
Summary: Both EOF and the max value of unsigned char is platform dependent. In this patch we try our best to deduce the value of EOF from the Preprocessor, if we can't we fall back to -1. Reviewers: Szelethus, NoQ Subscribers: whisperity, xazax.hun, kristof.beyls, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalh Tags: #clang Differential Revision: https://reviews.llvm.org/D74473
801 lines
32 KiB
C++
801 lines
32 KiB
C++
//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This checker improves modeling of a few simple library functions.
|
|
// It does not generate warnings.
|
|
//
|
|
// This checker provides a specification format - `Summary' - and
|
|
// contains descriptions of some library functions in this format. Each
|
|
// specification contains a list of branches for splitting the program state
|
|
// upon call, and range constraints on argument and return-value symbols that
|
|
// are satisfied on each branch. This spec can be expanded to include more
|
|
// items, like external effects of the function.
|
|
//
|
|
// The main difference between this approach and the body farms technique is
|
|
// in more explicit control over how many branches are produced. For example,
|
|
// consider standard C function `ispunct(int x)', which returns a non-zero value
|
|
// iff `x' is a punctuation character, that is, when `x' is in range
|
|
// ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~'].
|
|
// `Summary' provides only two branches for this function. However,
|
|
// any attempt to describe this range with if-statements in the body farm
|
|
// would result in many more branches. Because each branch needs to be analyzed
|
|
// independently, this significantly reduces performance. Additionally,
|
|
// once we consider a branch on which `x' is in range, say, ['!', '/'],
|
|
// we assume that such branch is an important separate path through the program,
|
|
// which may lead to false positives because considering this particular path
|
|
// was not consciously intended, and therefore it might have been unreachable.
|
|
//
|
|
// This checker uses eval::Call for modeling pure functions (functions without
|
|
// side effets), for which their `Summary' is a precise model. This avoids
|
|
// unnecessary invalidation passes. Conflicts with other checkers are unlikely
|
|
// because if the function has no other effects, other checkers would probably
|
|
// never want to improve upon the modeling done by this checker.
|
|
//
|
|
// Non-pure functions, for which only partial improvement over the default
|
|
// behavior is expected, are modeled via check::PostCall, non-intrusively.
|
|
//
|
|
// The following standard C functions are currently supported:
|
|
//
|
|
// fgetc getline isdigit isupper
|
|
// fread isalnum isgraph isxdigit
|
|
// fwrite isalpha islower read
|
|
// getc isascii isprint write
|
|
// getchar isblank ispunct
|
|
// getdelim iscntrl isspace
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::ento;
|
|
|
|
namespace {
|
|
class StdLibraryFunctionsChecker : public Checker<check::PostCall, eval::Call> {
|
|
/// Below is a series of typedefs necessary to define function specs.
|
|
/// We avoid nesting types here because each additional qualifier
|
|
/// would need to be repeated in every function spec.
|
|
struct Summary;
|
|
|
|
/// Specify how much the analyzer engine should entrust modeling this function
|
|
/// to us. If he doesn't, he performs additional invalidations.
|
|
enum InvalidationKind { NoEvalCall, EvalCallAsPure };
|
|
|
|
/// A pair of ValueRangeKind and IntRangeVector would describe a range
|
|
/// imposed on a particular argument or return value symbol.
|
|
///
|
|
/// Given a range, should the argument stay inside or outside this range?
|
|
/// The special `ComparesToArgument' value indicates that we should
|
|
/// impose a constraint that involves other argument or return value symbols.
|
|
enum ValueRangeKind { OutOfRange, WithinRange, ComparesToArgument };
|
|
|
|
// The universal integral type to use in value range descriptions.
|
|
// Unsigned to make sure overflows are well-defined.
|
|
typedef uint64_t RangeInt;
|
|
|
|
/// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
|
|
/// a non-negative integer, which less than 5 and not equal to 2. For
|
|
/// `ComparesToArgument', holds information about how exactly to compare to
|
|
/// the argument.
|
|
typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
|
|
|
|
/// A reference to an argument or return value by its number.
|
|
/// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
|
|
/// obviously uint32_t should be enough for all practical purposes.
|
|
typedef uint32_t ArgNo;
|
|
static const ArgNo Ret = std::numeric_limits<ArgNo>::max();
|
|
|
|
/// Incapsulates a single range on a single symbol within a branch.
|
|
class ValueRange {
|
|
ArgNo ArgN; // Argument to which we apply the range.
|
|
ValueRangeKind Kind; // Kind of range definition.
|
|
IntRangeVector Args; // Polymorphic arguments.
