass);
|
|
BuildMI(MBB, MI, DL, TII->get(X86::V_SET0), Xmm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS)
|
|
.addReg(Xmm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 16)
|
|
.addReg(Xmm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 32)
|
|
.addReg(Xmm);
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(StoreOpc)), CfgSS, 48)
|
|
.addReg(Xmm);
|
|
}
|
|
// Fill in the palette first.
|
|
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOV8mi)), CfgSS)
|
|
.addImm(1);
|
|
}
|
|
|
|
/// Insert spill instruction for \p AssignedReg before \p Before.
|
|
/// TODO: Update DBG_VALUEs with \p VirtReg operands with the stack slot.
|
|
void X86FastPreTileConfig::spill(MachineBasicBlock::iterator Before,
|
|
Register VirtReg, bool Kill) {
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " \n");
|
|
int FI = getStackSpaceFor(VirtReg);
|
|
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
|
|
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
|
|
// Don't need shape information for tile store, becasue it is adjacent to
|
|
// the tile def instruction.
|
|
TII->storeRegToStackSlot(*MBB, Before, VirtReg, Kill, FI, &RC, TRI,
|
|
Register());
|
|
++NumStores;
|
|
|
|
// TODO: update DBG_VALUEs
|
|
}
|
|
|
|
/// Insert reload instruction for \p PhysReg before \p Before.
|
|
void X86FastPreTileConfig::reload(MachineBasicBlock::iterator UseMI,
|
|
Register OrigReg, MachineOperand *RowMO,
|
|
MachineOperand *ColMO) {
|
|
int FI = getStackSpaceFor(OrigReg);
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(OrigReg);
|
|
Register TileReg;
|
|
// Fold copy to tileload
|
|
// BB1:
|
|
// spill src to s
|
|
//
|
|
// BB2:
|
|
// t = copy src
|
|
// -->
|
|
// t = tileload (s)
|
|
if (UseMI->isCopy())
|
|
TileReg = UseMI->getOperand(0).getReg();
|
|
else
|
|
TileReg = MRI->createVirtualRegister(&RC);
|
|
// Can't use TII->loadRegFromStackSlot(), because we need the shape
|
|
// information for reload.
|
|
// tileloadd (%sp, %idx), %tmm
|
|
unsigned Opc = X86::PTILELOADDV;
|
|
Register StrideReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
// FIXME: MBB is not the parent of UseMI.
|
|
MachineInstr *NewMI = BuildMI(*UseMI->getParent(), UseMI, DebugLoc(),
|
|
TII->get(X86::MOV64ri), StrideReg)
|
|
.addImm(64);
|
|
NewMI = addFrameReference(
|
|
BuildMI(*UseMI->getParent(), UseMI, DebugLoc(), TII->get(Opc), TileReg)
|
|
.addReg(RowMO->getReg())
|
|
.addReg(ColMO->getReg()),
|
|
FI);
|
|
MachineOperand &MO = NewMI->getOperand(5);
|
|
MO.setReg(StrideReg);
|
|
MO.setIsKill(true);
|
|
RowMO->setIsKill(false);
|
|
ColMO->setIsKill(false);
|
|
// Erase copy instruction after it is folded.
|
|
if (UseMI->isCopy()) {
|
|
UseMI->eraseFromParent();
|
|
} else {
|
|
// Replace the register in the user MI.
|
|
for (auto &MO : UseMI->operands()) {
|
|
if (MO.isReg() && MO.getReg() == OrigReg)
|
|
MO.setReg(TileReg);
|
|
}
|
|
}
|
|
|
|
++NumLoads;
|
|
LLVM_DEBUG(dbgs() << "Reloading " << printReg(OrigReg, TRI) << " into "
|
|
<< printReg(TileReg, TRI) << '\n');
|
|
}
|
|
|
|
static bool isTileDef(MachineRegisterInfo *MRI, MachineInstr &MI) {
|
|
// The instruction must have 3 operands: tile def, row, col.
