llvm-project/llvm/tools/llvm-exegesis/llvm-exegesis.cpp
Pavel Kosov b02e2ed7ac [llvm-exegesis] Make possible to execute snippets without perf counters
Performance counters may be unavailable due to various reasons (such as
access restriction via sysctl properties or the CPU model being unknown
to libpfm). On the other hand, for debugging llvm-exegesis itself it is
still useful to be able to run generated code snippets to ensure that
the snippet does not crash at run time.

The --use-dummy-perf-counters command line option makes llvm-exegesis
behave just as usual except for using fake event counts instead of asking
the kernel for actual values.

~~

Huawei RRI, OS Lab

Reviewed By: courbet

Differential Revision: https://reviews.llvm.org/D146301
2023-04-06 13:08:48 +03:00

676 lines
27 KiB
C++

//===-- llvm-exegesis.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Measures execution properties (latencies/uops) of an instruction.
///
//===----------------------------------------------------------------------===//
#include "lib/Analysis.h"
#include "lib/BenchmarkResult.h"
#include "lib/BenchmarkRunner.h"
#include "lib/Clustering.h"
#include "lib/Error.h"
#include "lib/LlvmState.h"
#include "lib/PerfHelper.h"
#include "lib/ProgressMeter.h"
#include "lib/SnippetFile.h"
#include "lib/SnippetRepetitor.h"
#include "lib/Target.h"
#include "lib/TargetSelect.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/TargetParser/Host.h"
#include <algorithm>
#include <string>
namespace llvm {
namespace exegesis {
static cl::opt<int> OpcodeIndex(
"opcode-index",
cl::desc("opcode to measure, by index, or -1 to measure all opcodes"),
cl::cat(BenchmarkOptions), cl::init(0));
static cl::opt<std::string>
OpcodeNames("opcode-name",
cl::desc("comma-separated list of opcodes to measure, by name"),
cl::cat(BenchmarkOptions), cl::init(""));
static cl::opt<std::string> SnippetsFile("snippets-file",
cl::desc("code snippets to measure"),
cl::cat(BenchmarkOptions),
cl::init(""));
static cl::opt<std::string>
BenchmarkFile("benchmarks-file",
cl::desc("File to read (analysis mode) or write "
"(latency/uops/inverse_throughput modes) benchmark "
"results. “-” uses stdin/stdout."),
cl::cat(Options), cl::init(""));
static cl::opt<exegesis::Benchmark::ModeE> BenchmarkMode(
"mode", cl::desc("the mode to run"), cl::cat(Options),
cl::values(clEnumValN(exegesis::Benchmark::Latency, "latency",
"Instruction Latency"),
clEnumValN(exegesis::Benchmark::InverseThroughput,
"inverse_throughput",
"Instruction Inverse Throughput"),
clEnumValN(exegesis::Benchmark::Uops, "uops",
"Uop Decomposition"),
// When not asking for a specific benchmark mode,
// we'll analyse the results.
