llvm-project/llvm/unittests/Analysis/FunctionPropertiesAnalysisTest.cpp
Mircea Trofin 1991aa6b48
Reapply "[nfc][mlgo] Incrementally update DominatorTreeAnalysis in FunctionPropertiesAnalysis (#104867) (#106309)
Reverts c992690179eb5de6efe47d5c8f3a23f2302723f2.

The problem is that if there is a sequence "{delete A->B} {delete A->B}
{insert A->B}" the net result is "{delete A->B}", which is not what we
want.

Duplicate successors may happen in cases like switch statements (as
shown in the unit test).

The second problem was that in `invoke` cases, some edges we speculate may get deleted don't, but are also not reachable from the inlined call site's basic block. We just need to check which edges are actually not present anymore.

The fix is to sanitize the list of deletes, just like we do for inserts.
2024-08-29 18:28:09 -07:00

1118 lines
34 KiB
C++

//===- FunctionPropertiesAnalysisTest.cpp - Function Properties Unit Tests-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "gtest/gtest.h"
#include <cstring>
using namespace llvm;
namespace llvm {
extern cl::opt<bool> EnableDetailedFunctionProperties;
extern cl::opt<bool> BigBasicBlockInstructionThreshold;
extern cl::opt<bool> MediumBasicBlockInstrutionThreshold;
} // namespace llvm
namespace {
class FunctionPropertiesAnalysisTest : public testing::Test {
public:
FunctionPropertiesAnalysisTest() {
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return LoopAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
}
protected:
std::unique_ptr<DominatorTree> DT;
std::unique_ptr<LoopInfo> LI;
FunctionAnalysisManager FAM;
FunctionPropertiesInfo buildFPI(Function &F) {
return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
}
void invalidate(Function &F) {
PreservedAnalyses PA = PreservedAnalyses::none();
FAM.invalidate(F, PA);
}
std::unique_ptr<Module> makeLLVMModule(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("MLAnalysisTests", errs());
return Mod;
}
CallBase* findCall(Function& F, const char* Name = nullptr) {
for (auto &BB : F)
for (auto &I : BB )
if (auto *CB = dyn_cast<CallBase>(&I))
if (!Name || CB->getName() == Name)
return CB;
return nullptr;
}
};
TEST_F(FunctionPropertiesAnalysisTest, BasicTest) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
declare i32 @f1(i32)
declare i32 @f2(i32)
define i32 @branches(i32) {
%cond = icmp slt i32 %0, 3
br i1 %cond, label %then, label %else
then:
%ret.1 = call i32 @f1(i32 %0)
br label %last.block
else:
%ret.2 = call i32 @f2(i32 %0)
br label %last.block
last.block:
%ret = phi i32 [%ret.1, %then], [%ret.2, %else]
ret i32 %ret
}
define internal i32 @top() {
%1 = call i32 @branches(i32 2)
%2 = call i32 @f1(i32 %1)
ret i32 %2
}
)IR");
Function *BranchesFunction = M->getFunction("branches");
FunctionPropertiesInfo BranchesFeatures = buildFPI(*BranchesFunction);
EXPECT_EQ(BranchesFeatures.BasicBlockCount, 4);
EXPECT_EQ(BranchesFeatures.BlocksReachedFromConditionalInstruction, 2);
// 2 Users: top is one. The other is added because @branches is not internal,
// so it may have external callers.
