
The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
337 lines
13 KiB
C++
337 lines
13 KiB
C++
//===- MathToLLVM.cpp - Math to LLVM dialect conversion -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
|
|
|
|
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
|
|
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
|
|
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
|
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTMATHTOLLVMPASS
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
template <typename SourceOp, typename TargetOp>
|
|
using ConvertFastMath = arith::AttrConvertFastMathToLLVM<SourceOp, TargetOp>;
|
|
|
|
template <typename SourceOp, typename TargetOp>
|
|
using ConvertFMFMathToLLVMPattern =
|
|
VectorConvertToLLVMPattern<SourceOp, TargetOp, ConvertFastMath>;
|
|
|
|
using AbsFOpLowering = ConvertFMFMathToLLVMPattern<math::AbsFOp, LLVM::FAbsOp>;
|
|
using CeilOpLowering = ConvertFMFMathToLLVMPattern<math::CeilOp, LLVM::FCeilOp>;
|
|
using CopySignOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::CopySignOp, LLVM::CopySignOp>;
|
|
using CosOpLowering = ConvertFMFMathToLLVMPattern<math::CosOp, LLVM::CosOp>;
|
|
using CtPopFOpLowering =
|
|
VectorConvertToLLVMPattern<math::CtPopOp, LLVM::CtPopOp>;
|
|
using Exp2OpLowering = ConvertFMFMathToLLVMPattern<math::Exp2Op, LLVM::Exp2Op>;
|
|
using ExpOpLowering = ConvertFMFMathToLLVMPattern<math::ExpOp, LLVM::ExpOp>;
|
|
using FloorOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::FloorOp, LLVM::FFloorOp>;
|
|
using FmaOpLowering = ConvertFMFMathToLLVMPattern<math::FmaOp, LLVM::FMAOp>;
|
|
using Log10OpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::Log10Op, LLVM::Log10Op>;
|
|
using Log2OpLowering = ConvertFMFMathToLLVMPattern<math::Log2Op, LLVM::Log2Op>;
|
|
using LogOpLowering = ConvertFMFMathToLLVMPattern<math::LogOp, LLVM::LogOp>;
|
|
using PowFOpLowering = ConvertFMFMathToLLVMPattern<math::PowFOp, LLVM::PowOp>;
|
|
using FPowIOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::FPowIOp, LLVM::PowIOp>;
|
|
using RoundEvenOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::RoundEvenOp, LLVM::RoundEvenOp>;
|
|
using RoundOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::RoundOp, LLVM::RoundOp>;
|
|
using SinOpLowering = ConvertFMFMathToLLVMPattern<math::SinOp, LLVM::SinOp>;
|
|
using SqrtOpLowering = ConvertFMFMathToLLVMPattern<math::SqrtOp, LLVM::SqrtOp>;
|
|
using FTruncOpLowering =
|
|
ConvertFMFMathToLLVMPattern<math::TruncOp, LLVM::FTruncOp>;
|
|
|
|
// A `CtLz/CtTz/absi(a)` is converted into `CtLz/CtTz/absi(a, false)`.
|
|
template <typename MathOp, typename LLVMOp>
|
|
struct IntOpWithFlagLowering : public ConvertOpToLLVMPattern<MathOp> {
|
|
using ConvertOpToLLVMPattern<MathOp>::ConvertOpToLLVMPattern;
|
|
using Super = IntOpWithFlagLowering<MathOp, LLVMOp>;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(MathOp op, typename MathOp::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto operandType = adaptor.getOperand().getType();
|
|
|
|
if (!operandType || !LLVM::isCompatibleType(operandType))
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
auto resultType = op.getResult().getType();
|
|
auto boolZero = rewriter.getBoolAttr(false);
|
|
|
|
if (!isa<LLVM::LLVMArrayType>(operandType)) {
|
|
LLVM::ConstantOp zero = rewriter.create<LLVM::ConstantOp>(loc, boolZero);
|
|
rewriter.replaceOpWithNewOp<LLVMOp>(op, resultType, adaptor.getOperand(),
|
|
zero);
|
|
return success();
|
|
}
|
|
|
|
auto vectorType = dyn_cast<VectorType>(resultType);
|
|
if (!vectorType)
|
|
return failure();
|
|
|
|
return LLVM::detail::handleMultidimensionalVectors(
|
|
op.getOperation(), adaptor.getOperands(), *this->getTypeConverter(),
|
|
[&](Type llvm1DVectorTy, ValueRange operands) {
|
|
LLVM::ConstantOp zero =
|
|
rewriter.create<LLVM::ConstantOp>(loc, boolZero);
|
|
return rewriter.create<LLVMOp>(loc, llvm1DVectorTy, operands[0],
|
|
zero);
|
|
},
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
using CountLeadingZerosOpLowering =
|
|
IntOpWithFlagLowering<math::CountLeadingZerosOp, LLVM::CountLeadingZerosOp>;
|
|
using CountTrailingZerosOpLowering =
|
|
IntOpWithFlagLowering<math::CountTrailingZerosOp, LLVM::CountTrailingZerosOp>;
|
|
using AbsIOpLowering = IntOpWithFlagLowering<math::AbsIOp, LLVM::AbsOp>;
|
|
|
|
// A `expm1` is converted into `exp - 1`.