clEnumValN(exegesis::Benchmark::Unknown, "analysis",
"Analysis")));
static cl::opt<exegesis::Benchmark::ResultAggregationModeE>
ResultAggMode(
"result-aggregation-mode",
cl::desc("How to aggregate multi-values result"),
cl::cat(BenchmarkOptions),
cl::values(clEnumValN(exegesis::Benchmark::Min, "min",
"Keep min reading"),
clEnumValN(exegesis::Benchmark::Max, "max",
"Keep max reading"),
clEnumValN(exegesis::Benchmark::Mean, "mean",
"Compute mean of all readings"),
clEnumValN(exegesis::Benchmark::MinVariance,
"min-variance",
"Keep readings set with min-variance")),
cl::init(exegesis::Benchmark::Min));
static cl::opt<exegesis::Benchmark::RepetitionModeE> RepetitionMode(
"repetition-mode", cl::desc("how to repeat the instruction snippet"),
cl::cat(BenchmarkOptions),
cl::values(
clEnumValN(exegesis::Benchmark::Duplicate, "duplicate",
"Duplicate the snippet"),
clEnumValN(exegesis::Benchmark::Loop, "loop",
"Loop over the snippet"),
clEnumValN(exegesis::Benchmark::AggregateMin, "min",
"All of the above and take the minimum of measurements")),
cl::init(exegesis::Benchmark::Duplicate));
static cl::opt<bool> BenchmarkMeasurementsPrintProgress(
"measurements-print-progress",
cl::desc("Produce progress indicator when performing measurements"),
cl::cat(BenchmarkOptions), cl::init(false));
static cl::opt<exegesis::BenchmarkPhaseSelectorE> BenchmarkPhaseSelector(
"benchmark-phase",
cl::desc(
"it is possible to stop the benchmarking process after some phase"),
cl::cat(BenchmarkOptions),
cl::values(
clEnumValN(exegesis::BenchmarkPhaseSelectorE::PrepareSnippet,
"prepare-snippet",
"Only generate the minimal instruction sequence"),
clEnumValN(exegesis::BenchmarkPhaseSelectorE::PrepareAndAssembleSnippet,
"prepare-and-assemble-snippet",
"Same as prepare-snippet, but also dumps an excerpt of the "
"sequence (hex encoded)"),
clEnumValN(exegesis::BenchmarkPhaseSelectorE::AssembleMeasuredCode,
"assemble-measured-code",
"Same as prepare-and-assemble-snippet, but also creates the "
"full sequence "
"that can be dumped to a file using --dump-object-to-disk"),
clEnumValN(
exegesis::BenchmarkPhaseSelectorE::Measure, "measure",
"Same as prepare-measured-code, but also runs the measurement "
"(default)")),
cl::init(exegesis::BenchmarkPhaseSelectorE::Measure));
static cl::opt<bool>
UseDummyPerfCounters("use-dummy-perf-counters",
cl::desc("Do not read real performance counters, use "
"dummy values (for testing)"),
cl::cat(BenchmarkOptions), cl::init(false));
static cl::opt<unsigned>
NumRepetitions("num-repetitions",
cl::desc("number of time to repeat the asm snippet"),
cl::cat(BenchmarkOptions), cl::init(10000));
static cl::opt<unsigned>
LoopBodySize("loop-body-size",
cl::desc("when repeating the instruction snippet by looping "
"over it, duplicate the snippet until the loop body "
"contains at least this many instruction"),
cl::cat(BenchmarkOptions), cl::init(0));
static cl::opt<unsigned> MaxConfigsPerOpcode(
"max-configs-per-opcode",
cl::desc(
"allow to snippet generator to generate at most that many configs"),
cl::cat(BenchmarkOptions), cl::init(1));
static cl::opt<bool> IgnoreInvalidSchedClass(
"ignore-invalid-sched-class",
cl::desc("ignore instructions that do not define a sched class"),
cl::cat(BenchmarkOptions), cl::init(false));
static cl::opt<exegesis::BenchmarkFilter> AnalysisSnippetFilter(
"analysis-filter", cl::desc("Filter the benchmarks before analysing them"),
cl::cat(BenchmarkOptions),
cl::values(
clEnumValN(exegesis::BenchmarkFilter::All, "all",
"Keep all benchmarks (default)"),
clEnumValN(exegesis::BenchmarkFilter::RegOnly, "reg-only",
"Keep only those benchmarks that do *NOT* involve memory"),
