llvm-project/clang/lib/CIR/CodeGen/CIRGenExprAggregate.cpp
Morris Hafner b5e5794534
[CIR] Implement Statement Expressions (#153677)
Depends on #153625

This patch adds support for statement expressions. It also changes
emitCompoundStmt and emitCompoundStmtWithoutScope to accept an Address
that the optional result is written to. This allows the creation of the
alloca ahead of the creation of the scope which saves us from hoisting
the alloca to its parent scope.
2025-08-19 10:11:15 +02:00

524 lines
19 KiB
C++

//===- CIRGenExprAggregrate.cpp - Emit CIR Code from Aggregate Expressions ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as CIR code.
//
//===----------------------------------------------------------------------===//
#include "CIRGenBuilder.h"
#include "CIRGenFunction.h"
#include "CIRGenValue.h"
#include "clang/CIR/Dialect/IR/CIRAttrs.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include <cstdint>
using namespace clang;
using namespace clang::CIRGen;
namespace {
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
CIRGenFunction &cgf;
AggValueSlot dest;
// Calls `fn` with a valid return value slot, potentially creating a temporary
// to do so. If a temporary is created, an appropriate copy into `Dest` will
// be emitted, as will lifetime markers.
//
// The given function should take a ReturnValueSlot, and return an RValue that
// points to said slot.
void withReturnValueSlot(const Expr *e,
llvm::function_ref<RValue(ReturnValueSlot)> fn);
AggValueSlot ensureSlot(mlir::Location loc, QualType t) {
if (!dest.isIgnored())
return dest;
cgf.cgm.errorNYI(loc, "Slot for ignored address");
return dest;
}
public:
AggExprEmitter(CIRGenFunction &cgf, AggValueSlot dest)
: cgf(cgf), dest(dest) {}
/// Given an expression with aggregate type that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result into
/// DestPtr.
void emitAggLoadOfLValue(const Expr *e);
void emitArrayInit(Address destPtr, cir::ArrayType arrayTy, QualType arrayQTy,
Expr *exprToVisit, ArrayRef<Expr *> args,
Expr *arrayFiller);
/// Perform the final copy to DestPtr, if desired.
void emitFinalDestCopy(QualType type, const LValue &src);
void emitInitializationToLValue(Expr *e, LValue lv);
void emitNullInitializationToLValue(mlir::Location loc, LValue lv);
void Visit(Expr *e) { StmtVisitor<AggExprEmitter>::Visit(e); }
void VisitCallExpr(const CallExpr *e);
void VisitStmtExpr(const StmtExpr *e) {
CIRGenFunction::StmtExprEvaluation eval(cgf);
Address retAlloca =
cgf.createMemTemp(e->getType(), cgf.getLoc(e->getSourceRange()));
(void)cgf.emitCompoundStmt(*e->getSubStmt(), &retAlloca, dest);
}
void VisitDeclRefExpr(DeclRefExpr *e) { emitAggLoadOfLValue(e); }
void VisitInitListExpr(InitListExpr *e);
void VisitCXXConstructExpr(const CXXConstructExpr *e);
void visitCXXParenListOrInitListExpr(Expr *e, ArrayRef<Expr *> args,
FieldDecl *initializedFieldInUnion,
Expr *arrayFiller);
};
} // namespace
static bool isTrivialFiller(Expr *e) {
if (!e)
return true;
if (isa<ImplicitValueInitExpr>(e))
return true;
if (auto *ile = dyn_cast<InitListExpr>(e)) {
if (ile->getNumInits())
return false;
return isTrivialFiller(ile->getArrayFiller());
}
if (const auto *cons = dyn_cast_or_null<CXXConstructExpr>(e))
return cons->getConstructor()->isDefaultConstructor() &&
cons->getConstructor()->isTrivial();
return false;
}
/// Given an expression with aggregate type that represents a value lvalue, this
/// method emits the address of the lvalue, then loads the result into DestPtr.
