llvm-project/bolt/lib/Rewrite/LinuxKernelRewriter.cpp
Maksim Panchenko 59ab29213d
[BOLT] Register Linux kernel dynamic branch offsets (#90677)
To match profile data to code we need to know branch instruction offsets
within a function. For this reason, we mark branches with the "Offset"
annotation while disassembling the code. However, _dynamic_ branches in
the Linux kernel could be NOPs in disassembled code, and we ignore them
while adding annotations. We need to explicitly add the "Offset"
annotation while creating dynamic branches.

Note that without this change, `getInstructionAtOffset()` would still
return a branch instruction if the offset matched the last instruction
in a basic block (and the profile data was matched correctly). However,
the function failed for cases when the searched instruction was followed
by an unconditional jump. "Offset" annotation solves this case.
2024-05-01 21:56:55 -07:00

1905 lines
69 KiB
C++

//===- bolt/Rewrite/LinuxKernelRewriter.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Support for updating Linux Kernel metadata.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Rewrite/MetadataRewriter.h"
#include "bolt/Rewrite/MetadataRewriters.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#define DEBUG_TYPE "bolt-linux"
using namespace llvm;
using namespace bolt;
namespace opts {
static cl::opt<bool>
AltInstHasPadLen("alt-inst-has-padlen",
cl::desc("specify that .altinstructions has padlen field"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<uint32_t>
AltInstFeatureSize("alt-inst-feature-size",
cl::desc("size of feature field in .altinstructions"),
cl::init(2), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
DumpAltInstructions("dump-alt-instructions",
cl::desc("dump Linux alternative instructions info"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
DumpExceptions("dump-linux-exceptions",
cl::desc("dump Linux kernel exception table"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
DumpORC("dump-orc", cl::desc("dump raw ORC unwind information (sorted)"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> DumpParavirtualPatchSites(
"dump-para-sites", cl::desc("dump Linux kernel paravitual patch sites"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
DumpPCIFixups("dump-pci-fixups",
cl::desc("dump Linux kernel PCI fixup table"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> DumpStaticCalls("dump-static-calls",
cl::desc("dump Linux kernel static calls"),
cl::init(false), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
DumpStaticKeys("dump-static-keys",
cl::desc("dump Linux kernel static keys jump table"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> LongJumpLabels(
"long-jump-labels",
cl::desc("always use long jumps/nops for Linux kernel static keys"),
cl::init(false), cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
PrintORC("print-orc",
cl::desc("print ORC unwind information for instructions"),
cl::init(true), cl::Hidden, cl::cat(BoltCategory));
} // namespace opts
/// Linux Kernel supports stack unwinding using ORC (oops rewind capability).
/// ORC state at every IP can be described by the following data structure.
struct ORCState {
int16_t SPOffset;
int16_t BPOffset;
int16_t Info;
bool operator==(const ORCState &Other) const {
return SPOffset == Other.SPOffset && BPOffset == Other.BPOffset &&
Info == Other.Info;
}
bool operator!=(const ORCState &Other) const { return !(*this == Other); }
};
/// Section terminator ORC entry.
static ORCState NullORC = {0, 0, 0};
/// Basic printer for ORC entry. It does not provide the same level of
/// information as objtool (for now).
inline raw_ostream &operator<<(raw_ostream &OS, const ORCState &E) {
if (!opts::PrintORC)
return OS;
if (E != NullORC)
OS << format("{sp: %d, bp: %d, info: 0x%x}", E.SPOffset, E.BPOffset,
E.Info);
else
OS << "{terminator}";
return OS;
}
namespace {
class LinuxKernelRewriter final : public MetadataRewriter {
/// Linux Kernel special sections point to a specific instruction in many
/// cases. Unlike SDTMarkerInfo, these markers can come from different
/// sections.
struct LKInstructionMarkerInfo {
uint64_t SectionOffset;
int32_t PCRelativeOffset;
bool IsPCRelative;
StringRef SectionName;
};
/// Map linux kernel program locations/instructions to their pointers in
/// special linux kernel sections