clEnumValN(exegesis::BenchmarkFilter::WithMem, "mem-only",
"Keep only the benchmarks that *DO* involve memory")),
cl::init(exegesis::BenchmarkFilter::All));
static cl::opt<exegesis::BenchmarkClustering::ModeE>
AnalysisClusteringAlgorithm(
"analysis-clustering", cl::desc("the clustering algorithm to use"),
cl::cat(AnalysisOptions),
cl::values(clEnumValN(exegesis::BenchmarkClustering::Dbscan,
"dbscan", "use DBSCAN/OPTICS algorithm"),
clEnumValN(exegesis::BenchmarkClustering::Naive,
"naive", "one cluster per opcode")),
cl::init(exegesis::BenchmarkClustering::Dbscan));
static cl::opt<unsigned> AnalysisDbscanNumPoints(
"analysis-numpoints",
cl::desc("minimum number of points in an analysis cluster (dbscan only)"),
cl::cat(AnalysisOptions), cl::init(3));
static cl::opt<float> AnalysisClusteringEpsilon(
"analysis-clustering-epsilon",
cl::desc("epsilon for benchmark point clustering"),
cl::cat(AnalysisOptions), cl::init(0.1));
static cl::opt<float> AnalysisInconsistencyEpsilon(
"analysis-inconsistency-epsilon",
cl::desc("epsilon for detection of when the cluster is different from the "
"LLVM schedule profile values"),
cl::cat(AnalysisOptions), cl::init(0.1));
static cl::opt<std::string>
AnalysisClustersOutputFile("analysis-clusters-output-file", cl::desc(""),
cl::cat(AnalysisOptions), cl::init(""));
static cl::opt<std::string>
AnalysisInconsistenciesOutputFile("analysis-inconsistencies-output-file",
cl::desc(""), cl::cat(AnalysisOptions),
cl::init(""));
static cl::opt<bool> AnalysisDisplayUnstableOpcodes(
"analysis-display-unstable-clusters",
cl::desc("if there is more than one benchmark for an opcode, said "
"benchmarks may end up not being clustered into the same cluster "
"if the measured performance characteristics are different. by "
"default all such opcodes are filtered out. this flag will "
"instead show only such unstable opcodes"),
cl::cat(AnalysisOptions), cl::init(false));
static cl::opt<bool> AnalysisOverrideBenchmarksTripleAndCpu(
"analysis-override-benchmark-triple-and-cpu",
cl::desc("By default, we analyze the benchmarks for the triple/CPU they "
"were measured for, but if you want to analyze them for some "
"other combination (specified via -mtriple/-mcpu), you can "
"pass this flag."),
cl::cat(AnalysisOptions), cl::init(false));
static cl::opt<std::string>
TripleName("mtriple",
cl::desc("Target triple. See -version for available targets"),
cl::cat(Options));
static cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"), cl::cat(Options), cl::init("native"));
static cl::opt<bool> DumpObjectToDisk(
"dump-object-to-disk",
cl::desc("dumps the generated benchmark object to disk "
"and prints a message to access it (default = false)"),
cl::cat(BenchmarkOptions), cl::init(false));
static ExitOnError ExitOnErr("llvm-exegesis error: ");
// Helper function that logs the error(s) and exits.
template <typename... ArgTs> static void ExitWithError(ArgTs &&... Args) {
ExitOnErr(make_error<Failure>(std::forward<ArgTs>(Args)...));
}
// Check Err. If it's in a failure state log the file error(s) and exit.
static void ExitOnFileError(const Twine &FileName, Error Err) {
if (Err) {
ExitOnErr(createFileError(FileName, std::move(Err)));
}
}
// Check E. If it's in a success state then return the contained value.
// If it's in a failure state log the file error(s) and exit.
template <typename T>
T ExitOnFileError(const Twine &FileName, Expected<T> &&E) {
ExitOnFileError(FileName, E.takeError());
return std::move(*E);
}
// Checks that only one of OpcodeNames, OpcodeIndex or SnippetsFile is provided,
// and returns the opcode indices or {} if snippets should be read from
// `SnippetsFile`.
