llvm-project/clang/lib/Interpreter/Interpreter.cpp
Anutosh Bhat 529b6fcb00
[clang-repl] Fix destructor for interpreter for the cuda negation case (#138091)
Check this error for more context
(https://github.com/compiler-research/CppInterOp/actions/runs/14749797085/job/41407625681?pr=491#step:10:531)

This fails with 
```
* thread #1, name = 'CppInterOpTests', stop reason = signal SIGSEGV: address not mapped to object (fault address: 0x55500356d6d3)
  * frame #0: 0x00007fffee41cfe3 libclangCppInterOp.so.21.0gitclang::PragmaNamespace::~PragmaNamespace() + 99
    frame #1: 0x00007fffee435666 libclangCppInterOp.so.21.0gitclang::Preprocessor::~Preprocessor() + 3830
    frame #2: 0x00007fffee20917a libclangCppInterOp.so.21.0gitstd::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release() + 58
    frame #3: 0x00007fffee224796 libclangCppInterOp.so.21.0gitclang::CompilerInstance::~CompilerInstance() + 838
    frame #4: 0x00007fffee22494d libclangCppInterOp.so.21.0gitclang::CompilerInstance::~CompilerInstance() + 13
    frame #5: 0x00007fffed95ec62 libclangCppInterOp.so.21.0gitclang::IncrementalCUDADeviceParser::~IncrementalCUDADeviceParser() + 98
    frame #6: 0x00007fffed9551b6 libclangCppInterOp.so.21.0gitclang::Interpreter::~Interpreter() + 102
    frame #7: 0x00007fffed95598d libclangCppInterOp.so.21.0gitclang::Interpreter::~Interpreter() + 13
    frame #8: 0x00007fffed9181e7 libclangCppInterOp.so.21.0gitcompat::createClangInterpreter(std::vector<char const*, std::allocator<char const*>>&) + 2919
```

Problem : 

1) The destructor currently handles no clearance for the DeviceParser
and the DeviceAct. We currently only have this

9764938224/clang/lib/Interpreter/Interpreter.cpp (L416-L419)

2) The ownership for DeviceCI currently is present in
IncrementalCudaDeviceParser. But this should be similar to how the
combination for hostCI, hostAction and hostParser are managed by the
Interpreter. As on master the DeviceAct and DeviceParser are managed by
the Interpreter but not DeviceCI. This is problematic because :
IncrementalParser holds a Sema& which points into the DeviceCI. On
master, DeviceCI is destroyed before the base class ~IncrementalParser()
runs, causing Parser::reset() to access a dangling Sema (and as Sema
holds a reference to Preprocessor which owns PragmaNamespace) we see
this
```
  * frame #0: 0x00007fffee41cfe3 libclangCppInterOp.so.21.0gitclang::PragmaNamespace::~PragmaNamespace() + 99
    frame #1: 0x00007fffee435666 libclangCppInterOp.so.21.0gitclang::Preprocessor::~Preprocessor() + 3830
    
```
2025-05-05 11:02:33 +03:00

806 lines
29 KiB
C++

//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//
#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"
#include "llvm/Support/VirtualFileSystem.h"
#ifdef __EMSCRIPTEN__
#include "Wasm.h"
#include <dlfcn.h>
#endif // __EMSCRIPTEN__
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerWriter.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/FrontendTool/Utils.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "clang/Serialization/ObjectFilePCHContainerReader.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/Transforms/Utils/Cloning.h" // for CloneModule
#define DEBUG_TYPE "clang-repl"
using namespace clang;
// FIXME: Figure out how to unify with namespace init_convenience from
// tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
driver::Compilation *Compilation) {
// We expect to get back exactly one Command job, if we didn't something
// failed. Extract that job from the Compilation.
const driver::JobList &Jobs = Compilation->getJobs();
if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed. "
"Unable to create a driver job");
// The one job we find should be to invoke clang again.
const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed");
return &Cmd->getArguments();
}
static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
// Register the support for object-file-wrapped Clang modules.
