
Many uses of getIntPtrType() were using that type to calculate the neened type for GEP offset arguments. However, some time ago, DataLayout was extended to support pointers where the size of the pointer is not equal to the size of the values used to index it. Much code was already migrated to, for example, use getIndexSizeInBits instead of getPtrSizeInBits, but some rewrites still used getIntPtrType() to get the type for GEP offsets. This commit changes uses of getIntPtrType() to getIndexType() where they are involved in a GEP-related calculation. In at least one case (bounds check insertion) this resolves a compiler crash that the new test added here would previously trigger. This commit does not impact - C library-related rewriting (memcpy()), which are operating under the assumption that intptr_t == size_t. While all the mechanisms for breaking this assumption now exist, doing so is outside the scope of this commit. - Code generation and below. Note that the use of getIntPtrType() in CodeGenPrepare will be changed in a future commit. - Usage of getIntPtrType() in any backend Depends on D143435 Reviewed By: arichardson Differential Revision: https://reviews.llvm.org/D143437
661 lines
24 KiB
C++
661 lines
24 KiB
C++
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass reassociates n-ary add expressions and eliminates the redundancy
|
|
// exposed by the reassociation.
|
|
//
|
|
// A motivating example:
|
|
//
|
|
// void foo(int a, int b) {
|
|
// bar(a + b);
|
|
// bar((a + 2) + b);
|
|
// }
|
|
//
|
|
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
|
|
// the above code to
|
|
//
|
|
// int t = a + b;
|
|
// bar(t);
|
|
// bar(t + 2);
|
|
//
|
|
// However, the Reassociate pass is unable to do that because it processes each
|
|
// instruction individually and believes (a + 2) + b is the best form according
|
|
// to its rank system.
|
|
//
|
|
// To address this limitation, NaryReassociate reassociates an expression in a
|
|
// form that reuses existing instructions. As a result, NaryReassociate can
|
|
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
|
|
// (a + b) is computed before.
|
|
//
|
|
// NaryReassociate works as follows. For every instruction in the form of (a +
|
|
// b) + c, it checks whether a + c or b + c is already computed by a dominating
|
|
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
|
|
// c) + a and removes the redundancy accordingly. To efficiently look up whether
|
|
// an expression is computed before, we store each instruction seen and its SCEV
|
|
// into an SCEV-to-instruction map.
|
|
//
|
|
// Although the algorithm pattern-matches only ternary additions, it
|
|
// automatically handles many >3-ary expressions by walking through the function
|
|
// in the depth-first order. For example, given
|
|
//
|
|
// (a + c) + d
|
|
// ((a + b) + c) + d
|
|
//
|
|
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
|
|
// ((a + c) + b) + d into ((a + c) + d) + b.
|
|
//
|
|
// Finally, the above dominator-based algorithm may need to be run multiple
|
|
// iterations before emitting optimal code. One source of this need is that we
|
|
// only split an operand when it is used only once. The above algorithm can
|
|
// eliminate an instruction and decrease the usage count of its operands. As a
|
|
// result, an instruction that previously had multiple uses may become a
|
|
// single-use instruction and thus eligible for split consideration. For
|
|
// example,
|
|
//
|
|
// ac = a + c
|
|
// ab = a + b
|
|
// abc = ab + c
|
|
// ab2 = ab + b
|
|
// ab2c = ab2 + c
|
|
//
|
|
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
|
|
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
|
|
// result, ab2 becomes dead and ab will be used only once in the second
|
|
// iteration.
|
|
//
|
|
// Limitations and TODO items:
|
|
//
|
|
// 1) We only considers n-ary adds and muls for now. This should be extended
|
|
// and generalized.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/NaryReassociate.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "nary-reassociate"
|
|
|
|
namespace {
|
|
|
|
class NaryReassociateLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
NaryReassociateLegacyPass() : FunctionPass(ID) {
|
|
initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
private:
|
|
NaryReassociatePass Impl;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char NaryReassociateLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
|
|
"Nary reassociation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
|
|
"Nary reassociation", false, false)
|
|
|
|
FunctionPass *llvm::createNaryReassociatePass() {
|
|
return new NaryReassociateLegacyPass();
|
|
}
|
|
|
|
bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
|
|
}
|
|
|
|
PreservedAnalyses NaryReassociatePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
|
|
|
|
if (!runImpl(F, AC, DT, SE, TLI, TTI))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
|
|
DominatorTree *DT_, ScalarEvolution *SE_,
|
|
TargetLibraryInfo *TLI_,
|
|
TargetTransformInfo *TTI_) {
|
|
AC = AC_;
|
|
DT = DT_;
|
|
SE = SE_;
|
|
TLI = TLI_;
|
|
TTI = TTI_;
|
|
DL = &F.getParent()->getDataLayout();
|
|
|
|
bool Changed = false, ChangedInThisIteration;
|
|
do {
|
|
ChangedInThisIteration = doOneIteration(F);
|
|
Changed |= ChangedInThisIteration;
|
|
} while (ChangedInThisIteration);
|
|
return Changed;
|
|
}
|
|
|
|
bool NaryReassociatePass::doOneIteration(Function &F) {
|
|
bool Changed = false;
|
|
SeenExprs.clear();
|
|
// Process the basic blocks in a depth first traversal of the dominator
|
|
// tree. This order ensures that all bases of a candidate are in Candidates
|
|
// when we process it.