void AggExprEmitter::emitAggLoadOfLValue(const Expr *e) {
LValue lv = cgf.emitLValue(e);
// If the type of the l-value is atomic, then do an atomic load.
assert(!cir::MissingFeatures::opLoadStoreAtomic());
emitFinalDestCopy(e->getType(), lv);
}
void AggExprEmitter::emitArrayInit(Address destPtr, cir::ArrayType arrayTy,
QualType arrayQTy, Expr *e,
ArrayRef<Expr *> args, Expr *arrayFiller) {
CIRGenBuilderTy &builder = cgf.getBuilder();
const mlir::Location loc = cgf.getLoc(e->getSourceRange());
const uint64_t numInitElements = args.size();
const QualType elementType =
cgf.getContext().getAsArrayType(arrayQTy)->getElementType();
if (elementType.isDestructedType() && cgf.cgm.getLangOpts().Exceptions) {
cgf.cgm.errorNYI(loc, "initialized array requires destruction");
return;
}
const QualType elementPtrType = cgf.getContext().getPointerType(elementType);
const mlir::Type cirElementType = cgf.convertType(elementType);
const cir::PointerType cirElementPtrType =
builder.getPointerTo(cirElementType);
auto begin = cir::CastOp::create(builder, loc, cirElementPtrType,
cir::CastKind::array_to_ptrdecay,
destPtr.getPointer());
const CharUnits elementSize =
cgf.getContext().getTypeSizeInChars(elementType);
const CharUnits elementAlign =
destPtr.getAlignment().alignmentOfArrayElement(elementSize);
// The 'current element to initialize'. The invariants on this
// variable are complicated. Essentially, after each iteration of
// the loop, it points to the last initialized element, except
// that it points to the beginning of the array before any
// elements have been initialized.
mlir::Value element = begin;
// Don't build the 'one' before the cycle to avoid
// emmiting the redundant `cir.const 1` instrs.
mlir::Value one;
// Emit the explicit initializers.
for (uint64_t i = 0; i != numInitElements; ++i) {
// Advance to the next element.
if (i > 0) {
one = builder.getConstantInt(loc, cgf.PtrDiffTy, i);
element = builder.createPtrStride(loc, begin, one);
}
const Address address = Address(element, cirElementType, elementAlign);
const LValue elementLV = cgf.makeAddrLValue(address, elementType);
emitInitializationToLValue(args[i], elementLV);
}
const uint64_t numArrayElements = arrayTy.getSize();
// Check whether there's a non-trivial array-fill expression.
const bool hasTrivialFiller = isTrivialFiller(arrayFiller);
// Any remaining elements need to be zero-initialized, possibly
// using the filler expression. We can skip this if the we're
// emitting to zeroed memory.
if (numInitElements != numArrayElements &&
!(dest.isZeroed() && hasTrivialFiller &&
cgf.getTypes().isZeroInitializable(elementType))) {
// Advance to the start of the rest of the array.
if (numInitElements) {
one = builder.getConstantInt(loc, cgf.PtrDiffTy, 1);
element = cir::PtrStrideOp::create(builder, loc, cirElementPtrType,
element, one);
}
// Allocate the temporary variable
// to store the pointer to first unitialized element
const Address tmpAddr = cgf.createTempAlloca(
cirElementPtrType, cgf.getPointerAlign(), loc, "arrayinit.temp");
LValue tmpLV = cgf.makeAddrLValue(tmpAddr, elementPtrType);
cgf.emitStoreThroughLValue(RValue::get(element), tmpLV);
// Compute the end of array
cir::ConstantOp numArrayElementsConst = builder.getConstInt(
loc, mlir::cast<cir::IntType>(cgf.PtrDiffTy), numArrayElements);
mlir::Value end = cir::PtrStrideOp::create(builder, loc, cirElementPtrType,
begin, numArrayElementsConst);
builder.createDoWhile(
loc,
/*condBuilder=*/
[&](mlir::OpBuilder &b, mlir::Location loc) {
cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr);
mlir::Type boolTy = cgf.convertType(cgf.getContext().BoolTy);
cir::CmpOp cmp = cir::CmpOp::create(
builder, loc, boolTy, cir::CmpOpKind::ne, currentElement, end);
builder.createCondition(cmp);
},
/*bodyBuilder=*/
[&](mlir::OpBuilder &b, mlir::Location loc) {
cir::LoadOp currentElement = builder.createLoad(loc, tmpAddr);
assert(!cir::MissingFeatures::requiresCleanups());
// Emit the actual filler expression.