// FIXME: Clang should register these container operations automatically.
auto PCHOps = Clang->getPCHContainerOperations();
PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
// Buffer diagnostics from argument parsing so that we can output them using
// a well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
bool Success = CompilerInvocation::CreateFromArgs(
Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);
// Infer the builtin include path if unspecified.
if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
Clang->getHeaderSearchOpts().ResourceDir.empty())
Clang->getHeaderSearchOpts().ResourceDir =
CompilerInvocation::GetResourcesPath(Argv[0], nullptr);
// Create the actual diagnostics engine.
Clang->createDiagnostics(*llvm::vfs::getRealFileSystem());
if (!Clang->hasDiagnostics())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to create diagnostics engine");
DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
if (!Success)
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to flush diagnostics");
// FIXME: Merge with CompilerInstance::ExecuteAction.
llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().getTargetOpts()));
if (!Clang->hasTarget())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Target is missing");
Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());
// Don't clear the AST before backend codegen since we do codegen multiple
// times, reusing the same AST.
Clang->getCodeGenOpts().ClearASTBeforeBackend = false;
Clang->getFrontendOpts().DisableFree = false;
Clang->getCodeGenOpts().DisableFree = false;
return std::move(Clang);
}
} // anonymous namespace
namespace clang {
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
std::vector<const char *> &ClangArgv) {
// If we don't know ClangArgv0 or the address of main() at this point, try
// to guess it anyway (it's possible on some platforms).
std::string MainExecutableName =
llvm::sys::fs::getMainExecutable(nullptr, nullptr);
ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());
// Prepending -c to force the driver to do something if no action was
// specified. By prepending we allow users to override the default
// action and use other actions in incremental mode.
// FIXME: Print proper driver diagnostics if the driver flags are wrong.
// We do C++ by default; append right after argv[0] if no "-x" given
ClangArgv.insert(ClangArgv.end(), "-Xclang");
ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
ClangArgv.insert(ClangArgv.end(), "-c");
// Put a dummy C++ file on to ensure there's at least one compile job for the
// driver to construct.
ClangArgv.push_back("<<< inputs >>>");
// Buffer diagnostics from argument parsing so that we can output them using a
// well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
CreateAndPopulateDiagOpts(ClangArgv);
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
Driver.setCheckInputsExist(false); // the input comes from mem buffers
llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));
if (Compilation->getArgs().hasArg(driver::options::OPT_v))
Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);
auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
if (auto Err = ErrOrCC1Args.takeError())
return std::move(Err);
return CreateCI(**ErrOrCC1Args);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
std::vector<const char *> Argv;
Argv.reserve(5 + 1 + UserArgs.size());
Argv.push_back("-xc++");
#ifdef __EMSCRIPTEN__
Argv.push_back("-target");
Argv.push_back("wasm32-unknown-emscripten");
Argv.push_back("-fvisibility=default");
#endif
llvm::append_range(Argv, UserArgs);
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
std::vector<const char *> Argv;
Argv.reserve(5 + 4 + UserArgs.size());
Argv.push_back("-xcuda");
if (device)
Argv.push_back("--cuda-device-only");
else
Argv.push_back("--cuda-host-only");
std::string SDKPathArg = "--cuda-path=";
if (!CudaSDKPath.empty()) {
SDKPathArg += CudaSDKPath;
Argv.push_back(SDKPathArg.c_str());
}
std::string ArchArg = "--offload-arch=";
if (!OffloadArch.empty()) {
ArchArg += OffloadArch;
Argv.push_back(ArchArg.c_str());
}
llvm::append_range(Argv, UserArgs);
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
return IncrementalCompilerBuilder::createCuda(true);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
return IncrementalCompilerBuilder::createCuda(false);
}
class InProcessPrintingASTConsumer final : public MultiplexConsumer {
Interpreter &Interp;
public:
InProcessPrintingASTConsumer(std::unique_ptr<ASTConsumer> C, Interpreter &I)
: MultiplexConsumer(std::move(C)), Interp(I) {}
bool HandleTopLevelDecl(DeclGroupRef DGR) override final {
if (DGR.isNull())
return true;
for (Decl *D : DGR)
if (auto *TLSD = llvm::dyn_cast<TopLevelStmtDecl>(D))
if (TLSD && TLSD->isSemiMissing()) {
auto ExprOrErr =
Interp.ExtractValueFromExpr(cast<Expr>(TLSD->getStmt()));
if (llvm::Error E = ExprOrErr.takeError()) {
llvm::logAllUnhandledErrors(std::move(E), llvm::errs(),
"Value printing failed: ");
return false; // abort parsing
}
TLSD->setStmt(*ExprOrErr);
}
return MultiplexConsumer::HandleTopLevelDecl(DGR);
}
};
/// A custom action enabling the incremental processing functionality.