static std::vector<unsigned> getOpcodesOrDie(const LLVMState &State) {
const size_t NumSetFlags = (OpcodeNames.empty() ? 0 : 1) +
(OpcodeIndex == 0 ? 0 : 1) +
(SnippetsFile.empty() ? 0 : 1);
if (NumSetFlags != 1) {
ExitOnErr.setBanner("llvm-exegesis: ");
ExitWithError("please provide one and only one of 'opcode-index', "
"'opcode-name' or 'snippets-file'");
}
if (!SnippetsFile.empty())
return {};
if (OpcodeIndex > 0)
return {static_cast<unsigned>(OpcodeIndex)};
if (OpcodeIndex < 0) {
std::vector<unsigned> Result;
unsigned NumOpcodes = State.getInstrInfo().getNumOpcodes();
Result.reserve(NumOpcodes);
for (unsigned I = 0, E = NumOpcodes; I < E; ++I)
Result.push_back(I);
return Result;
}
// Resolve opcode name -> opcode.
const auto ResolveName = [&State](StringRef OpcodeName) -> unsigned {
const auto &Map = State.getOpcodeNameToOpcodeIdxMapping();
auto I = Map.find(OpcodeName);
if (I != Map.end())
return I->getSecond();
return 0u;
};
SmallVector<StringRef, 2> Pieces;
StringRef(OpcodeNames.getValue())
.split(Pieces, ",", /* MaxSplit */ -1, /* KeepEmpty */ false);
std::vector<unsigned> Result;
Result.reserve(Pieces.size());
for (const StringRef &OpcodeName : Pieces) {
if (unsigned Opcode = ResolveName(OpcodeName))
Result.push_back(Opcode);
else
ExitWithError(Twine("unknown opcode ").concat(OpcodeName));
}
return Result;
}
// Generates code snippets for opcode `Opcode`.
static Expected<std::vector<BenchmarkCode>>
generateSnippets(const LLVMState &State, unsigned Opcode,
const BitVector &ForbiddenRegs) {
const Instruction &Instr = State.getIC().getInstr(Opcode);
const MCInstrDesc &InstrDesc = Instr.Description;
// Ignore instructions that we cannot run.
if (InstrDesc.isPseudo() || InstrDesc.usesCustomInsertionHook())
return make_error<Failure>(
"Unsupported opcode: isPseudo/usesCustomInserter");
if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
return make_error<Failure>("Unsupported opcode: isBranch/isIndirectBranch");
if (InstrDesc.isCall() || InstrDesc.isReturn())
return make_error<Failure>("Unsupported opcode: isCall/isReturn");
const std::vector<InstructionTemplate> InstructionVariants =
State.getExegesisTarget().generateInstructionVariants(
Instr, MaxConfigsPerOpcode);
SnippetGenerator::Options SnippetOptions;
SnippetOptions.MaxConfigsPerOpcode = MaxConfigsPerOpcode;
const std::unique_ptr<SnippetGenerator> Generator =
State.getExegesisTarget().createSnippetGenerator(BenchmarkMode, State,
SnippetOptions);
if (!Generator)
ExitWithError("cannot create snippet generator");
std::vector<BenchmarkCode> Benchmarks;
for (const InstructionTemplate &Variant : InstructionVariants) {
if (Benchmarks.size() >= MaxConfigsPerOpcode)
break;
if (auto Err = Generator->generateConfigurations(Variant, Benchmarks,
ForbiddenRegs))
return std::move(Err);
}
return Benchmarks;
}
static void runBenchmarkConfigurations(
const LLVMState &State, ArrayRef<BenchmarkCode> Configurations,
ArrayRef<std::unique_ptr<const SnippetRepetitor>> Repetitors,
const BenchmarkRunner &Runner) {
assert(!Configurations.empty() && "Don't have any configurations to run.");
std::optional<raw_fd_ostream> FileOstr;
if (BenchmarkFile != "-") {
int ResultFD = 0;
// Create output file or open existing file and truncate it, once.
