Kristina Bessonova 5499e2f455 [llvm-dwarfdump][Statistics] Distinguish parameters with same name or w/o a name
A few DW_TAG_formal_parameter's of the same function may have the same
name (e.g. variadic (template) functions) or don't have a name at all
(if the parameter isn't used inside the function body), but we still
need to be able to distinguish between them to get correct number of 'total vars'
and 'availability' metric.

Reviewed by: aprantl

Differential Revision: https://reviews.llvm.org/D73003
2020-01-28 20:52:20 +02:00

618 lines
25 KiB
C++

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/JSON.h"
#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace object;
/// This represents the number of categories of debug location coverage being
/// calculated. The first category is the number of variables with 0% location
/// coverage, but the last category is the number of variables with 100%
/// location coverage.
constexpr int NumOfCoverageCategories = 12;
/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
/// Number of inlined instances of this function.
unsigned NumFnInlined = 0;
/// Number of out-of-line instances of this function.
unsigned NumFnOutOfLine = 0;
/// Number of inlined instances that have abstract origins.
unsigned NumAbstractOrigins = 0;
/// Number of variables and parameters with location across all inlined
/// instances.
unsigned TotalVarWithLoc = 0;
/// Number of constants with location across all inlined instances.
unsigned ConstantMembers = 0;
/// List of all Variables and parameters in this function.
StringSet<> VarsInFunction;
/// Compile units also cover a PC range, but have this flag set to false.
bool IsFunction = false;
/// Function has source location information.
bool HasSourceLocation = false;
/// Number of function parameters.
unsigned NumParams = 0;
/// Number of function parameters with source location.
unsigned NumParamSourceLocations = 0;
/// Number of function parameters with type.
unsigned NumParamTypes = 0;
/// Number of function parameters with a DW_AT_location.
unsigned NumParamLocations = 0;
/// Number of variables.
unsigned NumVars = 0;
/// Number of variables with source location.
unsigned NumVarSourceLocations = 0;
/// Number of variables with type.
unsigned NumVarTypes = 0;
/// Number of variables with DW_AT_location.
unsigned NumVarLocations = 0;
};
/// Holds accumulated global statistics about DIEs.
struct GlobalStats {
/// Total number of PC range bytes covered by DW_AT_locations.
unsigned ScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope.
unsigned ScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value).
unsigned ScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations of
/// formal parameters.
unsigned ParamScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope
/// (only for parameters).
unsigned ParamScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for parameters).
unsigned ParamScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations (only for local
/// variables).
unsigned VarScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope
/// (only for local variables).
unsigned VarScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for local variables).
unsigned VarScopeEntryValueBytesCovered = 0;
/// Total number of call site entries (DW_AT_call_file & DW_AT_call_line).
unsigned CallSiteEntries = 0;
/// Total number of call site DIEs (DW_TAG_call_site).
unsigned CallSiteDIEs = 0;
/// Total number of call site parameter DIEs (DW_TAG_call_site_parameter).
unsigned CallSiteParamDIEs = 0;
/// Total byte size of concrete functions. This byte size includes
/// inline functions contained in the concrete functions.
unsigned FunctionSize = 0;
/// Total byte size of inlined functions. This is the total number of bytes
/// for the top inline functions within concrete functions. This can help
/// tune the inline settings when compiling to match user expectations.
unsigned InlineFunctionSize = 0;
};
/// Holds accumulated debug location statistics about local variables and
/// formal parameters.
struct LocationStats {
/// Map the scope coverage decile to the number of variables in the decile.
/// The first element of the array (at the index zero) represents the number
/// of variables with the no debug location at all, but the last element
/// in the vector represents the number of fully covered variables within
/// its scope.
std::vector<unsigned> VarParamLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage.
std::vector<unsigned> VarParamNonEntryValLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// The debug location statistics for formal parameters.
std::vector<unsigned> ParamLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for formal parameters.
std::vector<unsigned> ParamNonEntryValLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// The debug location statistics for local variables.
std::vector<unsigned> VarLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for local variables.
std::vector<unsigned> VarNonEntryValLocStats{
std::vector<unsigned>(NumOfCoverageCategories, 0)};
/// Total number of local variables and function parameters processed.
unsigned NumVarParam = 0;
/// Total number of formal parameters processed.
unsigned NumParam = 0;
/// Total number of local variables processed.
unsigned NumVar = 0;
};
/// Collect debug location statistics for one DIE.