EXPECT_EQ(BranchesFeatures.Uses, 2);
EXPECT_EQ(BranchesFeatures.DirectCallsToDefinedFunctions, 0);
EXPECT_EQ(BranchesFeatures.LoadInstCount, 0);
EXPECT_EQ(BranchesFeatures.StoreInstCount, 0);
EXPECT_EQ(BranchesFeatures.MaxLoopDepth, 0);
EXPECT_EQ(BranchesFeatures.TopLevelLoopCount, 0);
Function *TopFunction = M->getFunction("top");
FunctionPropertiesInfo TopFeatures = buildFPI(*TopFunction);
EXPECT_EQ(TopFeatures.BasicBlockCount, 1);
EXPECT_EQ(TopFeatures.BlocksReachedFromConditionalInstruction, 0);
EXPECT_EQ(TopFeatures.Uses, 0);
EXPECT_EQ(TopFeatures.DirectCallsToDefinedFunctions, 1);
EXPECT_EQ(BranchesFeatures.LoadInstCount, 0);
EXPECT_EQ(BranchesFeatures.StoreInstCount, 0);
EXPECT_EQ(BranchesFeatures.MaxLoopDepth, 0);
EXPECT_EQ(BranchesFeatures.TopLevelLoopCount, 0);
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedBranchesFeatures = buildFPI(*BranchesFunction);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithSingleSuccessor, 2);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithTwoSuccessors, 1);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithMoreThanTwoSuccessors, 0);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithSinglePredecessor, 2);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithTwoPredecessors, 1);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlocksWithMoreThanTwoPredecessors, 0);
EXPECT_EQ(DetailedBranchesFeatures.BigBasicBlocks, 0);
EXPECT_EQ(DetailedBranchesFeatures.MediumBasicBlocks, 0);
EXPECT_EQ(DetailedBranchesFeatures.SmallBasicBlocks, 4);
EXPECT_EQ(DetailedBranchesFeatures.CastInstructionCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.FloatingPointInstructionCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.IntegerInstructionCount, 4);
EXPECT_EQ(DetailedBranchesFeatures.ConstantIntOperandCount, 1);
EXPECT_EQ(DetailedBranchesFeatures.ConstantFPOperandCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.ConstantOperandCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.InstructionOperandCount, 4);
EXPECT_EQ(DetailedBranchesFeatures.BasicBlockOperandCount, 4);
EXPECT_EQ(DetailedBranchesFeatures.GlobalValueOperandCount, 2);
EXPECT_EQ(DetailedBranchesFeatures.InlineAsmOperandCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.ArgumentOperandCount, 3);
EXPECT_EQ(DetailedBranchesFeatures.UnknownOperandCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.CriticalEdgeCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.ControlFlowEdgeCount, 4);
EXPECT_EQ(DetailedBranchesFeatures.UnconditionalBranchCount, 2);
EXPECT_EQ(DetailedBranchesFeatures.IntrinsicCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.DirectCallCount, 2);
EXPECT_EQ(DetailedBranchesFeatures.IndirectCallCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.CallReturnsIntegerCount, 2);
EXPECT_EQ(DetailedBranchesFeatures.CallReturnsFloatCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.CallReturnsPointerCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.CallWithManyArgumentsCount, 0);
EXPECT_EQ(DetailedBranchesFeatures.CallWithPointerArgumentCount, 0);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, DifferentPredecessorSuccessorCounts) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
define i64 @f1() {
br i1 0, label %br1, label %finally
br1:
ret i64 0
finally:
ret i64 3
}
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithSingleSuccessor, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithTwoSuccessors, 1);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithMoreThanTwoSuccessors, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithSinglePredecessor, 2);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithTwoPredecessors, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithMoreThanTwoPredecessors, 0);
EXPECT_EQ(DetailedF1Properties.BigBasicBlocks, 0);
EXPECT_EQ(DetailedF1Properties.MediumBasicBlocks, 0);
EXPECT_EQ(DetailedF1Properties.SmallBasicBlocks, 3);
EXPECT_EQ(DetailedF1Properties.CastInstructionCount, 0);
EXPECT_EQ(DetailedF1Properties.FloatingPointInstructionCount, 0);
EXPECT_EQ(DetailedF1Properties.IntegerInstructionCount, 0);
EXPECT_EQ(DetailedF1Properties.ConstantIntOperandCount, 3);
EXPECT_EQ(DetailedF1Properties.ConstantFPOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.ConstantOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.InstructionOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlockOperandCount, 2);
EXPECT_EQ(DetailedF1Properties.GlobalValueOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.InlineAsmOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.ArgumentOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.UnknownOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.CriticalEdgeCount, 0);