ExitOnErr(errorCodeToError(openFileForWrite(BenchmarkFile, ResultFD,
sys::fs::CD_CreateAlways,
sys::fs::OF_TextWithCRLF)));
FileOstr.emplace(ResultFD, true /*shouldClose*/);
}
raw_ostream &Ostr = FileOstr ? *FileOstr : outs();
std::optional<ProgressMeter<>> Meter;
if (BenchmarkMeasurementsPrintProgress)
Meter.emplace(Configurations.size());
for (const BenchmarkCode &Conf : Configurations) {
ProgressMeter<>::ProgressMeterStep MeterStep(Meter ? &*Meter : nullptr);
SmallVector<Benchmark, 2> AllResults;
for (const std::unique_ptr<const SnippetRepetitor> &Repetitor :
Repetitors) {
auto RC = ExitOnErr(Runner.getRunnableConfiguration(
Conf, NumRepetitions, LoopBodySize, *Repetitor));
AllResults.emplace_back(
ExitOnErr(Runner.runConfiguration(std::move(RC), DumpObjectToDisk)));
}
Benchmark &Result = AllResults.front();
// If any of our measurements failed, pretend they all have failed.
if (AllResults.size() > 1 &&
any_of(AllResults, [](const Benchmark &R) {
return R.Measurements.empty();
}))
Result.Measurements.clear();
if (RepetitionMode == Benchmark::RepetitionModeE::AggregateMin) {
for (const Benchmark &OtherResult :
ArrayRef<Benchmark>(AllResults).drop_front()) {
llvm::append_range(Result.AssembledSnippet,
OtherResult.AssembledSnippet);
// Aggregate measurements, but only iff all measurements succeeded.
if (Result.Measurements.empty())
continue;
assert(OtherResult.Measurements.size() == Result.Measurements.size() &&
"Expected to have identical number of measurements.");
for (auto I : zip(Result.Measurements, OtherResult.Measurements)) {
BenchmarkMeasure &Measurement = std::get<0>(I);
const BenchmarkMeasure &NewMeasurement = std::get<1>(I);
assert(Measurement.Key == NewMeasurement.Key &&
"Expected measurements to be symmetric");
Measurement.PerInstructionValue =
std::min(Measurement.PerInstructionValue,
NewMeasurement.PerInstructionValue);
Measurement.PerSnippetValue = std::min(
Measurement.PerSnippetValue, NewMeasurement.PerSnippetValue);
}
}
}
// With dummy counters, measurements are rather meaningless,
// so drop them altogether.
if (UseDummyPerfCounters)
Result.Measurements.clear();
ExitOnFileError(BenchmarkFile, Result.writeYamlTo(State, Ostr));
}
}
void benchmarkMain() {
if (BenchmarkPhaseSelector == BenchmarkPhaseSelectorE::Measure &&
!UseDummyPerfCounters) {
#ifndef HAVE_LIBPFM
ExitWithError(
"benchmarking unavailable, LLVM was built without libpfm. You can "
"pass --benchmark-phase=... to skip the actual benchmarking or "
"--use-dummy-perf-counters to not query the kernel for real event "
"counts.");
#else
if (exegesis::pfm::pfmInitialize())
ExitWithError("cannot initialize libpfm");
#endif
}
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
InitializeAllExegesisTargets();
const LLVMState State =
ExitOnErr(LLVMState::Create(TripleName, MCPU, "", UseDummyPerfCounters));
// Preliminary check to ensure features needed for requested
// benchmark mode are present on target CPU and/or OS.
