Ben Langmuir 509223da61 [clang][deps] Further canonicalize implicit modules options in dep scan
Disable or canonicalize compiler options that are not relevant in
explicit module builds, similar to what we already did for the modules
cache path. This reduces uninteresting differences between
command-lines, which is particularly useful if there is a tool that can
cache the compilations.

Differential Revision: https://reviews.llvm.org/D127883
2022-06-15 13:29:47 -07:00

385 lines
16 KiB
C++

//===- ModuleDepCollector.cpp - Callbacks to collect deps -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/DependencyScanning/ModuleDepCollector.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Tooling/DependencyScanning/DependencyScanningWorker.h"
#include "llvm/Support/StringSaver.h"
using namespace clang;
using namespace tooling;
using namespace dependencies;
static void optimizeHeaderSearchOpts(HeaderSearchOptions &Opts,
ASTReader &Reader,
const serialization::ModuleFile &MF) {
// Only preserve search paths that were used during the dependency scan.
std::vector<HeaderSearchOptions::Entry> Entries = Opts.UserEntries;
Opts.UserEntries.clear();
llvm::BitVector SearchPathUsage(Entries.size());
llvm::DenseSet<const serialization::ModuleFile *> Visited;
std::function<void(const serialization::ModuleFile *)> VisitMF =
[&](const serialization::ModuleFile *MF) {
SearchPathUsage |= MF->SearchPathUsage;
Visited.insert(MF);
for (const serialization::ModuleFile *Import : MF->Imports)
if (!Visited.contains(Import))
VisitMF(Import);
};
VisitMF(&MF);
for (auto Idx : SearchPathUsage.set_bits())
Opts.UserEntries.push_back(Entries[Idx]);
}
CompilerInvocation ModuleDepCollector::makeInvocationForModuleBuildWithoutPaths(
const ModuleDeps &Deps,
llvm::function_ref<void(CompilerInvocation &)> Optimize) const {
// Make a deep copy of the original Clang invocation.
CompilerInvocation CI(OriginalInvocation);
CI.getLangOpts()->resetNonModularOptions();
CI.getPreprocessorOpts().resetNonModularOptions();
// Remove options incompatible with explicit module build or are likely to
// differ between identical modules discovered from different translation
// units.
CI.getFrontendOpts().Inputs.clear();
CI.getFrontendOpts().OutputFile.clear();
CI.getCodeGenOpts().MainFileName.clear();
CI.getCodeGenOpts().DwarfDebugFlags.clear();
CI.getFrontendOpts().ProgramAction = frontend::GenerateModule;
CI.getLangOpts()->ModuleName = Deps.ID.ModuleName;
CI.getFrontendOpts().IsSystemModule = Deps.IsSystem;
// Disable implicit modules and canonicalize options that are only used by
// implicit modules.
CI.getLangOpts()->ImplicitModules = false;
CI.getHeaderSearchOpts().ImplicitModuleMaps = false;
CI.getHeaderSearchOpts().ModuleCachePath.clear();
CI.getHeaderSearchOpts().ModulesValidateOncePerBuildSession = false;
CI.getHeaderSearchOpts().BuildSessionTimestamp = 0;
// The specific values we canonicalize to for pruning don't affect behaviour,
/// so use the default values so they will be dropped from the command-line.
CI.getHeaderSearchOpts().ModuleCachePruneInterval = 7 * 24 * 60 * 60;
CI.getHeaderSearchOpts().ModuleCachePruneAfter = 31 * 24 * 60 * 60;
// Report the prebuilt modules this module uses.
for (const auto &PrebuiltModule : Deps.PrebuiltModuleDeps)
CI.getFrontendOpts().ModuleFiles.push_back(PrebuiltModule.PCMFile);
CI.getFrontendOpts().ModuleMapFiles = Deps.ModuleMapFileDeps;
Optimize(CI);
// The original invocation probably didn't have strict context hash enabled.
// We will use the context hash of this invocation to distinguish between
// multiple incompatible versions of the same module and will use it when
// reporting dependencies to the clients. Let's make sure we're using
// **strict** context hash in order to prevent accidental sharing of
// incompatible modules (e.g. with differences in search paths).