///
/// The usual \p FrontendAction expects one call to ExecuteAction and once it
/// sees a call to \p EndSourceFile it deletes some of the important objects
/// such as \p Preprocessor and \p Sema assuming no further input will come.
///
/// \p IncrementalAction ensures it keep its underlying action's objects alive
/// as long as the \p IncrementalParser needs them.
///
class IncrementalAction : public WrapperFrontendAction {
private:
bool IsTerminating = false;
Interpreter &Interp;
std::unique_ptr<ASTConsumer> Consumer;
public:
IncrementalAction(CompilerInstance &CI, llvm::LLVMContext &LLVMCtx,
llvm::Error &Err, Interpreter &I,
std::unique_ptr<ASTConsumer> Consumer = nullptr)
: WrapperFrontendAction([&]() {
llvm::ErrorAsOutParameter EAO(&Err);
std::unique_ptr<FrontendAction> Act;
switch (CI.getFrontendOpts().ProgramAction) {
default:
Err = llvm::createStringError(
std::errc::state_not_recoverable,
"Driver initialization failed. "
"Incremental mode for action %d is not supported",
CI.getFrontendOpts().ProgramAction);
return Act;
case frontend::ASTDump:
case frontend::ASTPrint:
case frontend::ParseSyntaxOnly:
Act = CreateFrontendAction(CI);
break;
case frontend::PluginAction:
case frontend::EmitAssembly:
case frontend::EmitBC:
case frontend::EmitObj:
case frontend::PrintPreprocessedInput:
case frontend::EmitLLVMOnly:
Act.reset(new EmitLLVMOnlyAction(&LLVMCtx));
break;
}
return Act;
}()),
Interp(I), Consumer(std::move(Consumer)) {}
FrontendAction *getWrapped() const { return WrappedAction.get(); }
TranslationUnitKind getTranslationUnitKind() override {
return TU_Incremental;
}
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override {
std::unique_ptr<ASTConsumer> C =
WrapperFrontendAction::CreateASTConsumer(CI, InFile);
if (Consumer) {
std::vector<std::unique_ptr<ASTConsumer>> Cs;
Cs.push_back(std::move(Consumer));
Cs.push_back(std::move(C));
return std::make_unique<MultiplexConsumer>(std::move(Cs));
}
return std::make_unique<InProcessPrintingASTConsumer>(std::move(C), Interp);
}
void ExecuteAction() override {
WrapperFrontendAction::ExecuteAction();
getCompilerInstance().getSema().CurContext = nullptr;
}
// Do not terminate after processing the input. This allows us to keep various
// clang objects alive and to incrementally grow the current TU.
void EndSourceFile() override {
// The WrappedAction can be nullptr if we issued an error in the ctor.
if (IsTerminating && getWrapped())
WrapperFrontendAction::EndSourceFile();
}
void FinalizeAction() {
assert(!IsTerminating && "Already finalized!");
IsTerminating = true;
EndSourceFile();
}
};
Interpreter::Interpreter(std::unique_ptr<CompilerInstance> Instance,
llvm::Error &ErrOut,
std::unique_ptr<llvm::orc::LLJITBuilder> JITBuilder,
std::unique_ptr<clang::ASTConsumer> Consumer)
: JITBuilder(std::move(JITBuilder)) {
CI = std::move(Instance);
llvm::ErrorAsOutParameter EAO(&ErrOut);
auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
Act = std::make_unique<IncrementalAction>(*CI, *TSCtx->getContext(), ErrOut,
*this, std::move(Consumer));
if (ErrOut)
return;
CI->ExecuteAction(*Act);
IncrParser = std::make_unique<IncrementalParser>(*CI, ErrOut);
if (ErrOut)
return;
if (getCodeGen()) {
CachedInCodeGenModule = GenModule();
// The initial PTU is filled by `-include` or by CUDA includes
// automatically.