static void collectLocStats(uint64_t BytesCovered, uint64_t BytesInScope,
std::vector<unsigned> &VarParamLocStats,
std::vector<unsigned> &ParamLocStats,
std::vector<unsigned> &VarLocStats, bool IsParam,
bool IsLocalVar) {
auto getCoverageBucket = [BytesCovered, BytesInScope]() -> unsigned {
// No debug location at all for the variable.
if (BytesCovered == 0)
return 0;
// Fully covered variable within its scope.
if (BytesCovered >= BytesInScope)
return NumOfCoverageCategories - 1;
// Get covered range (e.g. 20%-29%).
unsigned LocBucket = 100 * (double)BytesCovered / BytesInScope;
LocBucket /= 10;
return LocBucket + 1;
};
unsigned CoverageBucket = getCoverageBucket();
VarParamLocStats[CoverageBucket]++;
if (IsParam)
ParamLocStats[CoverageBucket]++;
else if (IsLocalVar)
VarLocStats[CoverageBucket]++;
}
/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName
/// and DeclLine. The identifier aims to be unique for any unique entities,
/// but keeping the same among different instances of the same entity.
static std::string constructDieID(DWARFDie Die,
StringRef Prefix = StringRef()) {
std::string IDStr;
llvm::raw_string_ostream ID(IDStr);
ID << Prefix
<< Die.getName(DINameKind::LinkageName);
// Prefix + Name is enough for local variables and parameters.
if (!Prefix.empty() && !Prefix.equals("g"))
return ID.str();
auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file);
std::string File;
if (DeclFile) {
DWARFUnit *U = Die.getDwarfUnit();
if (const auto *LT = U->getContext().getLineTableForUnit(U))
if (LT->getFileNameByIndex(
dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File))
File = sys::path::filename(File);
}
ID << ":" << (File.empty() ? "/" : File);
ID << ":"
<< dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0);
return ID.str();
}
/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, std::string FnPrefix,
std::string VarPrefix, uint64_t BytesInScope,
uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats,
LocationStats &LocStats) {
bool HasLoc = false;
bool HasSrcLoc = false;
bool HasType = false;
bool IsArtificial = false;
uint64_t BytesCovered = 0;
uint64_t BytesEntryValuesCovered = 0;
auto &FnStats = FnStatMap[FnPrefix];
bool IsParam = Die.getTag() == dwarf::DW_TAG_formal_parameter;
bool IsVariable = Die.getTag() == dwarf::DW_TAG_variable;
if (Die.getTag() == dwarf::DW_TAG_call_site ||
Die.getTag() == dwarf::DW_TAG_GNU_call_site) {
GlobalStats.CallSiteDIEs++;
return;
}
if (Die.getTag() == dwarf::DW_TAG_call_site_parameter ||
Die.getTag() == dwarf::DW_TAG_GNU_call_site_parameter) {
GlobalStats.CallSiteParamDIEs++;
return;
}
if (!IsParam && !IsVariable && Die.getTag() != dwarf::DW_TAG_member) {
// Not a variable or constant member.
return;
}
// Ignore declarations of global variables.
if (IsVariable && Die.find(dwarf::DW_AT_declaration))
return;
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
HasSrcLoc = true;
if (Die.findRecursively(dwarf::DW_AT_type))
HasType = true;
if (Die.find(dwarf::DW_AT_artificial))
IsArtificial = true;
auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool {
DWARFUnit *U = Die.getDwarfUnit();
DataExtractor Data(toStringRef(D),
Die.getDwarfUnit()->getContext().isLittleEndian(), 0);
DWARFExpression Expression(Data, U->getAddressByteSize());
// Consider the expression containing the DW_OP_entry_value as
// an entry value.
return llvm::any_of(Expression, [](DWARFExpression::Operation &Op) {
return Op.getCode() == dwarf::DW_OP_entry_value ||
Op.getCode() == dwarf::DW_OP_GNU_entry_value;
});
};
if (Die.find(dwarf::DW_AT_const_value)) {
// This catches constant members *and* variables.
HasLoc = true;
BytesCovered = BytesInScope;
} else {
if (Die.getTag() == dwarf::DW_TAG_member) {
// Non-const member.
return;
}
// Handle variables and function arguments.
Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(dwarf::DW_AT_location);
if (!Loc) {
consumeError(Loc.takeError());
} else {
HasLoc = true;
// Get PC coverage.
auto Default = find_if(
*Loc, [](const DWARFLocationExpression &L) { return !L.Range; });
if (Default != Loc->end()) {
// Assume the entire range is covered by a single location.