|
|
struct ExpM1OpLowering : public ConvertOpToLLVMPattern<math::ExpM1Op> {
|
|
using ConvertOpToLLVMPattern<math::ExpM1Op>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(math::ExpM1Op op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto operandType = adaptor.getOperand().getType();
|
|
|
|
if (!operandType || !LLVM::isCompatibleType(operandType))
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
auto resultType = op.getResult().getType();
|
|
auto floatType = cast<FloatType>(getElementTypeOrSelf(resultType));
|
|
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
|
|
ConvertFastMath<math::ExpM1Op, LLVM::ExpOp> expAttrs(op);
|
|
ConvertFastMath<math::ExpM1Op, LLVM::FSubOp> subAttrs(op);
|
|
|
|
if (!isa<LLVM::LLVMArrayType>(operandType)) {
|
|
LLVM::ConstantOp one;
|
|
if (LLVM::isCompatibleVectorType(operandType)) {
|
|
one = rewriter.create<LLVM::ConstantOp>(
|
|
loc, operandType,
|
|
SplatElementsAttr::get(cast<ShapedType>(resultType), floatOne));
|
|
} else {
|
|
one = rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
|
|
}
|
|
auto exp = rewriter.create<LLVM::ExpOp>(loc, adaptor.getOperand(),
|
|
expAttrs.getAttrs());
|
|
rewriter.replaceOpWithNewOp<LLVM::FSubOp>(
|
|
op, operandType, ValueRange{exp, one}, subAttrs.getAttrs());
|
|
return success();
|
|
}
|
|
|
|
auto vectorType = dyn_cast<VectorType>(resultType);
|
|
if (!vectorType)
|
|
return rewriter.notifyMatchFailure(op, "expected vector result type");
|
|
|
|
return LLVM::detail::handleMultidimensionalVectors(
|
|
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
|
|
[&](Type llvm1DVectorTy, ValueRange operands) {
|
|
auto splatAttr = SplatElementsAttr::get(
|
|
mlir::VectorType::get(
|
|
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
|
|
floatType),
|
|
floatOne);
|
|
auto one =
|
|
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
|
|
auto exp = rewriter.create<LLVM::ExpOp>(
|
|
loc, llvm1DVectorTy, operands[0], expAttrs.getAttrs());
|
|
return rewriter.create<LLVM::FSubOp>(
|
|
loc, llvm1DVectorTy, ValueRange{exp, one}, subAttrs.getAttrs());
|
|
},
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
// A `log1p` is converted into `log(1 + ...)`.
|
|
struct Log1pOpLowering : public ConvertOpToLLVMPattern<math::Log1pOp> {
|
|
using ConvertOpToLLVMPattern<math::Log1pOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(math::Log1pOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto operandType = adaptor.getOperand().getType();
|
|
|
|
if (!operandType || !LLVM::isCompatibleType(operandType))
|
|
return rewriter.notifyMatchFailure(op, "unsupported operand type");
|
|
|
|
auto loc = op.getLoc();
|
|
auto resultType = op.getResult().getType();
|
|
auto floatType = cast<FloatType>(getElementTypeOrSelf(resultType));
|
|
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
|
|
ConvertFastMath<math::Log1pOp, LLVM::FAddOp> addAttrs(op);
|
|
ConvertFastMath<math::Log1pOp, LLVM::LogOp> logAttrs(op);
|
|
|
|
if (!isa<LLVM::LLVMArrayType>(operandType)) {
|
|
LLVM::ConstantOp one =
|
|
LLVM::isCompatibleVectorType(operandType)
|
|
? rewriter.create<LLVM::ConstantOp>(
|
|
loc, operandType,
|
|
SplatElementsAttr::get(cast<ShapedType>(resultType),
|
|
floatOne))
|
|
: rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
|
|
|
|
auto add = rewriter.create<LLVM::FAddOp>(
|
|
loc, operandType, ValueRange{one, adaptor.getOperand()},
|
|
addAttrs.getAttrs());
|
|
rewriter.replaceOpWithNewOp<LLVM::LogOp>(op, operandType, ValueRange{add},
|
|
logAttrs.getAttrs());
|
|
return success();
|
|
}
|
|
|
|
auto vectorType = dyn_cast<VectorType>(resultType);
|
|
if (!vectorType)
|
|
return rewriter.notifyMatchFailure(op, "expected vector result type");
|
|
|
|
return LLVM::detail::handleMultidimensionalVectors(
|
|
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
|
|
[&](Type llvm1DVectorTy, ValueRange operands) {
|
|
auto splatAttr = SplatElementsAttr::get(
|
|
mlir::VectorType::get(
|
|
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
|
|
floatType),
|
|
floatOne);
|
|
auto one =
|
|
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
|
|
auto add = rewriter.create<LLVM::FAddOp>(loc, llvm1DVectorTy,
|
|
ValueRange{one, operands[0]},
|
|
addAttrs.getAttrs());
|
|
return rewriter.create<LLVM::LogOp>(
|
|
loc, llvm1DVectorTy, ValueRange{add}, logAttrs.getAttrs());
|
|
},
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
// A `rsqrt` is converted into `1 / sqrt`.