EXPECT_EQ(DetailedF1Properties.ControlFlowEdgeCount, 2);
EXPECT_EQ(DetailedF1Properties.UnconditionalBranchCount, 0);
EXPECT_EQ(DetailedF1Properties.IntrinsicCount, 0);
EXPECT_EQ(DetailedF1Properties.DirectCallCount, 0);
EXPECT_EQ(DetailedF1Properties.IndirectCallCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsIntegerCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsFloatCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsPointerCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithManyArgumentsCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithPointerArgumentCount, 0);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, InlineSameBBSimple) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i32 @f1(i32 %a) {
%b = call i32 @f2(i32 %a)
%c = add i32 %b, 2
ret i32 %c
}
define i32 @f2(i32 %a) {
%b = add i32 %a, 1
ret i32 %b
}
)IR");
Function *F1 = M->getFunction("f1");
CallBase* CB = findCall(*F1, "b");
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 1;
ExpectedInitial.TotalInstructionCount = 3;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
FunctionPropertiesInfo ExpectedFinal = ExpectedInitial;
ExpectedFinal.DirectCallsToDefinedFunctions = 0;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, InlineSameBBLargerCFG) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i32 @f1(i32 %a) {
entry:
%i = icmp slt i32 %a, 0
br i1 %i, label %if.then, label %if.else
if.then:
%b = call i32 @f2(i32 %a)
%c1 = add i32 %b, 2
br label %end
if.else:
%c2 = add i32 %a, 1
br label %end
end:
%ret = phi i32 [%c1, %if.then],[%c2, %if.else]
ret i32 %ret
}
define i32 @f2(i32 %a) {
%b = add i32 %a, 1
ret i32 %b
}
)IR");
Function *F1 = M->getFunction("f1");
CallBase* CB = findCall(*F1, "b");
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 4;
ExpectedInitial.BlocksReachedFromConditionalInstruction = 2;
ExpectedInitial.TotalInstructionCount = 9;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
FunctionPropertiesInfo ExpectedFinal = ExpectedInitial;
ExpectedFinal.DirectCallsToDefinedFunctions = 0;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, InlineSameBBLoops) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i32 @f1(i32 %a) {
entry:
%i = icmp slt i32 %a, 0
br i1 %i, label %if.then, label %if.else
if.then:
%b = call i32 @f2(i32 %a)
%c1 = add i32 %b, 2
br label %end
if.else:
%c2 = add i32 %a, 1
br label %end
end:
%ret = phi i32 [%c1, %if.then],[%c2, %if.else]
ret i32 %ret
}
define i32 @f2(i32 %a) {
entry:
br label %loop
loop:
%indvar = phi i32 [%indvar.next, %loop], [0, %entry]
%b = add i32 %a, %indvar
%indvar.next = add i32 %indvar, 1
%cond = icmp slt i32 %indvar.next, %a
br i1 %cond, label %loop, label %exit
exit:
ret i32 %b
}
)IR");
Function *F1 = M->getFunction("f1");
CallBase* CB = findCall(*F1, "b");
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 4;
ExpectedInitial.BlocksReachedFromConditionalInstruction = 2;
ExpectedInitial.TotalInstructionCount = 9;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
FunctionPropertiesInfo ExpectedFinal;
ExpectedFinal.BasicBlockCount = 6;
ExpectedFinal.BlocksReachedFromConditionalInstruction = 4;
ExpectedFinal.Uses = 1;
ExpectedFinal.MaxLoopDepth = 1;
ExpectedFinal.TopLevelLoopCount = 1;
ExpectedFinal.TotalInstructionCount = 14;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, InvokeSimple) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
declare void @might_throw()
define internal void @callee() {
entry:
call void @might_throw()
ret void
}
define i32 @caller() personality i32 (...)* @__gxx_personality_v0 {
entry:
invoke void @callee()
to label %cont unwind label %exc
cont:
ret i32 0
exc:
%exn = landingpad {i8*, i32}
cleanup
ret i32 1
}
declare i32 @__gxx_personality_v0(...)
)IR");
Function *F1 = M->getFunction("caller");
CallBase* CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(static_cast<size_t>(FPI.BasicBlockCount), F1->size());
EXPECT_EQ(static_cast<size_t>(FPI.TotalInstructionCount),
F1->getInstructionCount());
}
TEST_F(FunctionPropertiesAnalysisTest, InvokeUnreachableHandler) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
declare void @might_throw()
define internal i32 @callee() personality i32 (...)* @__gxx_personality_v0 {
entry:
invoke void @might_throw()
to label %cont unwind label %exc
cont:
ret i32 0
exc:
%exn = landingpad {i8*, i32}
cleanup
resume { i8*, i32 } %exn
}
define i32 @caller() personality i32 (...)* @__gxx_personality_v0 {
entry:
%X = invoke i32 @callee()
to label %cont unwind label %Handler
cont:
ret i32 %X
Handler:
%exn = landingpad {i8*, i32}
cleanup
ret i32 1
}
declare i32 @__gxx_personality_v0(...)