BytesCovered = BytesInScope;
} else {
for (auto Entry : *Loc) {
uint64_t BytesEntryCovered = Entry.Range->HighPC - Entry.Range->LowPC;
BytesCovered += BytesEntryCovered;
if (IsEntryValue(Entry.Expr))
BytesEntryValuesCovered += BytesEntryCovered;
}
}
}
}
// Calculate the debug location statistics.
if (BytesInScope) {
LocStats.NumVarParam++;
if (IsParam)
LocStats.NumParam++;
else if (IsVariable)
LocStats.NumVar++;
collectLocStats(BytesCovered, BytesInScope, LocStats.VarParamLocStats,
LocStats.ParamLocStats, LocStats.VarLocStats, IsParam,
IsVariable);
// Non debug entry values coverage statistics.
collectLocStats(BytesCovered - BytesEntryValuesCovered, BytesInScope,
LocStats.VarParamNonEntryValLocStats,
LocStats.ParamNonEntryValLocStats,
LocStats.VarNonEntryValLocStats, IsParam, IsVariable);
}
// Collect PC range coverage data.
if (DWARFDie D =
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
Die = D;
std::string VarID = constructDieID(Die, VarPrefix);
FnStats.VarsInFunction.insert(VarID);
if (BytesInScope) {
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
// Turns out we have a lot of ranges that extend past the lexical scope.
GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered);
GlobalStats.ScopeBytes += BytesInScope;
GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered;
if (IsParam) {
GlobalStats.ParamScopeBytesCovered +=
std::min(BytesInScope, BytesCovered);
GlobalStats.ParamScopeBytes += BytesInScope;
GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered;
} else if (IsVariable) {
GlobalStats.VarScopeBytesCovered += std::min(BytesInScope, BytesCovered);
GlobalStats.VarScopeBytes += BytesInScope;
GlobalStats.VarScopeEntryValueBytesCovered += BytesEntryValuesCovered;
}
assert(GlobalStats.ScopeBytesCovered <= GlobalStats.ScopeBytes);
} else if (Die.getTag() == dwarf::DW_TAG_member) {
FnStats.ConstantMembers++;
} else {
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
}
if (!IsArtificial) {
if (IsParam) {
FnStats.NumParams++;
if (HasType)
FnStats.NumParamTypes++;
if (HasSrcLoc)
FnStats.NumParamSourceLocations++;
if (HasLoc)
FnStats.NumParamLocations++;
} else if (IsVariable) {
FnStats.NumVars++;
if (HasType)
FnStats.NumVarTypes++;
if (HasSrcLoc)
FnStats.NumVarSourceLocations++;
if (HasLoc)
FnStats.NumVarLocations++;
}
}
}
/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(DWARFDie Die, std::string FnPrefix,
std::string VarPrefix, uint64_t BytesInScope,
uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats,
LocationStats &LocStats) {
const dwarf::Tag Tag = Die.getTag();
// Skip function types.
if (Tag == dwarf::DW_TAG_subroutine_type)
return;
// Handle any kind of lexical scope.
const bool IsFunction = Tag == dwarf::DW_TAG_subprogram;
const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block;
const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine;
if (IsFunction || IsInlinedFunction || IsBlock) {
// Reset VarPrefix when entering a new function.
if (Die.getTag() == dwarf::DW_TAG_subprogram ||
Die.getTag() == dwarf::DW_TAG_inlined_subroutine)
VarPrefix = "v";
// Ignore forward declarations.
if (Die.find(dwarf::DW_AT_declaration))
return;
// Check for call sites.
if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line))
GlobalStats.CallSiteEntries++;
// PC Ranges.
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
llvm::consumeError(RangesOrError.takeError());
return;
}
auto Ranges = RangesOrError.get();
uint64_t BytesInThisScope = 0;
for (auto Range : Ranges)
BytesInThisScope += Range.HighPC - Range.LowPC;
// Count the function.
if (!IsBlock) {
// Skip over abstract origins.
if (Die.find(dwarf::DW_AT_inline))
return;
std::string FnID = constructDieID(Die);
// We've seen an instance of this function.
auto &FnStats = FnStatMap[FnID];
FnStats.IsFunction = true;
if (IsInlinedFunction) {
FnStats.NumFnInlined++;
if (Die.findRecursively(dwarf::DW_AT_abstract_origin))
FnStats.NumAbstractOrigins++;
} else {
FnStats.NumFnOutOfLine++;
}
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
FnStats.HasSourceLocation = true;
// Update function prefix.