if (!CI->getPreprocessorOpts().Includes.empty()) {
// We can't really directly pass the CachedInCodeGenModule to the Jit
// because it will steal it, causing dangling references as explained in
// Interpreter::Execute
auto M = llvm::CloneModule(*CachedInCodeGenModule);
ASTContext &C = CI->getASTContext();
RegisterPTU(C.getTranslationUnitDecl(), std::move(M));
}
if (llvm::Error Err = CreateExecutor()) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
// Not all frontends support code-generation, e.g. ast-dump actions don't
if (getCodeGen()) {
// Process the PTUs that came from initialization. For example -include will
// give us a header that's processed at initialization of the preprocessor.
for (PartialTranslationUnit &PTU : PTUs)
if (llvm::Error Err = Execute(PTU)) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
}
Interpreter::~Interpreter() {
IncrParser.reset();
Act->FinalizeAction();
if (DeviceParser)
DeviceParser.reset();
if (DeviceAct)
DeviceAct->FinalizeAction();
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->cleanUp())
llvm::report_fatal_error(
llvm::Twine("Failed to clean up IncrementalExecutor: ") +
toString(std::move(Err)));
}
}
// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#define __CLANG_REPL__ 1
#ifdef __cplusplus
#define EXTERN_C extern "C"
void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
struct __clang_Interpreter_NewTag{} __ci_newtag;
void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
template <class T, class = T (*)() /*disable for arrays*/>
void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
for (auto Idx = 0; Idx < Size; ++Idx)
new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
}
template <class T, unsigned long N>
void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
__clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
}
#else
#define EXTERN_C extern
#endif // __cplusplus
EXTERN_C void __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, ...);
)";
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
llvm::Error Err = llvm::Error::success();
auto Interp =
std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
if (Err)
return std::move(Err);
// Add runtime code and set a marker to hide it from user code. Undo will not
// go through that.
auto PTU = Interp->Parse(Runtimes);
if (!PTU)
return PTU.takeError();
Interp->markUserCodeStart();
Interp->ValuePrintingInfo.resize(4);
return std::move(Interp);
}
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
std::unique_ptr<CompilerInstance> DCI) {
// avoid writing fat binary to disk using an in-memory virtual file system
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
std::make_unique<llvm::vfs::InMemoryFileSystem>();
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
std::make_unique<llvm::vfs::OverlayFileSystem>(
llvm::vfs::getRealFileSystem());
OverlayVFS->pushOverlay(IMVFS);
CI->createFileManager(OverlayVFS);
llvm::Expected<std::unique_ptr<Interpreter>> InterpOrErr =
Interpreter::create(std::move(CI));
if (!InterpOrErr)
return InterpOrErr;
std::unique_ptr<Interpreter> Interp = std::move(*InterpOrErr);
llvm::Error Err = llvm::Error::success();
llvm::LLVMContext &LLVMCtx = *Interp->TSCtx->getContext();
auto DeviceAct =
std::make_unique<IncrementalAction>(*DCI, LLVMCtx, Err, *Interp);
if (Err)
return std::move(Err);
Interp->DeviceAct = std::move(DeviceAct);
DCI->ExecuteAction(*Interp->DeviceAct);
Interp->DeviceCI = std::move(DCI);
auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
*Interp->DeviceCI, *Interp->getCompilerInstance(), IMVFS, Err,
Interp->PTUs);
if (Err)
return std::move(Err);
Interp->DeviceParser = std::move(DeviceParser);
return std::move(Interp);
}
const CompilerInstance *Interpreter::getCompilerInstance() const {
return CI.get();
}
CompilerInstance *Interpreter::getCompilerInstance() { return CI.get(); }
llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
if (!IncrExecutor) {
if (auto Err = CreateExecutor())
return std::move(Err);