|
|
|
|
public:
|
|
ValueRange(ArgNo ArgN, ValueRangeKind Kind, const IntRangeVector &Args)
|
|
: ArgN(ArgN), Kind(Kind), Args(Args) {}
|
|
|
|
ArgNo getArgNo() const { return ArgN; }
|
|
ValueRangeKind getKind() const { return Kind; }
|
|
|
|
BinaryOperator::Opcode getOpcode() const {
|
|
assert(Kind == ComparesToArgument);
|
|
assert(Args.size() == 1);
|
|
BinaryOperator::Opcode Op =
|
|
static_cast<BinaryOperator::Opcode>(Args[0].first);
|
|
assert(BinaryOperator::isComparisonOp(Op) &&
|
|
"Only comparison ops are supported for ComparesToArgument");
|
|
return Op;
|
|
}
|
|
|
|
ArgNo getOtherArgNo() const {
|
|
assert(Kind == ComparesToArgument);
|
|
assert(Args.size() == 1);
|
|
return static_cast<ArgNo>(Args[0].second);
|
|
}
|
|
|
|
const IntRangeVector &getRanges() const {
|
|
assert(Kind != ComparesToArgument);
|
|
return Args;
|
|
}
|
|
|
|
// We avoid creating a virtual apply() method because
|
|
// it makes initializer lists harder to write.
|
|
private:
|
|
ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
ProgramStateRef applyAsWithinRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
ProgramStateRef applyAsComparesToArgument(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
|
|
public:
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
switch (Kind) {
|
|
case OutOfRange:
|
|
return applyAsOutOfRange(State, Call, Summary);
|
|
case WithinRange:
|
|
return applyAsWithinRange(State, Call, Summary);
|
|
case ComparesToArgument:
|
|
return applyAsComparesToArgument(State, Call, Summary);
|
|
}
|
|
llvm_unreachable("Unknown ValueRange kind!");
|
|
}
|
|
};
|
|
|
|
/// The complete list of ranges that defines a single branch.
|
|
typedef std::vector<ValueRange> ValueRangeSet;
|
|
|
|
using ArgTypes = std::vector<QualType>;
|
|
using Ranges = std::vector<ValueRangeSet>;
|
|
|
|
/// Includes information about function prototype (which is necessary to
|
|
/// ensure we're modeling the right function and casting values properly),
|
|
/// approach to invalidation, and a list of branches - essentially, a list
|
|
/// of list of ranges - essentially, a list of lists of lists of segments.
|
|
struct Summary {
|
|
const ArgTypes ArgTys;
|
|
const QualType RetTy;
|
|
const InvalidationKind InvalidationKd;
|
|
Ranges Cases;
|
|
ValueRangeSet ArgConstraints;
|
|
|
|
Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
|
|
: ArgTys(ArgTys), RetTy(RetTy), InvalidationKd(InvalidationKd) {}
|
|
|
|
Summary &Case(ValueRangeSet VRS) {
|
|
Cases.push_back(VRS);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
static void assertTypeSuitableForSummary(QualType T) {
|
|
assert(!T->isVoidType() &&
|
|
"We should have had no significant void types in the spec");
|
|
assert(T.isCanonical() &&
|
|
"We should only have canonical types in the spec");
|
|
// FIXME: lift this assert (but not the ones above!)
|
|
assert(T->isIntegralOrEnumerationType() &&
|
|
"We only support integral ranges in the spec");
|
|
}
|
|
|
|
public:
|
|
QualType getArgType(ArgNo ArgN) const {
|
|
QualType T = (ArgN == Ret) ? RetTy : ArgTys[ArgN];
|
|
assertTypeSuitableForSummary(T);
|
|
return T;
|
|
}
|
|
|
|
/// Try our best to figure out if the call expression is the call of
|
|
/// *the* library function to which this specification applies.
|
|
bool matchesCall(const CallExpr *CE) const;
|
|
};
|
|
|
|
// The same function (as in, function identifier) may have different
|
|
// summaries assigned to it, with different argument and return value types.
|
|
// We call these "variants" of the function. This can be useful for handling
|
|
// C++ function overloads, and also it can be used when the same function
|
|
// may have different definitions on different platforms.
|
|
typedef std::vector<Summary> Summaries;
|
|
|
|
// The map of all functions supported by the checker. It is initialized
|
|
// lazily, and it doesn't change after initialization.
|
|
mutable llvm::StringMap<Summaries> FunctionSummaryMap;
|
|
|
|
// Auxiliary functions to support ArgNo within all structures
|
|
// in a unified manner.
