Peter Klausler b21c24c308
[flang][runtime] Recognize and handle FINAL subroutines with contiguous dummy arrays when data are not so
When a FINAL subroutine is being invoked for a discontiguous array, which can
happen for INTENT(OUT) dummy arguments and for some left-hand side variables
in intrinsic assignment statements, it may be the case that the subroutine
being called was defined with a dummy argument that requires contiguous data.

Extend the derived type descriptions used by the runtime to signify when
a special procedure binding requires contiguity; set the flags accordingly;
check them in the runtime support library, and, when necessary, use a
temporary shallow copy of the finalized array data in the call to the
final subroutine.

Differential Revision: https://reviews.llvm.org/D156760
2023-08-01 13:46:45 -07:00

173 lines
5.1 KiB
C++

//===-- runtime/tools.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tools.h"
#include "terminator.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
std::size_t TrimTrailingSpaces(const char *s, std::size_t n) {
while (n > 0 && s[n - 1] == ' ') {
--n;
}
return n;
}
OwningPtr<char> SaveDefaultCharacter(
const char *s, std::size_t length, const Terminator &terminator) {
if (s) {
auto *p{static_cast<char *>(AllocateMemoryOrCrash(terminator, length + 1))};
std::memcpy(p, s, length);
p[length] = '\0';
return OwningPtr<char>{p};
} else {
return OwningPtr<char>{};
}
}
static bool CaseInsensitiveMatch(
const char *value, std::size_t length, const char *possibility) {
for (; length-- > 0; ++possibility) {
char ch{*value++};
if (ch >= 'a' && ch <= 'z') {
ch += 'A' - 'a';
}
if (*possibility != ch) {
if (*possibility != '\0' || ch != ' ') {
return false;
}
// Ignore trailing blanks (12.5.6.2 p1)
while (length-- > 0) {
if (*value++ != ' ') {
return false;
}
}
return true;
}
}
return *possibility == '\0';
}
int IdentifyValue(
const char *value, std::size_t length, const char *possibilities[]) {
if (value) {
for (int j{0}; possibilities[j]; ++j) {
if (CaseInsensitiveMatch(value, length, possibilities[j])) {
return j;
}
}
}
return -1;
}
void ToFortranDefaultCharacter(
char *to, std::size_t toLength, const char *from) {
std::size_t len{std::strlen(from)};
if (len < toLength) {
std::memcpy(to, from, len);
std::memset(to + len, ' ', toLength - len);
} else {
std::memcpy(to, from, toLength);
}
}
void CheckConformability(const Descriptor &to, const Descriptor &x,
Terminator &terminator, const char *funcName, const char *toName,
const char *xName) {
if (x.rank() == 0) {
return; // scalar conforms with anything
}
int rank{to.rank()};
if (x.rank() != rank) {
terminator.Crash(
"Incompatible array arguments to %s: %s has rank %d but %s has rank %d",
funcName, toName, rank, xName, x.rank());
} else {
for (int j{0}; j < rank; ++j) {
auto toExtent{static_cast<std::int64_t>(to.GetDimension(j).Extent())};
auto xExtent{static_cast<std::int64_t>(x.GetDimension(j).Extent())};
if (xExtent != toExtent) {
terminator.Crash("Incompatible array arguments to %s: dimension %d of "
"%s has extent %" PRId64 " but %s has extent %" PRId64,
funcName, j + 1, toName, toExtent, xName, xExtent);
}
}
}
}
void CheckIntegerKind(Terminator &terminator, int kind, const char *intrinsic) {
if (kind < 1 || kind > 16 || (kind & (kind - 1)) != 0) {
terminator.Crash(
"not yet implemented: %s: KIND=%d argument", intrinsic, kind);
}
}
void ShallowCopyDiscontiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank], fromAt[maxRank];
to.GetLowerBounds(toAt);
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memcpy(
to.Element<char>(toAt), from.Element<char>(fromAt), elementBytes);
}
}
void ShallowCopyDiscontiguousToContiguous(
const Descriptor &to, const Descriptor &from) {
char *toAt{to.OffsetElement()};
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
toAt += elementBytes, from.IncrementSubscripts(fromAt)) {
std::memcpy(toAt, from.Element<char>(fromAt), elementBytes);
}
}
void ShallowCopyContiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
char *fromAt{from.OffsetElement()};
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), fromAt += elementBytes) {
std::memcpy(to.Element<char>(toAt), fromAt, elementBytes);
}
}
void ShallowCopy(const Descriptor &to, const Descriptor &from,
bool toIsContiguous, bool fromIsContiguous) {
if (toIsContiguous) {
if (fromIsContiguous) {
std::memcpy(to.OffsetElement(), from.OffsetElement(),
to.Elements() * to.ElementBytes());
} else {
ShallowCopyDiscontiguousToContiguous(to, from);
}
} else {
if (fromIsContiguous) {
ShallowCopyContiguousToDiscontiguous(to, from);
} else {
ShallowCopyDiscontiguousToDiscontiguous(to, from);
}
}
}
void ShallowCopy(const Descriptor &to, const Descriptor &from) {
ShallowCopy(to, from, to.IsContiguous(), from.IsContiguous());
}
} // namespace Fortran::runtime