CI.getHeaderSearchOpts().ModulesStrictContextHash = true;
return CI;
}
static std::vector<std::string>
serializeCompilerInvocation(const CompilerInvocation &CI) {
// Set up string allocator.
llvm::BumpPtrAllocator Alloc;
llvm::StringSaver Strings(Alloc);
auto SA = [&Strings](const Twine &Arg) { return Strings.save(Arg).data(); };
// Synthesize full command line from the CompilerInvocation, including "-cc1".
SmallVector<const char *, 32> Args{"-cc1"};
CI.generateCC1CommandLine(Args, SA);
// Convert arguments to the return type.
return std::vector<std::string>{Args.begin(), Args.end()};
}
std::vector<std::string> ModuleDeps::getCanonicalCommandLine(
std::function<StringRef(ModuleID)> LookupPCMPath) const {
CompilerInvocation CI(BuildInvocation);
FrontendOptions &FrontendOpts = CI.getFrontendOpts();
InputKind ModuleMapInputKind(FrontendOpts.DashX.getLanguage(),
InputKind::Format::ModuleMap);
FrontendOpts.Inputs.emplace_back(ClangModuleMapFile, ModuleMapInputKind);
FrontendOpts.OutputFile = std::string(LookupPCMPath(ID));
for (ModuleID MID : ClangModuleDeps)
FrontendOpts.ModuleFiles.emplace_back(LookupPCMPath(MID));
return serializeCompilerInvocation(CI);
}
std::vector<std::string>
ModuleDeps::getCanonicalCommandLineWithoutModulePaths() const {
return serializeCompilerInvocation(BuildInvocation);
}
void ModuleDepCollectorPP::FileChanged(SourceLocation Loc,
FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID) {
if (Reason != PPCallbacks::EnterFile)
return;
// This has to be delayed as the context hash can change at the start of
// `CompilerInstance::ExecuteAction`.
if (MDC.ContextHash.empty()) {
MDC.ContextHash = MDC.ScanInstance.getInvocation().getModuleHash();
MDC.Consumer.handleContextHash(MDC.ContextHash);
}
SourceManager &SM = MDC.ScanInstance.getSourceManager();
// Dependency generation really does want to go all the way to the
// file entry for a source location to find out what is depended on.
// We do not want #line markers to affect dependency generation!
if (Optional<StringRef> Filename =
SM.getNonBuiltinFilenameForID(SM.getFileID(SM.getExpansionLoc(Loc))))
MDC.FileDeps.push_back(
std::string(llvm::sys::path::remove_leading_dotslash(*Filename)));
}
void ModuleDepCollectorPP::InclusionDirective(
SourceLocation HashLoc, const Token &IncludeTok, StringRef FileName,
bool IsAngled, CharSourceRange FilenameRange, Optional<FileEntryRef> File,
StringRef SearchPath, StringRef RelativePath, const Module *Imported,
SrcMgr::CharacteristicKind FileType) {
if (!File && !Imported) {
// This is a non-modular include that HeaderSearch failed to find. Add it
// here as `FileChanged` will never see it.
MDC.FileDeps.push_back(std::string(FileName));
}
handleImport(Imported);
}
void ModuleDepCollectorPP::moduleImport(SourceLocation ImportLoc,
ModuleIdPath Path,
const Module *Imported) {
handleImport(Imported);
}
void ModuleDepCollectorPP::handleImport(const Module *Imported) {
if (!Imported)
return;
const Module *TopLevelModule = Imported->getTopLevelModule();
if (MDC.isPrebuiltModule(TopLevelModule))
DirectPrebuiltModularDeps.insert(TopLevelModule);
else
DirectModularDeps.insert(TopLevelModule);
}
void ModuleDepCollectorPP::EndOfMainFile() {
FileID MainFileID = MDC.ScanInstance.getSourceManager().getMainFileID();
MDC.MainFile = std::string(MDC.ScanInstance.getSourceManager()
.getFileEntryForID(MainFileID)
->getName());
if (!MDC.ScanInstance.getPreprocessorOpts().ImplicitPCHInclude.empty())
MDC.FileDeps.push_back(
MDC.ScanInstance.getPreprocessorOpts().ImplicitPCHInclude);
for (const Module *M : DirectModularDeps) {
// A top-level module might not be actually imported as a module when
// -fmodule-name is used to compile a translation unit that imports this
// module. In that case it can be skipped. The appropriate header
// dependencies will still be reported as expected.
