Florian Hahn bf9e0da1a5
[VPlan] Switch default graph traits to be recursive, update VPDomTree.
This updates the GraphTraits specialization for VPBlockBase to recurse
through VPRegionBlocks.

This in turn enables using VPDominatorTree to query dominance between
any block in a plan. This should enable additional use cases, including
improvements to def-use verification and porting IR-based transforms
that rely on the dominator tree.

Specifically, this change means that for regions, the entry and exit
blocks dominate the successors of the region.

Depends on D140512 and D142162.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D140513
2023-01-23 14:00:43 +00:00

311 lines
10 KiB
C++

//===- VPlanCFG.h - GraphTraits for VP blocks -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// Specializations of GraphTraits that allow VPBlockBase graphs to be
/// treated as proper graphs for generic algorithms;
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANCFG_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLANCFG_H
#include "VPlan.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
//===----------------------------------------------------------------------===//
/// Iterator to traverse all successors of a VPBlockBase node. This includes the
/// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their
/// parent region's successors. This ensures all blocks in a region are visited
/// before any blocks in a successor region when doing a reverse post-order
// traversal of the graph. Region blocks themselves traverse only their entries
// directly and not their successors. Those will be traversed when a region's
// exiting block is traversed
template <typename BlockPtrTy>
class VPAllSuccessorsIterator
: public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>,
std::bidirectional_iterator_tag,
VPBlockBase> {
BlockPtrTy Block;
/// Index of the current successor. For VPBasicBlock nodes, this simply is the
/// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is
/// used for the region's entry block, and SuccessorIdx - 1 are the indices
/// for the successor array.
size_t SuccessorIdx;
static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) {
while (Current && Current->getNumSuccessors() == 0)
Current = Current->getParent();
return Current;
}
/// Templated helper to dereference successor \p SuccIdx of \p Block. Used by
/// both the const and non-const operator* implementations.
template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) {
if (auto *R = dyn_cast<VPRegionBlock>(Block)) {
assert(SuccIdx == 0);
return R->getEntry();
}
// For exit blocks, use the next parent region with successors.
return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx];
}
public:
/// Used by iterator_facade_base with bidirectional_iterator_tag.
using reference = BlockPtrTy;
VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0)
: Block(Block), SuccessorIdx(Idx) {}
VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other)
: Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {}
VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) {
Block = R.Block;
SuccessorIdx = R.SuccessorIdx;
return *this;
}
static VPAllSuccessorsIterator end(BlockPtrTy Block) {
if (auto *R = dyn_cast<VPRegionBlock>(Block)) {
// Traverse through the region's entry node.
return {R, 1};
}
BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block);
unsigned NumSuccessors =
ParentWithSuccs ? ParentWithSuccs->getNumSuccessors() : 0;
return {Block, NumSuccessors};
}
bool operator==(const VPAllSuccessorsIterator &R) const {
return Block == R.Block && SuccessorIdx == R.SuccessorIdx;
}
const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); }
BlockPtrTy operator*() { return deref(Block, SuccessorIdx); }
VPAllSuccessorsIterator &operator++() {
SuccessorIdx++;
return *this;
}
VPAllSuccessorsIterator &operator--() {
SuccessorIdx--;
return *this;
}
VPAllSuccessorsIterator operator++(int X) {
VPAllSuccessorsIterator Orig = *this;
SuccessorIdx++;
return Orig;
}
};
/// Helper for GraphTraits specialization that traverses through VPRegionBlocks.
template <typename BlockTy> class VPBlockDeepTraversalWrapper {
BlockTy Entry;
public:
VPBlockDeepTraversalWrapper(BlockTy Entry) : Entry(Entry) {}
BlockTy getEntry() { return Entry; }
};
/// GraphTraits specialization to recursively traverse VPBlockBase nodes,