|
|
if (MI.isDebugInstr() || MI.getNumOperands() < 3 || !MI.isPseudo())
|
|
return false;
|
|
MachineOperand &MO = MI.getOperand(0);
|
|
|
|
if (MO.isReg()) {
|
|
Register Reg = MO.getReg();
|
|
// FIXME it may be used after Greedy RA and the physical
|
|
// register is not rewritten yet.
|
|
if (Reg.isVirtual() &&
|
|
MRI->getRegClass(Reg)->getID() == X86::TILERegClassID)
|
|
return true;
|
|
if (Reg >= X86::TMM0 && Reg <= X86::TMM7)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static ShapeT getShape(MachineRegisterInfo *MRI, Register TileReg) {
|
|
MachineInstr *MI = MRI->getVRegDef(TileReg);
|
|
if (isTileDef(MRI, *MI)) {
|
|
MachineOperand *RowMO = &MI->getOperand(1);
|
|
MachineOperand *ColMO = &MI->getOperand(2);
|
|
return ShapeT(RowMO, ColMO, MRI);
|
|
} else if (MI->isCopy()) {
|
|
TileReg = MI->getOperand(1).getReg();
|
|
return getShape(MRI, TileReg);
|
|
}
|
|
|
|
// The def should not be PHI node, because we walk the MBB in reverse post
|
|
// order.
|
|
assert(MI->isPHI() && "Unexpected PHI when get shape.");
|
|
llvm_unreachable("Unexpected MI when get shape.");
|
|
}
|
|
|
|
// BB0:
|
|
// spill t0 to s0
|
|
// BB1:
|
|
// spill t1 to s1
|
|
//
|
|
// BB2:
|
|
// t = phi [t0, bb0] [t1, bb1]
|
|
// -->
|
|
// row = phi [r0, bb0] [r1, bb1]
|
|
// col = phi [c0, bb0] [c1, bb1]
|
|
// s = phi [s0, bb0] [s1, bb1]
|
|
// t = tileload row, col, s
|
|
// The new instruction is inserted at the end of the phi node. The order
|
|
// of the original phi node is not ensured.
|
|
void X86FastPreTileConfig::convertPHI(MachineBasicBlock *MBB,
|
|
MachineInstr &PHI) {
|
|
// 1. Create instruction to get stack slot address of each incoming block.
|
|
// 2. Create PHI node for the stack address.
|
|
// 3. Create PHI node for shape. If one of the incoming shape is immediate
|
|
// use the immediate and delete the PHI node.
|
|
// 4. Create tileload instruction from the stack address.
|
|
Register StackAddrReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
MachineInstrBuilder AddrPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
|
|
TII->get(X86::PHI), StackAddrReg);
|
|
Register RowReg = MRI->createVirtualRegister(&X86::GR16RegClass);
|
|
MachineInstrBuilder RowPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
|
|
TII->get(X86::PHI), RowReg);
|
|
Register ColReg = MRI->createVirtualRegister(&X86::GR16RegClass);
|
|
MachineInstrBuilder ColPHI = BuildMI(*MBB, ++PHI.getIterator(), DebugLoc(),
|
|
TII->get(X86::PHI), ColReg);
|
|
// Record the mapping of phi node and its row/column information.
|
|
VisitedPHIs[&PHI] = {RowReg, ColReg, StackAddrReg};
|
|
|
|
for (unsigned I = 1, E = PHI.getNumOperands(); I != E; I += 2) {
|
|
// Get the 2 incoming value of tile register and MBB.
|
|
Register InTileReg = PHI.getOperand(I).getReg();
|
|
// Mark it as liveout, so that it will be spilled when visit
|
|
// the incoming MBB. Otherwise since phi will be deleted, it
|
|
// would miss spill when visit incoming MBB.