if (BenchmarkPhaseSelector == BenchmarkPhaseSelectorE::Measure)
ExitOnErr(State.getExegesisTarget().checkFeatureSupport());
const std::unique_ptr<BenchmarkRunner> Runner =
ExitOnErr(State.getExegesisTarget().createBenchmarkRunner(
BenchmarkMode, State, BenchmarkPhaseSelector, ResultAggMode));
if (!Runner) {
ExitWithError("cannot create benchmark runner");
}
const auto Opcodes = getOpcodesOrDie(State);
SmallVector<std::unique_ptr<const SnippetRepetitor>, 2> Repetitors;
if (RepetitionMode != Benchmark::RepetitionModeE::AggregateMin)
Repetitors.emplace_back(SnippetRepetitor::Create(RepetitionMode, State));
else {
for (Benchmark::RepetitionModeE RepMode :
{Benchmark::RepetitionModeE::Duplicate,
Benchmark::RepetitionModeE::Loop})
Repetitors.emplace_back(SnippetRepetitor::Create(RepMode, State));
}
BitVector AllReservedRegs;
llvm::for_each(Repetitors,
[&AllReservedRegs](
const std::unique_ptr<const SnippetRepetitor> &Repetitor) {
AllReservedRegs |= Repetitor->getReservedRegs();
});
std::vector<BenchmarkCode> Configurations;
if (!Opcodes.empty()) {
for (const unsigned Opcode : Opcodes) {
// Ignore instructions without a sched class if
// -ignore-invalid-sched-class is passed.
if (IgnoreInvalidSchedClass &&
State.getInstrInfo().get(Opcode).getSchedClass() == 0) {
errs() << State.getInstrInfo().getName(Opcode)
<< ": ignoring instruction without sched class\n";
continue;
}
auto ConfigsForInstr = generateSnippets(State, Opcode, AllReservedRegs);
if (!ConfigsForInstr) {
logAllUnhandledErrors(
ConfigsForInstr.takeError(), errs(),
Twine(State.getInstrInfo().getName(Opcode)).concat(": "));
continue;
}
std::move(ConfigsForInstr->begin(), ConfigsForInstr->end(),
std::back_inserter(Configurations));
}
} else {
Configurations = ExitOnErr(readSnippets(State, SnippetsFile));
}
if (NumRepetitions == 0) {
ExitOnErr.setBanner("llvm-exegesis: ");
ExitWithError("--num-repetitions must be greater than zero");
}
// Write to standard output if file is not set.
if (BenchmarkFile.empty())
BenchmarkFile = "-";
if (!Configurations.empty())
runBenchmarkConfigurations(State, Configurations, Repetitors, *Runner);
exegesis::pfm::pfmTerminate();
}
// Prints the results of running analysis pass `Pass` to file `OutputFilename`
// if OutputFilename is non-empty.
template <typename Pass>
static void maybeRunAnalysis(const Analysis &Analyzer, const std::string &Name,
const std::string &OutputFilename) {
if (OutputFilename.empty())
return;
if (OutputFilename != "-") {
errs() << "Printing " << Name << " results to file '" << OutputFilename
<< "'\n";
}
std::error_code ErrorCode;
raw_fd_ostream ClustersOS(OutputFilename, ErrorCode,
sys::fs::FA_Read | sys::fs::FA_Write);
if (ErrorCode)
ExitOnFileError(OutputFilename, errorCodeToError(ErrorCode));
if (auto Err = Analyzer.run<Pass>(ClustersOS))
ExitOnFileError(OutputFilename, std::move(Err));
}
static void filterPoints(MutableArrayRef<Benchmark> Points,
const MCInstrInfo &MCII) {
if (AnalysisSnippetFilter == exegesis::BenchmarkFilter::All)
return;
bool WantPointsWithMemOps =
AnalysisSnippetFilter == exegesis::BenchmarkFilter::WithMem;
for (Benchmark &Point : Points) {
if (!Point.Error.empty())
continue;
if (WantPointsWithMemOps ==
any_of(Point.Key.Instructions, [&MCII](const MCInst &Inst) {
const MCInstrDesc &MCDesc = MCII.get(Inst.getOpcode());
return MCDesc.mayLoad() || MCDesc.mayStore();
}))
continue;
Point.Error = "filtered out by user";
}
}