}
return IncrExecutor->GetExecutionEngine();
}
ASTContext &Interpreter::getASTContext() {
return getCompilerInstance()->getASTContext();
}
const ASTContext &Interpreter::getASTContext() const {
return getCompilerInstance()->getASTContext();
}
void Interpreter::markUserCodeStart() {
assert(!InitPTUSize && "We only do this once");
InitPTUSize = PTUs.size();
}
size_t Interpreter::getEffectivePTUSize() const {
assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
return PTUs.size() - InitPTUSize;
}
PartialTranslationUnit &
Interpreter::RegisterPTU(TranslationUnitDecl *TU,
std::unique_ptr<llvm::Module> M /*={}*/,
IncrementalAction *Action) {
PTUs.emplace_back(PartialTranslationUnit());
PartialTranslationUnit &LastPTU = PTUs.back();
LastPTU.TUPart = TU;
if (!M)
M = GenModule(Action);
assert((!getCodeGen(Action) || M) &&
"Must have a llvm::Module at this point");
LastPTU.TheModule = std::move(M);
LLVM_DEBUG(llvm::dbgs() << "compile-ptu " << PTUs.size() - 1
<< ": [TU=" << LastPTU.TUPart);
if (LastPTU.TheModule)
LLVM_DEBUG(llvm::dbgs() << ", M=" << LastPTU.TheModule.get() << " ("
<< LastPTU.TheModule->getName() << ")");
LLVM_DEBUG(llvm::dbgs() << "]\n");
return LastPTU;
}
llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
// If we have a device parser, parse it first. The generated code will be
// included in the host compilation
if (DeviceParser) {
llvm::Expected<TranslationUnitDecl *> DeviceTU = DeviceParser->Parse(Code);
if (auto E = DeviceTU.takeError())
return std::move(E);
RegisterPTU(*DeviceTU, nullptr, DeviceAct.get());
llvm::Expected<llvm::StringRef> PTX = DeviceParser->GeneratePTX();
if (!PTX)
return PTX.takeError();
llvm::Error Err = DeviceParser->GenerateFatbinary();
if (Err)
return std::move(Err);
}
// Tell the interpreter sliently ignore unused expressions since value
// printing could cause it.
getCompilerInstance()->getDiagnostics().setSeverity(
clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
llvm::Expected<TranslationUnitDecl *> TuOrErr = IncrParser->Parse(Code);
if (!TuOrErr)
return TuOrErr.takeError();
return RegisterPTU(*TuOrErr);
}
static llvm::Expected<llvm::orc::JITTargetMachineBuilder>
createJITTargetMachineBuilder(const std::string &TT) {
if (TT == llvm::sys::getProcessTriple())
// This fails immediately if the target backend is not registered
return llvm::orc::JITTargetMachineBuilder::detectHost();
// If the target backend is not registered, LLJITBuilder::create() will fail
return llvm::orc::JITTargetMachineBuilder(llvm::Triple(TT));
}
llvm::Error Interpreter::CreateExecutor() {
if (IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"Execution engine exists",
std::error_code());
if (!getCodeGen())
return llvm::make_error<llvm::StringError>("Operation failed. "
"No code generator available",
std::error_code());
if (!JITBuilder) {
const std::string &TT = getCompilerInstance()->getTargetOpts().Triple;
auto JTMB = createJITTargetMachineBuilder(TT);
if (!JTMB)
return JTMB.takeError();
auto JB = IncrementalExecutor::createDefaultJITBuilder(std::move(*JTMB));
if (!JB)
return JB.takeError();
JITBuilder = std::move(*JB);
}
llvm::Error Err = llvm::Error::success();
#ifdef __EMSCRIPTEN__
auto Executor = std::make_unique<WasmIncrementalExecutor>(*TSCtx);
#else
auto Executor =
std::make_unique<IncrementalExecutor>(*TSCtx, *JITBuilder, Err);
#endif
if (!Err)
IncrExecutor = std::move(Executor);
return Err;
}
void Interpreter::ResetExecutor() { IncrExecutor.reset(); }
llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
assert(T.TheModule);
LLVM_DEBUG(llvm::dbgs()
<< "execute-ptu "
<< ((std::find(PTUs.begin(), PTUs.end(), T) != PTUs.end())
? std::distance(PTUs.begin(),
std::find(PTUs.begin(), PTUs.end(), T))
: -1)
<< ": [TU=" << T.TUPart << ", M=" << T.TheModule.get() << " ("
<< T.TheModule->getName() << ")]\n");
if (!IncrExecutor) {
auto Err = CreateExecutor();
if (Err)
return Err;
}
// FIXME: Add a callback to retain the llvm::Module once the JIT is done.