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
for (const auto Node : depth_first(DT)) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
for (Instruction &OrigI : *BB) {
|
|
const SCEV *OrigSCEV = nullptr;
|
|
if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
|
|
Changed = true;
|
|
OrigI.replaceAllUsesWith(NewI);
|
|
|
|
// Add 'OrigI' to the list of dead instructions.
|
|
DeadInsts.push_back(WeakTrackingVH(&OrigI));
|
|
// Add the rewritten instruction to SeenExprs; the original
|
|
// instruction is deleted.
|
|
const SCEV *NewSCEV = SE->getSCEV(NewI);
|
|
SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
|
|
|
|
// Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
|
|
// is equivalent to I. However, ScalarEvolution::getSCEV may
|
|
// weaken nsw causing NewSCEV not to equal OldSCEV. For example,
|
|
// suppose we reassociate
|
|
// I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
|
|
// to
|
|
// NewI = &a[sext(i)] + sext(j).
|
|
//
|
|
// ScalarEvolution computes
|
|
// getSCEV(I) = a + 4 * sext(i + j)
|
|
// getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
|
|
// which are different SCEVs.
|
|
//
|
|
// To alleviate this issue of ScalarEvolution not always capturing
|
|
// equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
|
|
// map both SCEV before and after tryReassociate(I) to I.
|
|
//
|
|
// This improvement is exercised in @reassociate_gep_nsw in
|
|
// nary-gep.ll.
|
|
if (NewSCEV != OrigSCEV)
|
|
SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
|
|
} else if (OrigSCEV)
|
|
SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
|
|
}
|
|
}
|
|
// Delete all dead instructions from 'DeadInsts'.
|
|
// Please note ScalarEvolution is updated along the way.
|
|
RecursivelyDeleteTriviallyDeadInstructionsPermissive(
|
|
DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
|
|
|
|
return Changed;
|
|
}
|
|
|
|
template <typename PredT>
|
|
Instruction *
|
|
NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
|
|
const SCEV *&OrigSCEV) {
|
|
Value *LHS = nullptr;
|
|
Value *RHS = nullptr;
|
|
|
|
auto MinMaxMatcher =
|
|
MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
|
|
m_Value(LHS), m_Value(RHS));
|
|
if (match(I, MinMaxMatcher)) {
|
|
OrigSCEV = SE->getSCEV(I);
|
|
if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
|
|
tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS)))
|
|
return NewMinMax;
|
|
if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
|
|
tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS)))
|
|
return NewMinMax;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
|
|
const SCEV *&OrigSCEV) {
|
|
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return nullptr;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
OrigSCEV = SE->getSCEV(I);
|
|
return tryReassociateBinaryOp(cast<BinaryOperator>(I));
|
|
case Instruction::GetElementPtr:
|
|
OrigSCEV = SE->getSCEV(I);
|
|
return tryReassociateGEP(cast<GetElementPtrInst>(I));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Try to match signed/unsigned Min/Max.
|
|
Instruction *ResI = nullptr;
|
|
// TODO: Currently min/max reassociation is restricted to integer types only
|
|
// due to use of SCEVExpander which my introduce incompatible forms of min/max
|
|
// for pointer types.
|
|
if (I->getType()->isIntegerTy())
|
|
if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
|
|
return ResI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isGEPFoldable(GetElementPtrInst *GEP,
|
|
const TargetTransformInfo *TTI) {
|
|
SmallVector<const Value *, 4> Indices(GEP->indices());
|
|
return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
|
|
Indices) == TargetTransformInfo::TCC_Free;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
|
|
// Not worth reassociating GEP if it is foldable.
|
|
if (isGEPFoldable(GEP, TTI))
|
|
return nullptr;
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
|
|
GTI.getIndexedType())) {
|
|
return NewGEP;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool NaryReassociatePass::requiresSignExtension(Value *Index,
|
|
GetElementPtrInst *GEP) {
|
|
unsigned IndexSizeInBits =
|
|
DL->getIndexSizeInBits(GEP->getType()->getPointerAddressSpace());
|
|
return cast<IntegerType>(Index->getType())->getBitWidth() < IndexSizeInBits;
|
|
}
|
|
|
|
GetElementPtrInst *
|
|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
|
unsigned I, Type *IndexedType) {
|
|
Value *IndexToSplit = GEP->getOperand(I + 1);
|
|
if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
|
|
IndexToSplit = SExt->getOperand(0);
|
|
} else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
|
|
// zext can be treated as sext if the source is non-negative.