/// including traversing through VPRegionBlocks. Exit blocks of a region
/// implicitly have their parent region's successors. This ensures all blocks in
/// a region are visited before any blocks in a successor region when doing a
/// reverse post-order traversal of the graph.
template <> struct GraphTraits<VPBlockDeepTraversalWrapper<VPBlockBase *>> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>;
static NodeRef getEntryNode(VPBlockDeepTraversalWrapper<VPBlockBase *> N) {
return N.getEntry();
}
static inline ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N);
}
static inline ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType::end(N);
}
};
template <>
struct GraphTraits<VPBlockDeepTraversalWrapper<const VPBlockBase *>> {
using NodeRef = const VPBlockBase *;
using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>;
static NodeRef
getEntryNode(VPBlockDeepTraversalWrapper<const VPBlockBase *> N) {
return N.getEntry();
}
static inline ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N);
}
static inline ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType::end(N);
}
};
/// Helper for GraphTraits specialization that does not traverses through
/// VPRegionBlocks.
template <typename BlockTy> class VPBlockShallowTraversalWrapper {
BlockTy Entry;
public:
VPBlockShallowTraversalWrapper(BlockTy Entry) : Entry(Entry) {}
BlockTy getEntry() { return Entry; }
};
template <> struct GraphTraits<VPBlockShallowTraversalWrapper<VPBlockBase *>> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
static NodeRef getEntryNode(VPBlockShallowTraversalWrapper<VPBlockBase *> N) {
return N.getEntry();
}
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
template <>
struct GraphTraits<VPBlockShallowTraversalWrapper<const VPBlockBase *>> {
using NodeRef = const VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
static NodeRef
getEntryNode(VPBlockShallowTraversalWrapper<const VPBlockBase *> N) {
return N.getEntry();
}
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
/// Returns an iterator range to traverse the graph starting at \p G in
/// depth-first order. The iterator won't traverse through region blocks.
inline iterator_range<
df_iterator<VPBlockShallowTraversalWrapper<VPBlockBase *>>>
vp_depth_first_shallow(VPBlockBase *G) {
return depth_first(VPBlockShallowTraversalWrapper<VPBlockBase *>(G));
}
inline iterator_range<
df_iterator<VPBlockShallowTraversalWrapper<const VPBlockBase *>>>
vp_depth_first_shallow(const VPBlockBase *G) {
return depth_first(VPBlockShallowTraversalWrapper<const VPBlockBase *>(G));
}
/// Returns an iterator range to traverse the graph starting at \p G in
/// depth-first order while traversing through region blocks.
inline iterator_range<df_iterator<VPBlockDeepTraversalWrapper<VPBlockBase *>>>
vp_depth_first_deep(VPBlockBase *G) {
return depth_first(VPBlockDeepTraversalWrapper<VPBlockBase *>(G));
}
inline iterator_range<
df_iterator<VPBlockDeepTraversalWrapper<const VPBlockBase *>>>
vp_depth_first_deep(const VPBlockBase *G) {
return depth_first(VPBlockDeepTraversalWrapper<const VPBlockBase *>(G));
}
// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.
template <> struct GraphTraits<VPBlockBase *> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N);
}
static inline ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType::end(N);
}
};
template <> struct GraphTraits<const VPBlockBase *> {
using NodeRef = const VPBlockBase *;
using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N);
}
static inline ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType::end(N);
}
};
/// Inverse graph traits are not implemented yet.
/// TODO: Implement a version of VPBlockNonRecursiveTraversalWrapper to traverse
/// predecessors recursively through regions.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
static NodeRef getEntryNode(Inverse<NodeRef> B) {
llvm_unreachable("not implemented");
}
static inline ChildIteratorType child_begin(NodeRef N) {
llvm_unreachable("not implemented");
}
static inline ChildIteratorType child_end(NodeRef N) {
llvm_unreachable("not implemented");
}
};
template <> struct GraphTraits<VPlan *> {
using GraphRef = VPlan *;
using NodeRef = VPBlockBase *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getEntry());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N->getEntry());
}
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLANCFG_H