|
|
MayLiveAcrossBlocks.set(Register::virtReg2Index(InTileReg));
|
|
MachineBasicBlock *InMBB = PHI.getOperand(I + 1).getMBB();
|
|
|
|
MachineInstr *TileDefMI = MRI->getVRegDef(InTileReg);
|
|
MachineBasicBlock::iterator InsertPos;
|
|
if (TileDefMI->isPHI()) {
|
|
InsertPos = TileDefMI->getParent()->getFirstNonPHI();
|
|
if (VisitedPHIs.count(TileDefMI)) { // circular phi reference
|
|
// def t1
|
|
// / \
|
|
// def t2 t3 = phi(t1, t4) <--
|
|
// \ / |
|
|
// t4 = phi(t2, t3)-------------
|
|
//
|
|
// For each (row, column and stack address) append phi incoming value.
|
|
// Create r3 = phi(r1, r4)
|
|
// Create r4 = phi(r2, r3)
|
|
Register InRowReg = VisitedPHIs[TileDefMI].Row;
|
|
Register InColReg = VisitedPHIs[TileDefMI].Col;
|
|
Register InStackAddrReg = VisitedPHIs[TileDefMI].StackAddr;
|
|
RowPHI.addReg(InRowReg).addMBB(InMBB);
|
|
ColPHI.addReg(InColReg).addMBB(InMBB);
|
|
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
|
|
continue;
|
|
} else {
|
|
// Recursively convert PHI to tileload
|
|
convertPHI(TileDefMI->getParent(), *TileDefMI);
|
|
// The PHI node is coverted to tileload instruction. Get the stack
|
|
// address from tileload operands.
|
|
MachineInstr *TileLoad = MRI->getVRegDef(InTileReg);
|
|
assert(TileLoad && TileLoad->getOpcode() == X86::PTILELOADDV);
|
|
Register InRowReg = TileLoad->getOperand(1).getReg();
|
|
Register InColReg = TileLoad->getOperand(2).getReg();
|
|
Register InStackAddrReg = TileLoad->getOperand(3).getReg();
|
|
RowPHI.addReg(InRowReg).addMBB(InMBB);
|
|
ColPHI.addReg(InColReg).addMBB(InMBB);
|
|
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
|
|
}
|
|
} else {
|
|
InsertPos = TileDefMI->getIterator();
|
|
|
|
// Fill the incoming operand of row/column phi instruction.
|
|
ShapeT Shape = getShape(MRI, InTileReg);
|
|
Shape.getRow()->setIsKill(false);
|
|
Shape.getCol()->setIsKill(false);
|
|
RowPHI.addReg(Shape.getRow()->getReg()).addMBB(InMBB);
|
|
ColPHI.addReg(Shape.getCol()->getReg()).addMBB(InMBB);
|
|
|
|
// The incoming tile register live out of its def BB, it would be spilled.
|
|
// Create MI to get the spill stack slot address for the tile register
|
|
int FI = getStackSpaceFor(InTileReg);
|
|
Register InStackAddrReg =
|
|
MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
addOffset(BuildMI(*TileDefMI->getParent(), InsertPos, DebugLoc(),
|
|
TII->get(X86::LEA64r), InStackAddrReg)
|
|
.addFrameIndex(FI),
|
|
0);
|
|
AddrPHI.addReg(InStackAddrReg).addMBB(InMBB);
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
|
|
Register StrideReg = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
|
|
BuildMI(*MBB, InsertPos, DebugLoc(), TII->get(X86::MOV64ri), StrideReg)
|
|
.addImm(64);
|
|
Register TileReg = PHI.getOperand(0).getReg();
|
|
MachineInstr *NewMI = addDirectMem(
|
|
BuildMI(*MBB, InsertPos, DebugLoc(), TII->get(X86::PTILELOADDV), TileReg)
|
|
.addReg(RowReg)
|
|
.addReg(ColReg),
|
|
StackAddrReg);
|
|
MachineOperand &MO = NewMI->getOperand(5);
|
|
MO.setReg(StrideReg);
|
|
MO.setIsKill(true);
|
|
PHI.eraseFromParent();
|
|
VisitedPHIs.erase(&PHI);
|
|
}
|
|
|
|
static bool isTileRegDef(MachineRegisterInfo *MRI, MachineInstr &MI) {
|
|
MachineOperand &MO = MI.getOperand(0);
|
|
if (MO.isReg() && MO.getReg().isVirtual() &&
|
|
MRI->getRegClass(MO.getReg())->getID() == X86::TILERegClassID)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void X86FastPreTileConfig::canonicalizePHIs(MachineBasicBlock &MBB) {
|
|
SmallVector<MachineInstr *, 8> PHIs;
|
|
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!MI.isPHI())
|
|
break;
|
|
if (!isTileRegDef(MRI, MI))
|
|
continue;
|
|
PHIs.push_back(&MI);
|
|
}
|
|
// Canonicalize the phi node first. One tile phi may depeneds previous
|
|
// phi node. For below case, we need convert %t4.