|
|
static QualType getArgType(const Summary &Summary, ArgNo ArgN) {
|
|
return Summary.getArgType(ArgN);
|
|
}
|
|
static QualType getArgType(const CallEvent &Call, ArgNo ArgN) {
|
|
return ArgN == Ret ? Call.getResultType().getCanonicalType()
|
|
: Call.getArgExpr(ArgN)->getType().getCanonicalType();
|
|
}
|
|
static QualType getArgType(const CallExpr *CE, ArgNo ArgN) {
|
|
return ArgN == Ret ? CE->getType().getCanonicalType()
|
|
: CE->getArg(ArgN)->getType().getCanonicalType();
|
|
}
|
|
static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
|
|
return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
|
|
}
|
|
|
|
public:
|
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
|
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
|
|
|
|
private:
|
|
Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
|
|
const CallExpr *CE,
|
|
CheckerContext &C) const;
|
|
|
|
void initFunctionSummaries(CheckerContext &C) const;
|
|
};
|
|
} // end of anonymous namespace
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::ValueRange::applyAsOutOfRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
for (size_t I = 0; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
|
|
assert(Min <= Max);
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::ValueRange::applyAsWithinRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
// "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
|
|
// We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
|
|
// and then cut away all holes in R one by one.
|
|
//
|
|
// E.g. consider a range list R as [A, B] and [C, D]
|
|
// -------+--------+------------------+------------+----------->
|
|
// A B C D
|
|
// Then we assume that the value is not in [-inf, A - 1],
|
|
// then not in [D + 1, +inf], then not in [B + 1, C - 1]
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
|
|
const llvm::APSInt &MinusInf = BVF.getMinValue(T);
|
|
const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
|
|
|
|
const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
|
|
if (Left != PlusInf) {
|
|
assert(MinusInf <= Left);
|
|
State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
|
|
if (Right != MinusInf) {
|
|
assert(Right <= PlusInf);
|
|
State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
for (size_t I = 1; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
|
|
if (Min <= Max) {
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef
|
|
StdLibraryFunctionsChecker::ValueRange::applyAsComparesToArgument(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
QualType CondT = SVB.getConditionType();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
BinaryOperator::Opcode Op = getOpcode();
|
|
ArgNo OtherArg = getOtherArgNo();
|
|
SVal OtherV = getArgSVal(Call, OtherArg);
|
|
QualType OtherT = getArgType(Call, OtherArg);
|
|
// Note: we avoid integral promotion for comparison.
|
|
OtherV = SVB.evalCast(OtherV, T, OtherT);
|
|
if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
|
|
.getAs<DefinedOrUnknownSVal>())
|
|
State = State->assume(*CompV, true);
|
|
return State;
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
|
|
if (!FD)
|
|
return;
|
|
|
|
const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
if (!CE)
|
|
return;
|
|
|
|
Optional<Summary> FoundSummary = findFunctionSummary(FD, CE, C);
|
|
if (!FoundSummary)
|
|
return;
|
|
|
|
// Now apply ranges.
|
|
const Summary &Summary = *FoundSummary;
|
|
ProgramStateRef State = C.getState();
|
|
|
|
// Apply case/branch specifications.
|
|
for (const auto &VRS : Summary.Cases) {
|
|
ProgramStateRef NewState = State;
|
|
for (const auto &VR: VRS) {
|
|
NewState = VR.apply(NewState, Call, Summary);
|
|
if (!NewState)
|
|
break;
|
|
}
|
|
|
|
if (NewState && NewState != State)
|
|
C.addTransition(NewState);
|
|
}
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
const auto *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
|
|
if (!FD)
|
|
return false;
|
|
|
|
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
if (!CE)
|
|
return false;
|
|
|
|
Optional<Summary> FoundSummary = findFunctionSummary(FD, CE, C);
|
|
if (!FoundSummary)
|
|
return false;
|
|
|
|
const Summary &Summary = *FoundSummary;
|
|
switch (Summary.InvalidationKd) {
|
|
case EvalCallAsPure: {
|
|
ProgramStateRef State = C.getState();
|
|
const LocationContext *LC = C.getLocationContext();
|
|
SVal V = C.getSValBuilder().conjureSymbolVal(
|
|
CE, LC, CE->getType().getCanonicalType(), C.blockCount());
|
|
State = State->BindExpr(CE, LC, V);
|
|
C.addTransition(State);
|
|
return true;
|
|
}
|
|
case NoEvalCall:
|
|
// Summary tells us to avoid performing eval::Call. The function is possibly
|
|
// evaluated by another checker, or evaluated conservatively.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown invalidation kind!");
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::Summary::matchesCall(
|
|
const CallExpr *CE) const {
|
|
// Check number of arguments:
|
|
if (CE->getNumArgs() != ArgTys.size())
|
|
return false;
|
|
|
|
// Check return type if relevant:
|
|
if (!RetTy.isNull() && RetTy != CE->getType().getCanonicalType())
|
|
return false;
|
|
|
|
// Check argument types when relevant:
|
|
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
|
|
QualType FormalT = ArgTys[I];
|
|
// Null type marks irrelevant arguments.