static void analysisMain() {
ExitOnErr.setBanner("llvm-exegesis: ");
if (BenchmarkFile.empty())
ExitWithError("--benchmarks-file must be set");
if (AnalysisClustersOutputFile.empty() &&
AnalysisInconsistenciesOutputFile.empty()) {
ExitWithError(
"for --mode=analysis: At least one of --analysis-clusters-output-file "
"and --analysis-inconsistencies-output-file must be specified");
}
InitializeAllAsmPrinters();
InitializeAllDisassemblers();
InitializeAllExegesisTargets();
auto MemoryBuffer = ExitOnFileError(
BenchmarkFile,
errorOrToExpected(MemoryBuffer::getFile(BenchmarkFile, /*IsText=*/true)));
const auto TriplesAndCpus = ExitOnFileError(
BenchmarkFile,
Benchmark::readTriplesAndCpusFromYamls(*MemoryBuffer));
if (TriplesAndCpus.empty()) {
errs() << "no benchmarks to analyze\n";
return;
}
if (TriplesAndCpus.size() > 1) {
ExitWithError("analysis file contains benchmarks from several CPUs. This "
"is unsupported.");
}
auto TripleAndCpu = *TriplesAndCpus.begin();
if (AnalysisOverrideBenchmarksTripleAndCpu) {
llvm::errs() << "overridding file CPU name (" << TripleAndCpu.CpuName
<< ") with provided tripled (" << TripleName
<< ") and CPU name (" << MCPU << ")\n";
TripleAndCpu.LLVMTriple = TripleName;
TripleAndCpu.CpuName = MCPU;
}
llvm::errs() << "using Triple '" << TripleAndCpu.LLVMTriple << "' and CPU '"
<< TripleAndCpu.CpuName << "'\n";
// Read benchmarks.
const LLVMState State = ExitOnErr(
LLVMState::Create(TripleAndCpu.LLVMTriple, TripleAndCpu.CpuName));
std::vector<Benchmark> Points = ExitOnFileError(
BenchmarkFile, Benchmark::readYamls(State, *MemoryBuffer));
outs() << "Parsed " << Points.size() << " benchmark points\n";
if (Points.empty()) {
errs() << "no benchmarks to analyze\n";
return;
}
// FIXME: Merge points from several runs (latency and uops).
filterPoints(Points, State.getInstrInfo());
const auto Clustering = ExitOnErr(BenchmarkClustering::create(
Points, AnalysisClusteringAlgorithm, AnalysisDbscanNumPoints,
AnalysisClusteringEpsilon, &State.getSubtargetInfo(),
&State.getInstrInfo()));
const Analysis Analyzer(State, Clustering, AnalysisInconsistencyEpsilon,
AnalysisDisplayUnstableOpcodes);
maybeRunAnalysis<Analysis::PrintClusters>(Analyzer, "analysis clusters",
AnalysisClustersOutputFile);
maybeRunAnalysis<Analysis::PrintSchedClassInconsistencies>(
Analyzer, "sched class consistency analysis",
AnalysisInconsistenciesOutputFile);
}
} // namespace exegesis
} // namespace llvm
int main(int Argc, char **Argv) {
using namespace llvm;
InitLLVM X(Argc, Argv);
// Initialize targets so we can print them when flag --version is specified.
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
// Register the Target and CPU printer for --version.
cl::AddExtraVersionPrinter(sys::printDefaultTargetAndDetectedCPU);
// Enable printing of available targets when flag --version is specified.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::HideUnrelatedOptions({&llvm::exegesis::Options,
&llvm::exegesis::BenchmarkOptions,
&llvm::exegesis::AnalysisOptions});
cl::ParseCommandLineOptions(Argc, Argv,
"llvm host machine instruction characteristics "
"measurment and analysis.\n");
exegesis::ExitOnErr.setExitCodeMapper([](const Error &Err) {
if (Err.isA<exegesis::ClusteringError>())
return EXIT_SUCCESS;
return EXIT_FAILURE;
});
if (exegesis::BenchmarkMode == exegesis::Benchmark::Unknown) {
exegesis::analysisMain();
} else {
exegesis::benchmarkMain();
}
return EXIT_SUCCESS;
}