)IR");
Function *F1 = M->getFunction("caller");
CallBase* CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(static_cast<size_t>(FPI.BasicBlockCount), F1->size() - 1);
EXPECT_EQ(static_cast<size_t>(FPI.TotalInstructionCount),
F1->getInstructionCount() - 2);
EXPECT_EQ(FPI, FunctionPropertiesInfo::getFunctionPropertiesInfo(*F1, FAM));
}
TEST_F(FunctionPropertiesAnalysisTest, Rethrow) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
declare void @might_throw()
define internal i32 @callee() personality i32 (...)* @__gxx_personality_v0 {
entry:
invoke void @might_throw()
to label %cont unwind label %exc
cont:
ret i32 0
exc:
%exn = landingpad {i8*, i32}
cleanup
resume { i8*, i32 } %exn
}
define i32 @caller() personality i32 (...)* @__gxx_personality_v0 {
entry:
%X = invoke i32 @callee()
to label %cont unwind label %Handler
cont:
ret i32 %X
Handler:
%exn = landingpad {i8*, i32}
cleanup
ret i32 1
}
declare i32 @__gxx_personality_v0(...)
)IR");
Function *F1 = M->getFunction("caller");
CallBase* CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(static_cast<size_t>(FPI.BasicBlockCount), F1->size() - 1);
EXPECT_EQ(static_cast<size_t>(FPI.TotalInstructionCount),
F1->getInstructionCount() - 2);
EXPECT_EQ(FPI, FunctionPropertiesInfo::getFunctionPropertiesInfo(*F1, FAM));
}
TEST_F(FunctionPropertiesAnalysisTest, LPadChanges) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
declare void @external_func()
@exception_type1 = external global i8
@exception_type2 = external global i8
define internal void @inner() personality i8* null {
invoke void @external_func()
to label %cont unwind label %lpad
cont:
ret void
lpad:
%lp = landingpad i32
catch i8* @exception_type1
resume i32 %lp
}
define void @outer() personality i8* null {
invoke void @inner()
to label %cont unwind label %lpad
cont:
ret void
lpad:
%lp = landingpad i32
cleanup
catch i8* @exception_type2
resume i32 %lp
}
)IR");
Function *F1 = M->getFunction("outer");
CallBase* CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(static_cast<size_t>(FPI.BasicBlockCount), F1->size() - 1);
EXPECT_EQ(static_cast<size_t>(FPI.TotalInstructionCount),
F1->getInstructionCount() - 2);
EXPECT_EQ(FPI, FunctionPropertiesInfo::getFunctionPropertiesInfo(*F1, FAM));
}
TEST_F(FunctionPropertiesAnalysisTest, LPadChangesConditional) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
declare void @external_func()
@exception_type1 = external global i8
@exception_type2 = external global i8
define internal void @inner() personality i8* null {
invoke void @external_func()
to label %cont unwind label %lpad
cont:
ret void
lpad:
%lp = landingpad i32
catch i8* @exception_type1
resume i32 %lp
}
define void @outer(i32 %a) personality i8* null {
entry:
%i = icmp slt i32 %a, 0
br i1 %i, label %if.then, label %cont
if.then:
invoke void @inner()
to label %cont unwind label %lpad
cont:
ret void
lpad:
%lp = landingpad i32
cleanup
catch i8* @exception_type2
resume i32 %lp
}
)IR");
Function *F1 = M->getFunction("outer");
CallBase* CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(static_cast<size_t>(FPI.BasicBlockCount), F1->size() - 1);
EXPECT_EQ(static_cast<size_t>(FPI.TotalInstructionCount),
F1->getInstructionCount() - 2);
EXPECT_EQ(FPI, FunctionPropertiesInfo::getFunctionPropertiesInfo(*F1, FAM));
}
TEST_F(FunctionPropertiesAnalysisTest, InlineSameLoopBB) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
declare i32 @a()
declare i32 @b()
define i32 @f1(i32 %a) {
entry:
br label %loop
loop:
%i = call i32 @f2(i32 %a)
%c = icmp slt i32 %i, %a
br i1 %c, label %loop, label %end
end:
%r = phi i32 [%i, %loop], [%a, %entry]
ret i32 %r
}
define i32 @f2(i32 %a) {
%cnd = icmp slt i32 %a, 0
br i1 %cnd, label %then, label %else
then:
%r1 = call i32 @a()
br label %end
else:
%r2 = call i32 @b()
br label %end
end:
%r = phi i32 [%r1, %then], [%r2, %else]
ret i32 %r
}
)IR");
Function *F1 = M->getFunction("f1");
CallBase *CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 3;
ExpectedInitial.TotalInstructionCount = 6;
ExpectedInitial.BlocksReachedFromConditionalInstruction = 2;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
ExpectedInitial.MaxLoopDepth = 1;
ExpectedInitial.TopLevelLoopCount = 1;
FunctionPropertiesInfo ExpectedFinal = ExpectedInitial;
ExpectedFinal.BasicBlockCount = 6;
ExpectedFinal.DirectCallsToDefinedFunctions = 0;
ExpectedFinal.BlocksReachedFromConditionalInstruction = 4;
ExpectedFinal.TotalInstructionCount = 12;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, Unreachable) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i64 @f1(i32 noundef %value) {
entry:
br i1 true, label %cond.true, label %cond.false
cond.true: ; preds = %entry
%conv2 = sext i32 %value to i64
br label %cond.end
cond.false: ; preds = %entry
%call3 = call noundef i64 @f2()
br label %extra
extra:
br label %extra2
extra2:
br label %cond.end
cond.end: ; preds = %cond.false, %cond.true
%cond = phi i64 [ %conv2, %cond.true ], [ %call3, %extra ]
ret i64 %cond
}
define i64 @f2() {
entry:
tail call void @llvm.trap()
unreachable
}
declare void @llvm.trap()
)IR");
Function *F1 = M->getFunction("f1");
CallBase *CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 6;
ExpectedInitial.TotalInstructionCount = 9;
ExpectedInitial.BlocksReachedFromConditionalInstruction = 2;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
FunctionPropertiesInfo ExpectedFinal = ExpectedInitial;
ExpectedFinal.BasicBlockCount = 4;
ExpectedFinal.DirectCallsToDefinedFunctions = 0;
ExpectedFinal.TotalInstructionCount = 7;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, InvokeSkipLP) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i64 @f1(i32 noundef %value) {
entry:
invoke fastcc void @f2() to label %cont unwind label %lpad
cont:
ret i64 1
lpad:
%lp = landingpad i32 cleanup
br label %ehcleanup
ehcleanup:
resume i32 0
}
define void @f2() {
invoke noundef void @f3() to label %exit unwind label %lpad
exit:
ret void
lpad:
%lp = landingpad i32 cleanup
resume i32 %lp
}
declare void @f3()
)IR");
// The outcome of inlining will be that lpad becomes unreachable. The landing
// pad of the invoke inherited from f2 will land on a new bb which will branch
// to a bb containing the body of lpad.
Function *F1 = M->getFunction("f1");
CallBase *CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
FunctionPropertiesInfo ExpectedInitial;
ExpectedInitial.BasicBlockCount = 4;
ExpectedInitial.TotalInstructionCount = 5;
ExpectedInitial.BlocksReachedFromConditionalInstruction = 0;
ExpectedInitial.Uses = 1;
ExpectedInitial.DirectCallsToDefinedFunctions = 1;
FunctionPropertiesInfo ExpectedFinal = ExpectedInitial;
ExpectedFinal.BasicBlockCount = 6;
ExpectedFinal.DirectCallsToDefinedFunctions = 0;
ExpectedFinal.TotalInstructionCount = 8;
auto FPI = buildFPI(*F1);
EXPECT_EQ(FPI, ExpectedInitial);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
EXPECT_EQ(FPI, ExpectedFinal);
}
TEST_F(FunctionPropertiesAnalysisTest, DetailedOperandCount) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
@a = global i64 1
define i64 @f1(i64 %e) {
%b = load i64, i64* @a
%c = add i64 %b, 2
%d = call i64 asm "mov $1,$0", "=r,r" (i64 %c)
%f = add i64 %d, %e
ret i64 %f
}
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithSingleSuccessor, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithTwoSuccessors, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithMoreThanTwoSuccessors, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithSinglePredecessor, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithTwoPredecessors, 0);