|
|
if (FormalT.isNull())
|
|
continue;
|
|
|
|
assertTypeSuitableForSummary(FormalT);
|
|
|
|
QualType ActualT = StdLibraryFunctionsChecker::getArgType(CE, I);
|
|
assert(ActualT.isCanonical());
|
|
if (ActualT != FormalT)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<StdLibraryFunctionsChecker::Summary>
|
|
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
|
|
const CallExpr *CE,
|
|
CheckerContext &C) const {
|
|
// Note: we cannot always obtain FD from CE
|
|
// (eg. virtual call, or call by pointer).
|
|
assert(CE);
|
|
|
|
if (!FD)
|
|
return None;
|
|
|
|
initFunctionSummaries(C);
|
|
|
|
IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II)
|
|
return None;
|
|
StringRef Name = II->getName();
|
|
if (Name.empty() || !C.isCLibraryFunction(FD, Name))
|
|
return None;
|
|
|
|
auto FSMI = FunctionSummaryMap.find(Name);
|
|
if (FSMI == FunctionSummaryMap.end())
|
|
return None;
|
|
|
|
// Verify that function signature matches the spec in advance.
|
|
// Otherwise we might be modeling the wrong function.
|
|
// Strict checking is important because we will be conducting
|
|
// very integral-type-sensitive operations on arguments and
|
|
// return values.
|
|
const Summaries &SpecVariants = FSMI->second;
|
|
for (const Summary &Spec : SpecVariants)
|
|
if (Spec.matchesCall(CE))
|
|
return Spec;
|
|
|
|
return None;
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::initFunctionSummaries(
|
|
CheckerContext &C) const {
|
|
if (!FunctionSummaryMap.empty())
|
|
return;
|
|
|
|
SValBuilder &SVB = C.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
const ASTContext &ACtx = BVF.getContext();
|
|
|
|
// These types are useful for writing specifications quickly,
|
|
// New specifications should probably introduce more types.
|
|
// Some types are hard to obtain from the AST, eg. "ssize_t".
|
|
// In such cases it should be possible to provide multiple variants
|
|
// of function summary for common cases (eg. ssize_t could be int or long
|
|
// or long long, so three summary variants would be enough).
|
|
// Of course, function variants are also useful for C++ overloads.
|
|
const QualType
|
|
Irrelevant; // A placeholder, whenever we do not care about the type.
|
|
const QualType IntTy = ACtx.IntTy;
|
|
const QualType LongTy = ACtx.LongTy;
|
|
const QualType LongLongTy = ACtx.LongLongTy;
|
|
const QualType SizeTy = ACtx.getSizeType();
|
|
|
|
const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
|
|
const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
|
|
const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
|
|
|
|
const RangeInt UCharMax =
|
|
BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue();
|
|
|
|
// The platform dependent value of EOF.
|
|
// Try our best to parse this from the Preprocessor, otherwise fallback to -1.
|
|
const auto EOFv = [&C]() -> RangeInt {
|
|
if (const llvm::Optional<int> OptInt =
|
|
tryExpandAsInteger("EOF", C.getPreprocessor()))
|
|
return *OptInt;
|
|
return -1;
|
|
}();
|
|
|
|
// We are finally ready to define specifications for all supported functions.
|
|
//
|
|
// The signature needs to have the correct number of arguments.
|
|
// However, we insert `Irrelevant' when the type is insignificant.
|
|
//
|
|
// Argument ranges should always cover all variants. If return value
|
|
// is completely unknown, omit it from the respective range set.
|
|
//
|
|
// All types in the spec need to be canonical.
|
|
//
|
|
// Every item in the list of range sets represents a particular
|
|
// execution path the analyzer would need to explore once
|
|
// the call is modeled - a new program state is constructed
|
|
// for every range set, and each range line in the range set
|
|
// corresponds to a specific constraint within this state.
|
|
//
|
|
// Upon comparing to another argument, the other argument is casted
|
|
// to the current argument's type. This avoids proper promotion but
|
|
// seems useful. For example, read() receives size_t argument,
|
|
// and its return value, which is of type ssize_t, cannot be greater
|
|
// than this argument. If we made a promotion, and the size argument
|
|
// is equal to, say, 10, then we'd impose a range of [0, 10] on the
|
|
// return value, however the correct range is [-1, 10].