|
|
if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
|
|
IndexToSplit = ZExt->getOperand(0);
|
|
}
|
|
|
|
if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
|
|
// If the I-th index needs sext and the underlying add is not equipped with
|
|
// nsw, we cannot split the add because
|
|
// sext(LHS + RHS) != sext(LHS) + sext(RHS).
|
|
if (requiresSignExtension(IndexToSplit, GEP) &&
|
|
computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
|
|
OverflowResult::NeverOverflows)
|
|
return nullptr;
|
|
|
|
Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
|
|
// IndexToSplit = LHS + RHS.
|
|
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
|
|
return NewGEP;
|
|
// Symmetrically, try IndexToSplit = RHS + LHS.
|
|
if (LHS != RHS) {
|
|
if (auto *NewGEP =
|
|
tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
|
|
return NewGEP;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
GetElementPtrInst *
|
|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
|
unsigned I, Value *LHS,
|
|
Value *RHS, Type *IndexedType) {
|
|
// Look for GEP's closest dominator that has the same SCEV as GEP except that
|
|
// the I-th index is replaced with LHS.
|
|
SmallVector<const SCEV *, 4> IndexExprs;
|
|
for (Use &Index : GEP->indices())
|
|
IndexExprs.push_back(SE->getSCEV(Index));
|
|
// Replace the I-th index with LHS.
|
|
IndexExprs[I] = SE->getSCEV(LHS);
|
|
if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
|
|
DL->getTypeSizeInBits(LHS->getType()).getFixedValue() <
|
|
DL->getTypeSizeInBits(GEP->getOperand(I)->getType())
|
|
.getFixedValue()) {
|
|
// Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
|
|
// zext if the source operand is proved non-negative. We should do that
|
|
// consistently so that CandidateExpr more likely appears before. See
|
|
// @reassociate_gep_assume for an example of this canonicalization.
|
|
IndexExprs[I] =
|
|
SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
|
|
}
|
|
const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
|
|
IndexExprs);
|
|
|
|
Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
|
|
if (Candidate == nullptr)
|
|
return nullptr;
|
|
|
|
IRBuilder<> Builder(GEP);
|
|
// Candidate does not necessarily have the same pointer type as GEP. Use
|
|
// bitcast or pointer cast to make sure they have the same type, so that the
|
|
// later RAUW doesn't complain.
|
|
Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
|
|
assert(Candidate->getType() == GEP->getType());
|
|
|
|
// NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
|
|
uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
|
|
Type *ElementType = GEP->getResultElementType();
|
|
uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
|
|
// Another less rare case: because I is not necessarily the last index of the
|
|
// GEP, the size of the type at the I-th index (IndexedSize) is not
|
|
// necessarily divisible by ElementSize. For example,
|
|
//
|
|
// #pragma pack(1)
|
|
// struct S {
|
|
// int a[3];
|
|
// int64 b[8];
|
|
// };
|
|
// #pragma pack()
|
|
//
|
|
// sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
|
|
//
|
|
// TODO: bail out on this case for now. We could emit uglygep.
|
|
if (IndexedSize % ElementSize != 0)
|
|
return nullptr;
|
|
|
|
// NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
|
|
Type *PtrIdxTy = DL->getIndexType(GEP->getType());
|
|
if (RHS->getType() != PtrIdxTy)
|
|
RHS = Builder.CreateSExtOrTrunc(RHS, PtrIdxTy);
|
|
if (IndexedSize != ElementSize) {
|
|
RHS = Builder.CreateMul(
|
|
RHS, ConstantInt::get(PtrIdxTy, IndexedSize / ElementSize));
|
|
}
|
|
GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
|
|
Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
|
|
NewGEP->setIsInBounds(GEP->isInBounds());
|
|
NewGEP->takeName(GEP);
|
|
return NewGEP;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
// There is no need to reassociate 0.
|
|
if (SE->getSCEV(I)->isZero())
|
|
return nullptr;
|
|
if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
|
|
return NewI;
|
|
if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
|
|
return NewI;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
|
BinaryOperator *I) {
|
|
Value *A = nullptr, *B = nullptr;
|
|
// To be conservative, we reassociate I only when it is the only user of (A op
|
|
// B).