LValue elementLV = cgf.makeAddrLValue(
Address(currentElement, cirElementType, elementAlign),
elementType);
if (arrayFiller)
emitInitializationToLValue(arrayFiller, elementLV);
else
emitNullInitializationToLValue(loc, elementLV);
// Tell the EH cleanup that we finished with the last element.
if (cgf.cgm.getLangOpts().Exceptions) {
cgf.cgm.errorNYI(loc, "update destructed array element for EH");
return;
}
// Advance pointer and store them to temporary variable
cir::ConstantOp one = builder.getConstInt(
loc, mlir::cast<cir::IntType>(cgf.PtrDiffTy), 1);
auto nextElement = cir::PtrStrideOp::create(
builder, loc, cirElementPtrType, currentElement, one);
cgf.emitStoreThroughLValue(RValue::get(nextElement), tmpLV);
builder.createYield(loc);
});
}
}
/// Perform the final copy to destPtr, if desired.
void AggExprEmitter::emitFinalDestCopy(QualType type, const LValue &src) {
// If dest is ignored, then we're evaluating an aggregate expression
// in a context that doesn't care about the result. Note that loads
// from volatile l-values force the existence of a non-ignored
// destination.
if (dest.isIgnored())
return;
cgf.cgm.errorNYI("emitFinalDestCopy: non-ignored dest is NYI");
}
void AggExprEmitter::emitInitializationToLValue(Expr *e, LValue lv) {
const QualType type = lv.getType();
if (isa<ImplicitValueInitExpr, CXXScalarValueInitExpr>(e)) {
const mlir::Location loc = e->getSourceRange().isValid()
? cgf.getLoc(e->getSourceRange())
: *cgf.currSrcLoc;
return emitNullInitializationToLValue(loc, lv);
}
if (isa<NoInitExpr>(e))
return;
if (type->isReferenceType())
cgf.cgm.errorNYI("emitInitializationToLValue ReferenceType");
switch (cgf.getEvaluationKind(type)) {
case cir::TEK_Complex:
cgf.cgm.errorNYI("emitInitializationToLValue TEK_Complex");
break;
case cir::TEK_Aggregate:
cgf.emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsDestructed,
AggValueSlot::IsNotAliased,
AggValueSlot::MayOverlap,
dest.isZeroed()));
return;
case cir::TEK_Scalar:
if (lv.isSimple())
cgf.emitScalarInit(e, cgf.getLoc(e->getSourceRange()), lv);
else
cgf.emitStoreThroughLValue(RValue::get(cgf.emitScalarExpr(e)), lv);
return;
}
}
void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *e) {
AggValueSlot slot = ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType());
cgf.emitCXXConstructExpr(e, slot);
}
void AggExprEmitter::emitNullInitializationToLValue(mlir::Location loc,
LValue lv) {
const QualType type = lv.getType();
// If the destination slot is already zeroed out before the aggregate is
// copied into it, we don't have to emit any zeros here.
if (dest.isZeroed() && cgf.getTypes().isZeroInitializable(type))
return;
if (cgf.hasScalarEvaluationKind(type)) {
// For non-aggregates, we can store the appropriate null constant.