if (auto Err = IncrExecutor->addModule(T))
return Err;
if (auto Err = IncrExecutor->runCtors())
return Err;
return llvm::Error::success();
}
llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {
auto PTU = Parse(Code);
if (!PTU)
return PTU.takeError();
if (PTU->TheModule)
if (llvm::Error Err = Execute(*PTU))
return Err;
if (LastValue.isValid()) {
if (!V) {
LastValue.dump();
LastValue.clear();
} else
*V = std::move(LastValue);
}
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
llvm::StringRef MangledName = getCodeGen()->GetMangledName(GD);
return getSymbolAddress(MangledName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}
llvm::Error Interpreter::Undo(unsigned N) {
if (N > getEffectivePTUSize())
return llvm::make_error<llvm::StringError>("Operation failed. "
"Too many undos",
std::error_code());
for (unsigned I = 0; I < N; I++) {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
return Err;
}
IncrParser->CleanUpPTU(PTUs.back().TUPart);
PTUs.pop_back();
}
return llvm::Error::success();
}
llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
#ifdef __EMSCRIPTEN__
void *handle = dlopen(name, RTLD_NOW | RTLD_GLOBAL);
if (!handle) {
llvm::errs() << dlerror() << '\n';
return llvm::make_error<llvm::StringError>("Failed to load dynamic library",
llvm::inconvertibleErrorCode());
}
#else
auto EE = getExecutionEngine();
if (!EE)
return EE.takeError();
auto &DL = EE->getDataLayout();
if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
name, DL.getGlobalPrefix()))
EE->getMainJITDylib().addGenerator(std::move(*DLSG));
else
return DLSG.takeError();
#endif
return llvm::Error::success();
}
std::unique_ptr<llvm::Module>
Interpreter::GenModule(IncrementalAction *Action) {
static unsigned ID = 0;
if (CodeGenerator *CG = getCodeGen(Action)) {
// Clang's CodeGen is designed to work with a single llvm::Module. In many
// cases for convenience various CodeGen parts have a reference to the
// llvm::Module (TheModule or Module) which does not change when a new
// module is pushed. However, the execution engine wants to take ownership
// of the module which does not map well to CodeGen's design. To work this
// around we created an empty module to make CodeGen happy. We should make
// sure it always stays empty.
assert(((!CachedInCodeGenModule ||
!getCompilerInstance()->getPreprocessorOpts().Includes.empty()) ||
(CachedInCodeGenModule->empty() &&
CachedInCodeGenModule->global_empty() &&
CachedInCodeGenModule->alias_empty() &&
CachedInCodeGenModule->ifunc_empty())) &&
"CodeGen wrote to a readonly module");
std::unique_ptr<llvm::Module> M(CG->ReleaseModule());
CG->StartModule("incr_module_" + std::to_string(ID++), M->getContext());
return M;
}
return nullptr;
}
CodeGenerator *Interpreter::getCodeGen(IncrementalAction *Action) const {
if (!Action)
Action = Act.get();
FrontendAction *WrappedAct = Action->getWrapped();
if (!WrappedAct->hasIRSupport())
return nullptr;
return static_cast<CodeGenAction *>(WrappedAct)->getCodeGenerator();
}
} // namespace clang