EXPECT_EQ(DetailedF1Properties.BasicBlocksWithMoreThanTwoPredecessors, 0);
EXPECT_EQ(DetailedF1Properties.BigBasicBlocks, 0);
EXPECT_EQ(DetailedF1Properties.MediumBasicBlocks, 0);
EXPECT_EQ(DetailedF1Properties.SmallBasicBlocks, 1);
EXPECT_EQ(DetailedF1Properties.CastInstructionCount, 0);
EXPECT_EQ(DetailedF1Properties.FloatingPointInstructionCount, 0);
EXPECT_EQ(DetailedF1Properties.IntegerInstructionCount, 4);
EXPECT_EQ(DetailedF1Properties.ConstantIntOperandCount, 1);
EXPECT_EQ(DetailedF1Properties.ConstantFPOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.ConstantOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.InstructionOperandCount, 4);
EXPECT_EQ(DetailedF1Properties.BasicBlockOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.GlobalValueOperandCount, 1);
EXPECT_EQ(DetailedF1Properties.InlineAsmOperandCount, 1);
EXPECT_EQ(DetailedF1Properties.ArgumentOperandCount, 1);
EXPECT_EQ(DetailedF1Properties.UnknownOperandCount, 0);
EXPECT_EQ(DetailedF1Properties.CriticalEdgeCount, 0);
EXPECT_EQ(DetailedF1Properties.ControlFlowEdgeCount, 0);
EXPECT_EQ(DetailedF1Properties.UnconditionalBranchCount, 0);
EXPECT_EQ(DetailedF1Properties.IntrinsicCount, 0);
EXPECT_EQ(DetailedF1Properties.DirectCallCount, 1);
EXPECT_EQ(DetailedF1Properties.IndirectCallCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsIntegerCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsFloatCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsPointerCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithManyArgumentsCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithPointerArgumentCount, 0);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, IntrinsicCount) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
define float @f1(float %a) {
%b = call float @llvm.cos.f32(float %a)
ret float %b
}
declare float @llvm.cos.f32(float)
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.IntrinsicCount, 1);
EXPECT_EQ(DetailedF1Properties.DirectCallCount, 1);
EXPECT_EQ(DetailedF1Properties.IndirectCallCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsIntegerCount, 0);
EXPECT_EQ(DetailedF1Properties.CallReturnsFloatCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsPointerCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithManyArgumentsCount, 0);
EXPECT_EQ(DetailedF1Properties.CallWithPointerArgumentCount, 0);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, FunctionCallMetrics) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
define i64 @f1(i64 %a) {
%b = call i64 @f2(i64 %a, i64 %a, i64 %a, i64 %a, i64 %a)
%c = call ptr @f3()
call void @f4(ptr %c)
%d = call float @f5()
%e = call i64 %c(i64 %b)
ret i64 %b
}
declare i64 @f2(i64,i64,i64,i64,i64)
declare ptr @f3()
declare void @f4(ptr)
declare float @f5()
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.IntrinsicCount, 0);
EXPECT_EQ(DetailedF1Properties.DirectCallCount, 4);
EXPECT_EQ(DetailedF1Properties.IndirectCallCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsIntegerCount, 2);
EXPECT_EQ(DetailedF1Properties.CallReturnsFloatCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsPointerCount, 1);
EXPECT_EQ(DetailedF1Properties.CallWithManyArgumentsCount, 1);
EXPECT_EQ(DetailedF1Properties.CallWithPointerArgumentCount, 1);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, CriticalEdge) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
define i64 @f1(i64 %a) {
%b = icmp eq i64 %a, 1
br i1 %b, label %TopBlock1, label %TopBlock2
TopBlock1:
%c = add i64 %a, 1
%e = icmp eq i64 %c, 2
br i1 %e, label %BottomBlock1, label %BottomBlock2
TopBlock2:
%d = add i64 %a, 2
br label %BottomBlock2
BottomBlock1:
ret i64 0
BottomBlock2:
%f = phi i64 [ %c, %TopBlock1 ], [ %d, %TopBlock2 ]
ret i64 %f
}