|
|
//
|
|
// BB0:
|
|
// %t3 = phi (t1 BB1, t2 BB0)
|
|
// %t4 = phi (t5 BB1, t3 BB0)
|
|
// -->
|
|
// %t3 = phi (t1 BB1, t2 BB0)
|
|
// %t4 = phi (t5 BB1, t2 BB0)
|
|
//
|
|
while (!PHIs.empty()) {
|
|
MachineInstr *PHI = PHIs.pop_back_val();
|
|
|
|
// Find the operand that is incoming from the same MBB and the def
|
|
// is also phi node.
|
|
MachineOperand *InMO = nullptr;
|
|
MachineInstr *DefMI = nullptr;
|
|
for (unsigned I = 1, E = PHI->getNumOperands(); I != E; I += 2) {
|
|
Register InTileReg = PHI->getOperand(I).getReg();
|
|
MachineBasicBlock *InMBB = PHI->getOperand(I + 1).getMBB();
|
|
DefMI = MRI->getVRegDef(InTileReg);
|
|
if (InMBB != &MBB || !DefMI->isPHI())
|
|
continue;
|
|
|
|
InMO = &PHI->getOperand(I);
|
|
break;
|
|
}
|
|
// If can't find such operand, do nothing.
|
|
if (!InMO)
|
|
continue;
|
|
|
|
// Current phi node depends on previous phi node. Break the
|
|
// dependency.
|
|
Register DefTileReg;
|
|
for (unsigned I = 1, E = DefMI->getNumOperands(); I != E; I += 2) {
|
|
MachineBasicBlock *InMBB = PHI->getOperand(I + 1).getMBB();
|
|
if (InMBB != &MBB)
|
|
continue;
|
|
DefTileReg = DefMI->getOperand(I).getReg();
|
|
InMO->setReg(DefTileReg);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void X86FastPreTileConfig::convertPHIs(MachineBasicBlock &MBB) {
|
|
SmallVector<MachineInstr *, 8> PHIs;
|
|
for (MachineInstr &MI : MBB) {
|
|
if (!MI.isPHI())
|
|
break;
|
|
if (!isTileRegDef(MRI, MI))
|
|
continue;
|
|
PHIs.push_back(&MI);
|
|
}
|
|
while (!PHIs.empty()) {
|
|
MachineInstr *MI = PHIs.pop_back_val();
|
|
VisitedPHIs.clear();
|
|
convertPHI(&MBB, *MI);
|
|
}
|
|
}
|
|
|
|
// PreTileConfig should configure the tile registers based on basic
|
|
// block.
|
|
bool X86FastPreTileConfig::configBasicBlock(MachineBasicBlock &MBB) {
|
|
this->MBB = &MBB;
|
|
bool Change = false;
|
|
MachineInstr *LastShapeMI = nullptr;
|
|
MachineInstr *LastTileCfg = nullptr;
|
|
bool HasUnconfigTile = false;
|
|
|
|
auto Config = [&](MachineInstr &Before) {
|
|
if (CfgSS == -1)
|
|
CfgSS = MFI->CreateStackObject(ST->getTileConfigSize(),
|
|
ST->getTileConfigAlignment(), false);
|
|
LastTileCfg = addFrameReference(
|
|
BuildMI(MBB, Before, DebugLoc(), TII->get(X86::PLDTILECFGV)), CfgSS);
|
|
LastShapeMI = nullptr;
|
|
Change = true;
|
|
};
|
|
auto HasTileOperand = [](MachineRegisterInfo *MRI, MachineInstr &MI) {
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg.isVirtual() &&
|
|
MRI->getRegClass(Reg)->getID() == X86::TILERegClassID)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
for (MachineInstr &MI : reverse(MBB)) {
|
|
// We have transformed phi node before configuring BB.