if (!M->getASTFile())
continue;
handleTopLevelModule(M);
}
MDC.Consumer.handleDependencyOutputOpts(*MDC.Opts);
for (auto &&I : MDC.ModularDeps)
MDC.Consumer.handleModuleDependency(*I.second);
for (auto &&I : MDC.FileDeps)
MDC.Consumer.handleFileDependency(I);
for (auto &&I : DirectPrebuiltModularDeps)
MDC.Consumer.handlePrebuiltModuleDependency(PrebuiltModuleDep{I});
}
ModuleID ModuleDepCollectorPP::handleTopLevelModule(const Module *M) {
assert(M == M->getTopLevelModule() && "Expected top level module!");
// If this module has been handled already, just return its ID.
auto ModI = MDC.ModularDeps.insert({M, nullptr});
if (!ModI.second)
return ModI.first->second->ID;
ModI.first->second = std::make_unique<ModuleDeps>();
ModuleDeps &MD = *ModI.first->second;
MD.ID.ModuleName = M->getFullModuleName();
MD.ImportedByMainFile = DirectModularDeps.contains(M);
MD.ImplicitModulePCMPath = std::string(M->getASTFile()->getName());
MD.IsSystem = M->IsSystem;
const FileEntry *ModuleMap = MDC.ScanInstance.getPreprocessor()
.getHeaderSearchInfo()
.getModuleMap()
.getModuleMapFileForUniquing(M);
if (ModuleMap) {
StringRef Path = ModuleMap->tryGetRealPathName();
if (Path.empty())
Path = ModuleMap->getName();
MD.ClangModuleMapFile = std::string(Path);
}
serialization::ModuleFile *MF =
MDC.ScanInstance.getASTReader()->getModuleManager().lookup(
M->getASTFile());
MDC.ScanInstance.getASTReader()->visitInputFiles(
*MF, true, true, [&](const serialization::InputFile &IF, bool isSystem) {
// __inferred_module.map is the result of the way in which an implicit
// module build handles inferred modules. It adds an overlay VFS with
// this file in the proper directory and relies on the rest of Clang to
// handle it like normal. With explicitly built modules we don't need
// to play VFS tricks, so replace it with the correct module map.
if (IF.getFile()->getName().endswith("__inferred_module.map")) {
MD.FileDeps.insert(ModuleMap->getName());
return;
}
MD.FileDeps.insert(IF.getFile()->getName());
});
// We usually don't need to list the module map files of our dependencies when
// building a module explicitly: their semantics will be deserialized from PCM
// files.
//
// However, some module maps loaded implicitly during the dependency scan can
// describe anti-dependencies. That happens when this module, let's call it
// M1, is marked as '[no_undeclared_includes]' and tries to access a header
// "M2/M2.h" from another module, M2, but doesn't have a 'use M2;'
// declaration. The explicit build needs the module map for M2 so that it
// knows that textually including "M2/M2.h" is not allowed.
// E.g., '__has_include("M2/M2.h")' should return false, but without M2's
// module map the explicit build would return true.
//
// An alternative approach would be to tell the explicit build what its
// textual dependencies are, instead of having it re-discover its
// anti-dependencies. For example, we could create and use an `-ivfs-overlay`
// with `fall-through: false` that explicitly listed the dependencies.
// However, that's more complicated to implement and harder to reason about.
if (M->NoUndeclaredIncludes) {
// We don't have a good way to determine which module map described the
// anti-dependency (let alone what's the corresponding top-level module
// map). We simply specify all the module maps in the order they were loaded
// during the implicit build during scan.
// TODO: Resolve this by serializing and only using Module::UndeclaredUses.