mlir::Value null = cgf.cgm.emitNullConstant(type, loc);
if (lv.isSimple()) {
cgf.emitStoreOfScalar(null, lv, /* isInitialization */ true);
return;
}
cgf.cgm.errorNYI("emitStoreThroughBitfieldLValue");
return;
}
// There's a potential optimization opportunity in combining
// memsets; that would be easy for arrays, but relatively
// difficult for structures with the current code.
cgf.emitNullInitialization(loc, lv.getAddress(), lv.getType());
}
void AggExprEmitter::VisitCallExpr(const CallExpr *e) {
if (e->getCallReturnType(cgf.getContext())->isReferenceType()) {
cgf.cgm.errorNYI(e->getSourceRange(), "reference return type");
return;
}
withReturnValueSlot(
e, [&](ReturnValueSlot slot) { return cgf.emitCallExpr(e, slot); });
}
void AggExprEmitter::withReturnValueSlot(
const Expr *e, llvm::function_ref<RValue(ReturnValueSlot)> fn) {
QualType retTy = e->getType();
assert(!cir::MissingFeatures::aggValueSlotDestructedFlag());
bool requiresDestruction =
retTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
if (requiresDestruction)
cgf.cgm.errorNYI(
e->getSourceRange(),
"withReturnValueSlot: return value requiring destruction is NYI");
// If it makes no observable difference, save a memcpy + temporary.
//
// We need to always provide our own temporary if destruction is required.
// Otherwise, fn will emit its own, notice that it's "unused", and end its
// lifetime before we have the chance to emit a proper destructor call.
assert(!cir::MissingFeatures::aggValueSlotAlias());
assert(!cir::MissingFeatures::aggValueSlotGC());
Address retAddr = dest.getAddress();
assert(!cir::MissingFeatures::emitLifetimeMarkers());
assert(!cir::MissingFeatures::aggValueSlotVolatile());
assert(!cir::MissingFeatures::aggValueSlotDestructedFlag());
fn(ReturnValueSlot(retAddr));
}
void AggExprEmitter::VisitInitListExpr(InitListExpr *e) {
if (e->hadArrayRangeDesignator())
llvm_unreachable("GNU array range designator extension");
if (e->isTransparent())
return Visit(e->getInit(0));
visitCXXParenListOrInitListExpr(
e, e->inits(), e->getInitializedFieldInUnion(), e->getArrayFiller());
}
void AggExprEmitter::visitCXXParenListOrInitListExpr(
Expr *e, ArrayRef<Expr *> args, FieldDecl *initializedFieldInUnion,
Expr *arrayFiller) {
const AggValueSlot dest =
ensureSlot(cgf.getLoc(e->getSourceRange()), e->getType());
if (e->getType()->isConstantArrayType()) {
cir::ArrayType arrayTy =
cast<cir::ArrayType>(dest.getAddress().getElementType());
emitArrayInit(dest.getAddress(), arrayTy, e->getType(), e, args,
arrayFiller);
return;
} else if (e->getType()->isVariableArrayType()) {
cgf.cgm.errorNYI(e->getSourceRange(),
"visitCXXParenListOrInitListExpr variable array type");
return;
}
if (e->getType()->isArrayType()) {
cgf.cgm.errorNYI(e->getSourceRange(),
"visitCXXParenListOrInitListExpr array type");
return;
}
assert(e->getType()->isRecordType() && "Only support structs/unions here!");
// Do struct initialization; this code just sets each individual member
// to the approprate value. This makes bitfield support automatic;
// the disadvantage is that the generated code is more difficult for
// the optimizer, especially with bitfields.
unsigned numInitElements = args.size();
RecordDecl *record = e->getType()
->castAs<RecordType>()
->getOriginalDecl()
->getDefinitionOrSelf();
// We'll need to enter cleanup scopes in case any of the element
// initializers throws an exception.
assert(!cir::MissingFeatures::requiresCleanups());
unsigned curInitIndex = 0;
// Emit initialization of base classes.