|
|
if (MI.isPHI())
|
|
break;
|
|
// Don't collect the shape of used tile, the tile should be defined
|
|
// before the tile use. Spill and reload would happen if there is only
|
|
// tile use after ldtilecfg, so the shape can be collected from reload.
|
|
// Take below code for example. %t would be reloaded before tilestore
|
|
// call
|
|
// ....
|
|
// tilestore %r, %c, %t
|
|
// -->
|
|
// call
|
|
// ldtilecfg
|
|
// %t = tileload %r, %c
|
|
// tilestore %r, %c, %t
|
|
if (HasTileOperand(MRI, MI))
|
|
HasUnconfigTile = true;
|
|
// According to AMX ABI, all the tile registers including config register
|
|
// are volatile. Caller need to save/restore config register.
|
|
if (MI.isCall() && HasUnconfigTile) {
|
|
MachineBasicBlock::iterator I;
|
|
if (LastShapeMI && dominates(MBB, MI, LastShapeMI))
|
|
I = ++LastShapeMI->getIterator();
|
|
else
|
|
I = ++MI.getIterator();
|
|
Config(*I);
|
|
HasUnconfigTile = false;
|
|
continue;
|
|
}
|
|
if (!isTileDef(MRI, MI))
|
|
continue;
|
|
//
|
|
//---------------------------------------------------------------------
|
|
// Don't handle COPY instruction. If the src and dst of the COPY can be
|
|
// in the same config in below case, we just check the shape of t0.
|
|
// def row0
|
|
// def col0
|
|
// ldtilecfg
|
|
// t0 = tielzero(row0, col0)
|
|
// t1 = copy t0
|
|
// ...
|
|
// If the src and dst of the COPY can NOT be in the same config in below
|
|
// case. Reload would be generated befor the copy instruction.
|
|
// def row0
|
|
// def col0
|
|
// t0 = tielzero(row0, col0)
|
|
// spill t0
|
|
// ...
|
|
// def row1
|
|
// def col1
|
|
// ldtilecfg
|
|
// t1 = tilezero(row1, col1)
|
|
// reload t0
|
|
// t1 = copy t0
|
|
//---------------------------------------------------------------------
|
|
//
|
|
// If MI dominate the last shape def instruction, we need insert
|
|
// ldtilecfg after LastShapeMI now. The config doesn't include
|
|
// current MI.
|
|
// def row0
|
|
// def col0
|
|
// tilezero(row0, col0) <- MI
|
|
// def row1
|
|
// def col1
|
|
// ldtilecfg <- insert
|
|
// tilezero(row1, col1)
|
|
if (LastShapeMI && dominates(MBB, MI, LastShapeMI))
|
|
Config(*(++LastShapeMI->getIterator()));
|
|
MachineOperand *RowMO = &MI.getOperand(1);
|
|
MachineOperand *ColMO = &MI.getOperand(2);
|
|
MachineInstr *RowMI = MRI->getVRegDef(RowMO->getReg());
|
|
MachineInstr *ColMI = MRI->getVRegDef(ColMO->getReg());
|
|
// If the shape is defined in current MBB, check the domination.
|
|
// FIXME how about loop?
|
|
if (RowMI->getParent() == &MBB) {
|
|
if (!LastShapeMI)
|
|
LastShapeMI = RowMI;
|
|
else if (dominates(MBB, LastShapeMI, RowMI))
|
|
LastShapeMI = RowMI;
|
|
}
|
|
if (ColMI->getParent() == &MBB) {
|
|
if (!LastShapeMI)
|
|
LastShapeMI = ColMI;
|
|
else if (dominates(MBB, LastShapeMI, ColMI))
|
|
LastShapeMI = ColMI;
|
|
}
|
|
// If there is user live out of the tilecfg, spill it and reload in
|
|
// before the user.