FnPrefix = FnID;
}
if (BytesInThisScope) {
BytesInScope = BytesInThisScope;
if (IsFunction)
GlobalStats.FunctionSize += BytesInThisScope;
else if (IsInlinedFunction && InlineDepth == 0)
GlobalStats.InlineFunctionSize += BytesInThisScope;
}
} else {
// Not a scope, visit the Die itself. It could be a variable.
collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth,
FnStatMap, GlobalStats, LocStats);
}
// Set InlineDepth correctly for child recursion
if (IsFunction)
InlineDepth = 0;
else if (IsInlinedFunction)
++InlineDepth;
// Traverse children.
unsigned LexicalBlockIndex = 0;
unsigned FormalParameterIndex = 0;
DWARFDie Child = Die.getFirstChild();
while (Child) {
std::string ChildVarPrefix = VarPrefix;
if (Child.getTag() == dwarf::DW_TAG_lexical_block)
ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';
if (Child.getTag() == dwarf::DW_TAG_formal_parameter)
ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.';
collectStatsRecursive(Child, FnPrefix, ChildVarPrefix, BytesInScope,
InlineDepth, FnStatMap, GlobalStats, LocStats);
Child = Child.getSibling();
}
}
/// Print machine-readable output.
/// The machine-readable format is single-line JSON output.
/// \{
static void printDatum(raw_ostream &OS, const char *Key, json::Value Value) {
OS << ",\"" << Key << "\":" << Value;
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printLocationStats(raw_ostream &OS,
const char *Key,
std::vector<unsigned> &LocationStats) {
OS << ",\"" << Key << " with 0% of its scope covered\":"
<< LocationStats[0];
LLVM_DEBUG(llvm::dbgs() << Key << " with 0% of its scope covered: "
<< LocationStats[0] << '\n');
OS << ",\"" << Key << " with (0%,10%) of its scope covered\":"
<< LocationStats[1];
LLVM_DEBUG(llvm::dbgs() << Key << " with (0%,10%) of its scope covered: "
<< LocationStats[1] << '\n');
for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) {
OS << ",\"" << Key << " with [" << (i - 1) * 10 << "%," << i * 10
<< "%) of its scope covered\":" << LocationStats[i];
LLVM_DEBUG(llvm::dbgs()
<< Key << " with [" << (i - 1) * 10 << "%," << i * 10
<< "%) of its scope covered: " << LocationStats[i]);
}
OS << ",\"" << Key << " with 100% of its scope covered\":"
<< LocationStats[NumOfCoverageCategories - 1];
LLVM_DEBUG(llvm::dbgs() << Key << " with 100% of its scope covered: "
<< LocationStats[NumOfCoverageCategories - 1]);
}
/// \}
/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
Twine Filename, raw_ostream &OS) {
StringRef FormatName = Obj.getFileFormatName();
GlobalStats GlobalStats;
LocationStats LocStats;
StringMap<PerFunctionStats> Statistics;
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units())
if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false))
collectStatsRecursive(CUDie, "/", "g", 0, 0, Statistics, GlobalStats,
LocStats);
/// The version number should be increased every time the algorithm is changed
/// (including bug fixes). New metrics may be added without increasing the
/// version.
unsigned Version = 4;
unsigned VarParamTotal = 0;
unsigned VarParamUnique = 0;
unsigned VarParamWithLoc = 0;
unsigned NumFunctions = 0;
unsigned NumInlinedFunctions = 0;
unsigned NumFuncsWithSrcLoc = 0;
unsigned NumAbstractOrigins = 0;
unsigned ParamTotal = 0;
unsigned ParamWithType = 0;
unsigned ParamWithLoc = 0;
unsigned ParamWithSrcLoc = 0;
unsigned VarTotal = 0;
unsigned VarWithType = 0;
unsigned VarWithSrcLoc = 0;
unsigned VarWithLoc = 0;
for (auto &Entry : Statistics) {
PerFunctionStats &Stats = Entry.getValue();
unsigned TotalVars = Stats.VarsInFunction.size() *
(Stats.NumFnInlined + Stats.NumFnOutOfLine);
// Count variables in global scope.