|
|
if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
|
|
// I = (A op B) op RHS
|
|
// = (A op RHS) op B or (B op RHS) op A
|
|
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
|
|
const SCEV *RHSExpr = SE->getSCEV(RHS);
|
|
if (BExpr != RHSExpr) {
|
|
if (auto *NewI =
|
|
tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
|
|
return NewI;
|
|
}
|
|
if (AExpr != RHSExpr) {
|
|
if (auto *NewI =
|
|
tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
|
|
return NewI;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
|
|
Value *RHS,
|
|
BinaryOperator *I) {
|
|
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
|
|
// I with LHS op RHS.
|
|
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
|
|
if (LHS == nullptr)
|
|
return nullptr;
|
|
|
|
Instruction *NewI = nullptr;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
|
|
break;
|
|
case Instruction::Mul:
|
|
NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
NewI->takeName(I);
|
|
return NewI;
|
|
}
|
|
|
|
bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
|
|
Value *&Op1, Value *&Op2) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
|
|
case Instruction::Mul:
|
|
return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
|
|
const SCEV *LHS,
|
|
const SCEV *RHS) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
return SE->getAddExpr(LHS, RHS);
|
|
case Instruction::Mul:
|
|
return SE->getMulExpr(LHS, RHS);
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *
|
|
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
|
|
Instruction *Dominatee) {
|
|
auto Pos = SeenExprs.find(CandidateExpr);
|
|
if (Pos == SeenExprs.end())
|
|
return nullptr;
|
|
|
|
auto &Candidates = Pos->second;
|
|
// Because we process the basic blocks in pre-order of the dominator tree, a
|
|
// candidate that doesn't dominate the current instruction won't dominate any
|
|
// future instruction either. Therefore, we pop it out of the stack. This
|
|
// optimization makes the algorithm O(n).
|
|
while (!Candidates.empty()) {
|
|
// Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
|
|
// removed
|
|
// during rewriting.
|
|
if (Value *Candidate = Candidates.back()) {
|
|
Instruction *CandidateInstruction = cast<Instruction>(Candidate);
|
|
if (DT->dominates(CandidateInstruction, Dominatee))
|
|
return CandidateInstruction;
|
|
}
|
|
Candidates.pop_back();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
|
|
if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>)
|
|
return scSMaxExpr;
|
|
else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>)
|
|
return scUMaxExpr;
|
|
else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>)
|
|
return scSMinExpr;
|
|
else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>)
|
|
return scUMinExpr;
|
|
|
|
llvm_unreachable("Can't convert MinMax pattern to SCEV type");
|
|
return scUnknown;
|
|
}
|
|
|
|
// Parameters:
|
|
// I - instruction matched by MaxMinMatch matcher
|
|
// MaxMinMatch - min/max idiom matcher
|
|
// LHS - first operand of I
|
|
// RHS - second operand of I
|
|
template <typename MaxMinT>
|
|
Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
|
|
MaxMinT MaxMinMatch,
|
|
Value *LHS, Value *RHS) {
|
|
Value *A = nullptr, *B = nullptr;
|
|
MaxMinT m_MaxMin(m_Value(A), m_Value(B));
|
|
|
|
if (LHS->hasNUsesOrMore(3) ||
|
|
// The optimization is profitable only if LHS can be removed in the end.
|
|
// In other words LHS should be used (directly or indirectly) by I only.
|
|
llvm::any_of(LHS->users(),
|
|
[&](auto *U) {
|
|
return U != I &&
|
|
!(U->hasOneUser() && *U->users().begin() == I);
|
|
}) ||
|
|
!match(LHS, m_MaxMin))
|
|
return nullptr;
|
|
|
|
auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B,
|
|
const SCEV *BExpr, Value *C,
|
|
const SCEV *CExpr) -> Value * {
|
|
SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr};
|
|
const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
|
|
const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
|
|
|
|
Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
|
|
|
|
if (!R1MinMax)
|
|
return nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n");
|
|
|
|
SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C),
|
|
SE->getUnknown(R1MinMax)};
|
|
const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
|
|
|
|
SCEVExpander Expander(*SE, *DL, "nary-reassociate");
|
|
Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
|
|
NewMinMax->setName(Twine(I->getName()).concat(".nary"));
|
|
|
|
LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n"
|
|
<< "NARY: Inserting: " << *NewMinMax << "\n");
|
|
return NewMinMax;
|
|
};
|
|
|
|
const SCEV *AExpr = SE->getSCEV(A);
|
|
const SCEV *BExpr = SE->getSCEV(B);
|
|
const SCEV *RHSExpr = SE->getSCEV(RHS);
|
|
|
|
if (BExpr != RHSExpr) {
|
|
// Try (A op RHS) op B
|
|
if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr))
|
|
return NewMinMax;
|
|
}
|
|
|
|
if (AExpr != RHSExpr) {
|
|
// Try (RHS op B) op A
|
|
if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr))
|
|
return NewMinMax;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|