|
|
//
|
|
// Please update the list of functions in the header after editing!
|
|
//
|
|
|
|
// Below are helper functions to create the summaries.
|
|
auto ArgumentCondition = [](ArgNo ArgN, ValueRangeKind Kind,
|
|
IntRangeVector Ranges) -> ValueRange {
|
|
ValueRange VR{ArgN, Kind, Ranges};
|
|
return VR;
|
|
};
|
|
auto ReturnValueCondition = [](ValueRangeKind Kind,
|
|
IntRangeVector Ranges) -> ValueRange {
|
|
ValueRange VR{Ret, Kind, Ranges};
|
|
return VR;
|
|
};
|
|
auto Range = [](RangeInt b, RangeInt e) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
|
|
};
|
|
auto SingleValue = [](RangeInt v) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
|
|
};
|
|
auto IsLessThan = [](ArgNo ArgN) { return IntRangeVector{{BO_LE, ArgN}}; };
|
|
|
|
using RetType = QualType;
|
|
|
|
// Templates for summaries that are reused by many functions.
|
|
auto Getc = [&]() {
|
|
return Summary(ArgTypes{Irrelevant}, RetType{IntTy}, NoEvalCall)
|
|
.Case(
|
|
{ReturnValueCondition(WithinRange, {{EOFv, EOFv}, {0, UCharMax}})});
|
|
};
|
|
auto Read = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(ComparesToArgument, IsLessThan(2)),
|
|
ReturnValueCondition(WithinRange, Range(-1, Max))});
|
|
};
|
|
auto Fread = [&]() {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy, Irrelevant},
|
|
RetType{SizeTy}, NoEvalCall)
|
|
.Case({
|
|
ReturnValueCondition(ComparesToArgument, IsLessThan(2)),
|
|
});
|
|
};
|
|
auto Getline = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
|
|
};
|
|
|
|
FunctionSummaryMap = {
|
|
// The isascii() family of functions.
|
|
{
|
|
"isalnum",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Boils down to isupper() or islower() or isdigit().
|
|
.Case(
|
|
{ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
// No post-condition. We are completely unaware of
|
|
// locale-specific return values.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharMax}})})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'0', '9'},
|
|
{'A', 'Z'},
|
|
{'a', 'z'},
|
|
{128, UCharMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isalpha",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharMax}})})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'A', 'Z'}, {'a', 'z'}, {128, UCharMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isascii",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isblank",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"iscntrl",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case(
|
|
{ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isdigit",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isgraph",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"islower",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// Is ascii but not lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharMax}})})
|
|
// Is not an unsigned char.
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharMax)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isprint",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"ispunct",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(
|
|
0U, WithinRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isspace",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Space, '\f', '\n', '\r', '\t', '\v'.
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{9, 13}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharMax}})})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{9, 13}, {' ', ' '}, {128, UCharMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isupper",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly uppercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharMax}})})
|
|
// Other.
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'A', 'Z'}, {128, UCharMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
{
|
|
"isxdigit",
|
|
Summaries{
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case(
|
|
{ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case(
|
|
{ArgumentCondition(0U, OutOfRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})},
|
|
},
|
|
|
|
// The getc() family of functions that returns either a char or an EOF.
|
|
{"getc", Summaries{Getc()}},
|
|
{"fgetc", Summaries{Getc()}},
|
|
{"getchar",
|
|
Summaries{Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
|
|
.Case({ReturnValueCondition(
|
|
WithinRange, {{EOFv, EOFv}, {0, UCharMax}})})}},
|
|
|
|
// read()-like functions that never return more than buffer size.
|
|
// We are not sure how ssize_t is defined on every platform, so we
|
|
// provide three variants that should cover common cases.
|
|
{"read", Summaries{Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)}},
|
|
{"write", Summaries{Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)}},
|
|
{"fread", Summaries{Fread()}},
|
|
{"fwrite", Summaries{Fread()}},
|
|
// getline()-like functions either fail or read at least the delimiter.
|
|
{"getline", Summaries{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)}},
|
|
{"getdelim", Summaries{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)}},
|
|
};
|
|
}
|
|
|
|
void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
|
|
// If this checker grows large enough to support C++, Objective-C, or other
|
|
// standard libraries, we could use multiple register...Checker() functions,
|
|
// which would register various checkers with the help of the same Checker
|
|
// class, turning on different function summaries.
|
|
mgr.registerChecker<StdLibraryFunctionsChecker>();
|
|
}
|
|
|
|
bool ento::shouldRegisterStdCLibraryFunctionsChecker(const LangOptions &LO) {
|
|
return true;
|
|
}
|