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.CriticalEdgeCount, 1);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, FunctionReturnVectors) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
define <4 x i64> @f1(<4 x i64> %a) {
%b = call <4 x i64> @f2()
%c = call <4 x float> @f3()
%d = call <4 x ptr> @f4()
ret <4 x i64> %b
}
declare <4 x i64> @f2()
declare <4 x float> @f3()
declare <4 x ptr> @f4()
)IR");
Function *F1 = M->getFunction("f1");
EnableDetailedFunctionProperties.setValue(true);
FunctionPropertiesInfo DetailedF1Properties = buildFPI(*F1);
EXPECT_EQ(DetailedF1Properties.CallReturnsVectorIntCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsVectorFloatCount, 1);
EXPECT_EQ(DetailedF1Properties.CallReturnsVectorPointerCount, 1);
EnableDetailedFunctionProperties.setValue(false);
}
TEST_F(FunctionPropertiesAnalysisTest, ReAddEdges) {
LLVMContext C;
std::unique_ptr<Module> M = makeLLVMModule(C, R"IR(
define hidden void @f1(ptr noundef %destatep, i32 noundef %offset, i8 noundef zeroext %byte1) {
entry:
%cmp = icmp eq i8 %byte1, 0
br i1 %cmp, label %if.then, label %if.else
if.then: ; preds = %entry
call fastcc void @f2(ptr noundef %destatep, i32 noundef 37, i32 noundef 600)
%and = and i32 %offset, 3
switch i32 %and, label %default.unreachable [
i32 0, label %sw.bb
i32 1, label %sw.bb1
i32 2, label %sw.bb1
i32 3, label %if.end
]
sw.bb: ; preds = %if.then
call fastcc void @f2(ptr noundef %destatep, i32 noundef 57, i32 noundef 600)
br label %if.end
sw.bb1: ; preds = %if.then, %if.then
call fastcc void @f2(ptr noundef %destatep, i32 noundef 56, i32 noundef 600) #34
br label %if.end
default.unreachable: ; preds = %if.then
unreachable
if.else: ; preds = %entry
call fastcc void @f2(ptr noundef %destatep, i32 noundef 56, i32 noundef 600)
br label %if.end
if.end: ; preds = %sw.bb, %sw.bb1, %if.then, %if.else
ret void
}
define internal fastcc void @f2(ptr nocapture noundef %destatep, i32 noundef %r_enc, i32 noundef %whack) {
entry:
%enc_prob = getelementptr inbounds nuw i8, ptr %destatep, i32 512
%arrayidx = getelementptr inbounds [67 x i32], ptr %enc_prob, i32 0, i32 %r_enc
%0 = load i32, ptr %arrayidx, align 4
%sub = sub nsw i32 %0, %whack
store i32 %sub, ptr %arrayidx, align 4
ret void
}
)IR");
auto *F1 = M->getFunction("f1");
auto *F2 = M->getFunction("f2");
auto *CB = [&]() -> CallBase * {
for (auto &BB : *F1)
for (auto &I : BB)
if (auto *CB = dyn_cast<CallBase>(&I);
CB && CB->getCalledFunction() && CB->getCalledFunction() == F2)
return CB;
return nullptr;
}();
ASSERT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
}
TEST_F(FunctionPropertiesAnalysisTest, InvokeLandingCanStillBeReached) {
LLVMContext C;
// %lpad is reachable from a block not involved in the inlining decision. We
// make sure that's not the entry - otherwise the DT will be recomputed from
// scratch. The idea here is that the edge known to the inliner to potentially
// disappear - %lpad->%ehcleanup -should survive because it is still reachable
// from %middle.
std::unique_ptr<Module> M = makeLLVMModule(C,
R"IR(
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
define i64 @f1(i32 noundef %value) {
entry:
br label %middle
middle:
%c = icmp eq i32 %value, 0
br i1 %c, label %invoke, label %lpad
invoke:
invoke fastcc void @f2() to label %cont unwind label %lpad
cont:
br label %exit
lpad:
%lp = landingpad i32 cleanup
br label %ehcleanup
ehcleanup:
resume i32 0
exit:
ret i64 1
}
define void @f2() {
ret void
}
)IR");
Function *F1 = M->getFunction("f1");
CallBase *CB = findCall(*F1);
EXPECT_NE(CB, nullptr);
auto FPI = buildFPI(*F1);
FunctionPropertiesUpdater FPU(FPI, *CB);
InlineFunctionInfo IFI;
auto IR = llvm::InlineFunction(*CB, IFI);
EXPECT_TRUE(IR.isSuccess());
invalidate(*F1);
EXPECT_TRUE(FPU.finishAndTest(FAM));
}
} // end anonymous namespace