|
|
struct RsqrtOpLowering : public ConvertOpToLLVMPattern<math::RsqrtOp> {
|
|
using ConvertOpToLLVMPattern<math::RsqrtOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(math::RsqrtOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto operandType = adaptor.getOperand().getType();
|
|
|
|
if (!operandType || !LLVM::isCompatibleType(operandType))
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
auto resultType = op.getResult().getType();
|
|
auto floatType = cast<FloatType>(getElementTypeOrSelf(resultType));
|
|
auto floatOne = rewriter.getFloatAttr(floatType, 1.0);
|
|
ConvertFastMath<math::RsqrtOp, LLVM::SqrtOp> sqrtAttrs(op);
|
|
ConvertFastMath<math::RsqrtOp, LLVM::FDivOp> divAttrs(op);
|
|
|
|
if (!isa<LLVM::LLVMArrayType>(operandType)) {
|
|
LLVM::ConstantOp one;
|
|
if (LLVM::isCompatibleVectorType(operandType)) {
|
|
one = rewriter.create<LLVM::ConstantOp>(
|
|
loc, operandType,
|
|
SplatElementsAttr::get(cast<ShapedType>(resultType), floatOne));
|
|
} else {
|
|
one = rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne);
|
|
}
|
|
auto sqrt = rewriter.create<LLVM::SqrtOp>(loc, adaptor.getOperand(),
|
|
sqrtAttrs.getAttrs());
|
|
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(
|
|
op, operandType, ValueRange{one, sqrt}, divAttrs.getAttrs());
|
|
return success();
|
|
}
|
|
|
|
auto vectorType = dyn_cast<VectorType>(resultType);
|
|
if (!vectorType)
|
|
return failure();
|
|
|
|
return LLVM::detail::handleMultidimensionalVectors(
|
|
op.getOperation(), adaptor.getOperands(), *getTypeConverter(),
|
|
[&](Type llvm1DVectorTy, ValueRange operands) {
|
|
auto splatAttr = SplatElementsAttr::get(
|
|
mlir::VectorType::get(
|
|
{LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()},
|
|
floatType),
|
|
floatOne);
|
|
auto one =
|
|
rewriter.create<LLVM::ConstantOp>(loc, llvm1DVectorTy, splatAttr);
|
|
auto sqrt = rewriter.create<LLVM::SqrtOp>(
|
|
loc, llvm1DVectorTy, operands[0], sqrtAttrs.getAttrs());
|
|
return rewriter.create<LLVM::FDivOp>(
|
|
loc, llvm1DVectorTy, ValueRange{one, sqrt}, divAttrs.getAttrs());
|
|
},
|
|
rewriter);
|
|
}
|
|
};
|
|
|
|
struct ConvertMathToLLVMPass
|
|
: public impl::ConvertMathToLLVMPassBase<ConvertMathToLLVMPass> {
|
|
using Base::Base;
|
|
|
|
void runOnOperation() override {
|
|
RewritePatternSet patterns(&getContext());
|
|
LLVMTypeConverter converter(&getContext());
|
|
populateMathToLLVMConversionPatterns(converter, patterns, approximateLog1p);
|
|
LLVMConversionTarget target(getContext());
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::populateMathToLLVMConversionPatterns(LLVMTypeConverter &converter,
|
|
RewritePatternSet &patterns,
|
|
bool approximateLog1p) {
|
|
if (approximateLog1p)
|
|
patterns.add<Log1pOpLowering>(converter);
|
|
// clang-format off
|
|
patterns.add<
|
|
AbsFOpLowering,
|
|
AbsIOpLowering,
|
|
CeilOpLowering,
|
|
CopySignOpLowering,
|
|
CosOpLowering,
|
|
CountLeadingZerosOpLowering,
|
|
CountTrailingZerosOpLowering,
|
|
CtPopFOpLowering,
|
|
Exp2OpLowering,
|
|
ExpM1OpLowering,
|
|
ExpOpLowering,
|
|
FPowIOpLowering,
|
|
FloorOpLowering,
|
|
FmaOpLowering,
|
|
Log10OpLowering,
|
|
Log2OpLowering,
|
|
LogOpLowering,
|
|
PowFOpLowering,
|
|
RoundEvenOpLowering,
|
|
RoundOpLowering,
|
|
RsqrtOpLowering,
|
|
SinOpLowering,
|
|
SqrtOpLowering,
|
|
FTruncOpLowering
|
|
>(converter);
|
|
// clang-format on
|
|
}
|