MDC.ScanInstance.getASTReader()->visitTopLevelModuleMaps(
*MF, [&](const FileEntry *FE) {
if (FE->getName().endswith("__inferred_module.map"))
return;
// The top-level modulemap of this module will be the input file. We
// don't need to specify it as a module map.
if (FE == ModuleMap)
return;
MD.ModuleMapFileDeps.push_back(FE->getName().str());
});
}
// Add direct prebuilt module dependencies now, so that we can use them when
// creating a CompilerInvocation and computing context hash for this
// ModuleDeps instance.
llvm::DenseSet<const Module *> SeenModules;
addAllSubmodulePrebuiltDeps(M, MD, SeenModules);
MD.BuildInvocation = MDC.makeInvocationForModuleBuildWithoutPaths(
MD, [&](CompilerInvocation &BuildInvocation) {
if (MDC.OptimizeArgs)
optimizeHeaderSearchOpts(BuildInvocation.getHeaderSearchOpts(),
*MDC.ScanInstance.getASTReader(), *MF);
});
MD.ID.ContextHash = MD.BuildInvocation.getModuleHash();
llvm::DenseSet<const Module *> AddedModules;
addAllSubmoduleDeps(M, MD, AddedModules);
return MD.ID;
}
void ModuleDepCollectorPP::addAllSubmodulePrebuiltDeps(
const Module *M, ModuleDeps &MD,
llvm::DenseSet<const Module *> &SeenSubmodules) {
addModulePrebuiltDeps(M, MD, SeenSubmodules);
for (const Module *SubM : M->submodules())
addAllSubmodulePrebuiltDeps(SubM, MD, SeenSubmodules);
}
void ModuleDepCollectorPP::addModulePrebuiltDeps(
const Module *M, ModuleDeps &MD,
llvm::DenseSet<const Module *> &SeenSubmodules) {
for (const Module *Import : M->Imports)
if (Import->getTopLevelModule() != M->getTopLevelModule())
if (MDC.isPrebuiltModule(Import->getTopLevelModule()))
if (SeenSubmodules.insert(Import->getTopLevelModule()).second)
MD.PrebuiltModuleDeps.emplace_back(Import->getTopLevelModule());
}
void ModuleDepCollectorPP::addAllSubmoduleDeps(
const Module *M, ModuleDeps &MD,
llvm::DenseSet<const Module *> &AddedModules) {
addModuleDep(M, MD, AddedModules);
for (const Module *SubM : M->submodules())
addAllSubmoduleDeps(SubM, MD, AddedModules);
}
void ModuleDepCollectorPP::addModuleDep(
const Module *M, ModuleDeps &MD,
llvm::DenseSet<const Module *> &AddedModules) {
for (const Module *Import : M->Imports) {
if (Import->getTopLevelModule() != M->getTopLevelModule() &&
!MDC.isPrebuiltModule(Import)) {
ModuleID ImportID = handleTopLevelModule(Import->getTopLevelModule());
if (AddedModules.insert(Import->getTopLevelModule()).second)
MD.ClangModuleDeps.push_back(ImportID);
}
}
}
ModuleDepCollector::ModuleDepCollector(
std::unique_ptr<DependencyOutputOptions> Opts,
CompilerInstance &ScanInstance, DependencyConsumer &C,
CompilerInvocation &&OriginalCI, bool OptimizeArgs)
: ScanInstance(ScanInstance), Consumer(C), Opts(std::move(Opts)),
OriginalInvocation(std::move(OriginalCI)), OptimizeArgs(OptimizeArgs) {}
void ModuleDepCollector::attachToPreprocessor(Preprocessor &PP) {
PP.addPPCallbacks(std::make_unique<ModuleDepCollectorPP>(*this));
}
void ModuleDepCollector::attachToASTReader(ASTReader &R) {}
bool ModuleDepCollector::isPrebuiltModule(const Module *M) {
std::string Name(M->getTopLevelModuleName());
const auto &PrebuiltModuleFiles =
ScanInstance.getHeaderSearchOpts().PrebuiltModuleFiles;
auto PrebuiltModuleFileIt = PrebuiltModuleFiles.find(Name);
if (PrebuiltModuleFileIt == PrebuiltModuleFiles.end())
return false;
assert("Prebuilt module came from the expected AST file" &&
PrebuiltModuleFileIt->second == M->getASTFile()->getName());
return true;
}