if (auto *cxxrd = dyn_cast<CXXRecordDecl>(record)) {
assert(numInitElements >= cxxrd->getNumBases() &&
"missing initializer for base class");
if (cxxrd->getNumBases() > 0) {
cgf.cgm.errorNYI(e->getSourceRange(),
"visitCXXParenListOrInitListExpr base class init");
return;
}
}
LValue destLV = cgf.makeAddrLValue(dest.getAddress(), e->getType());
if (record->isUnion()) {
cgf.cgm.errorNYI(e->getSourceRange(),
"visitCXXParenListOrInitListExpr union type");
return;
}
// Here we iterate over the fields; this makes it simpler to both
// default-initialize fields and skip over unnamed fields.
for (const FieldDecl *field : record->fields()) {
// We're done once we hit the flexible array member.
if (field->getType()->isIncompleteArrayType())
break;
// Always skip anonymous bitfields.
if (field->isUnnamedBitField())
continue;
// We're done if we reach the end of the explicit initializers, we
// have a zeroed object, and the rest of the fields are
// zero-initializable.
if (curInitIndex == numInitElements && dest.isZeroed() &&
cgf.getTypes().isZeroInitializable(e->getType()))
break;
LValue lv =
cgf.emitLValueForFieldInitialization(destLV, field, field->getName());
// We never generate write-barriers for initialized fields.
assert(!cir::MissingFeatures::setNonGC());
if (curInitIndex < numInitElements) {
// Store the initializer into the field.
CIRGenFunction::SourceLocRAIIObject loc{
cgf, cgf.getLoc(record->getSourceRange())};
emitInitializationToLValue(args[curInitIndex++], lv);
} else {
// We're out of initializers; default-initialize to null
emitNullInitializationToLValue(cgf.getLoc(e->getSourceRange()), lv);
}
// Push a destructor if necessary.
// FIXME: if we have an array of structures, all explicitly
// initialized, we can end up pushing a linear number of cleanups.
if (field->getType().isDestructedType()) {
cgf.cgm.errorNYI(e->getSourceRange(),
"visitCXXParenListOrInitListExpr destructor");
return;
}
// From classic codegen, maybe not useful for CIR:
// If the GEP didn't get used because of a dead zero init or something
// else, clean it up for -O0 builds and general tidiness.
}
}
// TODO(cir): This could be shared with classic codegen.
AggValueSlot::Overlap_t CIRGenFunction::getOverlapForBaseInit(
const CXXRecordDecl *rd, const CXXRecordDecl *baseRD, bool isVirtual) {
// If the most-derived object is a field declared with [[no_unique_address]],
// the tail padding of any virtual base could be reused for other subobjects
// of that field's class.
if (isVirtual)
return AggValueSlot::MayOverlap;
// If the base class is laid out entirely within the nvsize of the derived
// class, its tail padding cannot yet be initialized, so we can issue
// stores at the full width of the base class.
const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd);
if (layout.getBaseClassOffset(baseRD) +
getContext().getASTRecordLayout(baseRD).getSize() <=
layout.getNonVirtualSize())
return AggValueSlot::DoesNotOverlap;
// The tail padding may contain values we need to preserve.
return AggValueSlot::MayOverlap;
}
void CIRGenFunction::emitAggExpr(const Expr *e, AggValueSlot slot) {
AggExprEmitter(*this, slot).Visit(const_cast<Expr *>(e));
}
LValue CIRGenFunction::emitAggExprToLValue(const Expr *e) {
assert(hasAggregateEvaluationKind(e->getType()) && "Invalid argument!");
Address temp = createMemTemp(e->getType(), getLoc(e->getSourceRange()));
LValue lv = makeAddrLValue(temp, e->getType());
emitAggExpr(e, AggValueSlot::forLValue(lv, AggValueSlot::IsNotDestructed,
AggValueSlot::IsNotAliased,
AggValueSlot::DoesNotOverlap));
return lv;
}