if (!Stats.IsFunction)
TotalVars += Stats.VarsInFunction.size();
unsigned Constants = Stats.ConstantMembers;
VarParamWithLoc += Stats.TotalVarWithLoc + Constants;
VarParamTotal += TotalVars;
VarParamUnique += Stats.VarsInFunction.size();
LLVM_DEBUG(for (auto &V
: Stats.VarsInFunction) llvm::dbgs()
<< Entry.getKey() << ": " << V.getKey() << "\n");
NumFunctions += Stats.IsFunction;
NumFuncsWithSrcLoc += Stats.HasSourceLocation;
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins;
ParamTotal += Stats.NumParams;
ParamWithType += Stats.NumParamTypes;
ParamWithLoc += Stats.NumParamLocations;
ParamWithSrcLoc += Stats.NumParamSourceLocations;
VarTotal += Stats.NumVars;
VarWithType += Stats.NumVarTypes;
VarWithLoc += Stats.NumVarLocations;
VarWithSrcLoc += Stats.NumVarSourceLocations;
}
// Print summary.
OS.SetBufferSize(1024);
OS << "{\"version\":" << Version;
LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
llvm::dbgs() << "---------------------------------\n");
printDatum(OS, "file", Filename.str());
printDatum(OS, "format", FormatName);
printDatum(OS, "source functions", NumFunctions);
printDatum(OS, "source functions with location", NumFuncsWithSrcLoc);
printDatum(OS, "inlined functions", NumInlinedFunctions);
printDatum(OS, "inlined funcs with abstract origins", NumAbstractOrigins);
printDatum(OS, "unique source variables", VarParamUnique);
printDatum(OS, "source variables", VarParamTotal);
printDatum(OS, "variables with location", VarParamWithLoc);
printDatum(OS, "call site entries", GlobalStats.CallSiteEntries);
printDatum(OS, "call site DIEs", GlobalStats.CallSiteDIEs);
printDatum(OS, "call site parameter DIEs", GlobalStats.CallSiteParamDIEs);
printDatum(OS, "scope bytes total", GlobalStats.ScopeBytes);
printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered);
printDatum(OS, "entry value scope bytes covered",
GlobalStats.ScopeEntryValueBytesCovered);
printDatum(OS, "formal params scope bytes total",
GlobalStats.ParamScopeBytes);
printDatum(OS, "formal params scope bytes covered",
GlobalStats.ParamScopeBytesCovered);
printDatum(OS, "formal params entry value scope bytes covered",
GlobalStats.ParamScopeEntryValueBytesCovered);
printDatum(OS, "vars scope bytes total", GlobalStats.VarScopeBytes);
printDatum(OS, "vars scope bytes covered", GlobalStats.VarScopeBytesCovered);
printDatum(OS, "vars entry value scope bytes covered",
GlobalStats.VarScopeEntryValueBytesCovered);
printDatum(OS, "total function size", GlobalStats.FunctionSize);
printDatum(OS, "total inlined function size", GlobalStats.InlineFunctionSize);
printDatum(OS, "total formal params", ParamTotal);
printDatum(OS, "formal params with source location", ParamWithSrcLoc);
printDatum(OS, "formal params with type", ParamWithType);
printDatum(OS, "formal params with binary location", ParamWithLoc);
printDatum(OS, "total vars", VarTotal);
printDatum(OS, "vars with source location", VarWithSrcLoc);
printDatum(OS, "vars with type", VarWithType);
printDatum(OS, "vars with binary location", VarWithLoc);
printDatum(OS, "total variables procesed by location statistics",
LocStats.NumVarParam);
printLocationStats(OS, "variables", LocStats.VarParamLocStats);
printLocationStats(OS, "variables (excluding the debug entry values)",
LocStats.VarParamNonEntryValLocStats);
printDatum(OS, "total params procesed by location statistics",
LocStats.NumParam);
printLocationStats(OS, "params", LocStats.ParamLocStats);
printLocationStats(OS, "params (excluding the debug entry values)",
LocStats.ParamNonEntryValLocStats);
printDatum(OS, "total vars procesed by location statistics", LocStats.NumVar);
printLocationStats(OS, "vars", LocStats.VarLocStats);
printLocationStats(OS, "vars (excluding the debug entry values)",
LocStats.VarNonEntryValLocStats);
OS << "}\n";
LLVM_DEBUG(
llvm::dbgs() << "Total Availability: "
<< (int)std::round((VarParamWithLoc * 100.0) / VarParamTotal)
<< "%\n";
llvm::dbgs() << "PC Ranges covered: "
<< (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) /
GlobalStats.ScopeBytes)
<< "%\n");
return true;
}