|
|
Register TileReg = MI.getOperand(0).getReg();
|
|
if (mayLiveOut(TileReg, LastTileCfg))
|
|
spill(++MI.getIterator(), TileReg, false);
|
|
for (MachineInstr &UseMI : MRI->use_instructions(TileReg)) {
|
|
if (UseMI.getParent() == &MBB) {
|
|
// check user should not across ldtilecfg
|
|
if (!LastTileCfg || !dominates(MBB, LastTileCfg, UseMI))
|
|
continue;
|
|
// reload befor UseMI
|
|
reload(UseMI.getIterator(), TileReg, RowMO, ColMO);
|
|
} else {
|
|
// Don't reload for phi instruction, we handle phi reload separately.
|
|
// TODO: merge the reload for the same user MBB.
|
|
if (!UseMI.isPHI())
|
|
reload(UseMI.getIterator(), TileReg, RowMO, ColMO);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Configure tile registers at the head of the MBB
|
|
if (HasUnconfigTile) {
|
|
MachineInstr *Before;
|
|
if (LastShapeMI == nullptr || LastShapeMI->isPHI())
|
|
Before = &*MBB.getFirstNonPHI();
|
|
else
|
|
Before = &*(++LastShapeMI->getIterator());
|
|
|
|
Config(*Before);
|
|
}
|
|
|
|
return Change;
|
|
}
|
|
|
|
bool X86FastPreTileConfig::runOnMachineFunction(MachineFunction &MFunc) {
|
|
MF = &MFunc;
|
|
MRI = &MFunc.getRegInfo();
|
|
ST = &MFunc.getSubtarget<X86Subtarget>();
|
|
TII = ST->getInstrInfo();
|
|
X86FI = MFunc.getInfo<X86MachineFunctionInfo>();
|
|
MFI = &MFunc.getFrameInfo();
|
|
TRI = ST->getRegisterInfo();
|
|
CfgSS = -1;
|
|
|
|
unsigned NumVirtRegs = MRI->getNumVirtRegs();
|
|
// Abandon early if there is no tile register to config.
|
|
bool HasVirtTileReg = false;
|
|
for (unsigned I = 0, E = NumVirtRegs; I != E; ++I) {
|
|
Register VirtReg = Register::index2VirtReg(I);
|
|
if (MRI->getRegClass(VirtReg)->getID() == X86::TILERegClassID) {
|
|
HasVirtTileReg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasVirtTileReg)
|
|
return false;
|
|
|
|
StackSlotForVirtReg.resize(NumVirtRegs);
|
|
MayLiveAcrossBlocks.clear();
|
|
// We will create register during config. *3 is to make sure
|
|
// the virtual register number doesn't exceed the size of
|
|
// the bit vector.
|
|
MayLiveAcrossBlocks.resize(NumVirtRegs * 3);
|
|
bool Change = false;
|
|
assert(MRI->isSSA());
|
|
|
|
// Canonicalize the phi node first.
|
|
for (MachineBasicBlock &MBB : MFunc)
|
|
canonicalizePHIs(MBB);
|
|
|
|
// Loop over all of the basic blocks in reverse post order and insert
|
|
// ldtilecfg for tile registers. The reserse post order is to facilitate
|
|
// PHI node convert.
|
|
ReversePostOrderTraversal<MachineFunction *> RPOT(MF);
|
|
for (MachineBasicBlock *MBB : RPOT) {
|
|
convertPHIs(*MBB);
|
|
Change |= configBasicBlock(*MBB);
|
|
}
|
|
|
|
if (Change)
|
|
InitializeTileConfigStackSpace();
|
|
|
|
StackSlotForVirtReg.clear();
|
|
return Change;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86FastPreTileConfigPass() {
|
|
return new X86FastPreTileConfig();
|
|
}
|