std::unordered_map<uint64_t, std::vector<LKInstructionMarkerInfo>> LKMarkers;
/// Linux ORC sections.
ErrorOr<BinarySection &> ORCUnwindSection = std::errc::bad_address;
ErrorOr<BinarySection &> ORCUnwindIPSection = std::errc::bad_address;
/// Size of entries in ORC sections.
static constexpr size_t ORC_UNWIND_ENTRY_SIZE = 6;
static constexpr size_t ORC_UNWIND_IP_ENTRY_SIZE = 4;
struct ORCListEntry {
uint64_t IP; /// Instruction address.
BinaryFunction *BF; /// Binary function corresponding to the entry.
ORCState ORC; /// Stack unwind info in ORC format.
/// ORC entries are sorted by their IPs. Terminator entries (NullORC)
/// should precede other entries with the same address.
bool operator<(const ORCListEntry &Other) const {
if (IP < Other.IP)
return 1;
if (IP > Other.IP)
return 0;
return ORC == NullORC && Other.ORC != NullORC;
}
};
using ORCListType = std::vector<ORCListEntry>;
ORCListType ORCEntries;
/// Number of entries in the input file ORC sections.
uint64_t NumORCEntries = 0;
/// Section containing static keys jump table.
ErrorOr<BinarySection &> StaticKeysJumpSection = std::errc::bad_address;
uint64_t StaticKeysJumpTableAddress = 0;
static constexpr size_t STATIC_KEYS_JUMP_ENTRY_SIZE = 8;
struct JumpInfoEntry {
bool Likely;
bool InitValue;
};
SmallVector<JumpInfoEntry, 16> JumpInfo;
/// Static key entries that need nop conversion.
DenseSet<uint32_t> NopIDs;
/// Section containing static call table.
ErrorOr<BinarySection &> StaticCallSection = std::errc::bad_address;
uint64_t StaticCallTableAddress = 0;
static constexpr size_t STATIC_CALL_ENTRY_SIZE = 8;
struct StaticCallInfo {
uint32_t ID; /// Identifier of the entry in the table.
BinaryFunction *Function; /// Function containing associated call.
MCSymbol *Label; /// Label attached to the call.
};
using StaticCallListType = std::vector<StaticCallInfo>;
StaticCallListType StaticCallEntries;
/// Section containing the Linux exception table.
ErrorOr<BinarySection &> ExceptionsSection = std::errc::bad_address;
static constexpr size_t EXCEPTION_TABLE_ENTRY_SIZE = 12;
/// Functions with exception handling code.
DenseSet<BinaryFunction *> FunctionsWithExceptions;
/// Section with paravirtual patch sites.
ErrorOr<BinarySection &> ParavirtualPatchSection = std::errc::bad_address;
/// Alignment of paravirtual patch structures.
static constexpr size_t PARA_PATCH_ALIGN = 8;
/// .altinstructions section.
ErrorOr<BinarySection &> AltInstrSection = std::errc::bad_address;
/// Section containing Linux bug table.
ErrorOr<BinarySection &> BugTableSection = std::errc::bad_address;
/// Size of bug_entry struct.
static constexpr size_t BUG_TABLE_ENTRY_SIZE = 12;
/// List of bug entries per function.
using FunctionBugListType =
DenseMap<BinaryFunction *, SmallVector<uint32_t, 2>>;
FunctionBugListType FunctionBugList;
/// .pci_fixup section.
ErrorOr<BinarySection &> PCIFixupSection = std::errc::bad_address;
static constexpr size_t PCI_FIXUP_ENTRY_SIZE = 16;
/// Insert an LKMarker for a given code pointer \p PC from a non-code section
/// \p SectionName.
void insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset, bool IsPCRelative,
StringRef SectionName);
/// Process linux kernel special sections and their relocations.
void processLKSections();
/// Process __ksymtab and __ksymtab_gpl.
void processLKKSymtab(bool IsGPL = false);
/// Process special linux kernel section, .smp_locks.
void processLKSMPLocks();
/// Update LKMarkers' locations for the output binary.
void updateLKMarkers();
/// Read ORC unwind information and annotate instructions.
Error readORCTables();
/// Update ORC for functions once CFG is constructed.
Error processORCPostCFG();
/// Update ORC data in the binary.
Error rewriteORCTables();
/// Validate written ORC tables after binary emission.
Error validateORCTables();
/// Static call table handling.
Error readStaticCalls();
Error rewriteStaticCalls();
Error readExceptionTable();
Error rewriteExceptionTable();
/// Paravirtual instruction patch sites.
Error readParaInstructions();
Error rewriteParaInstructions();
/// __bug_table section handling.
Error readBugTable();
Error rewriteBugTable();
/// Do no process functions containing instruction annotated with
/// \p Annotation.
void skipFunctionsWithAnnotation(StringRef Annotation) const;
/// Handle alternative instruction info from .altinstructions.
Error readAltInstructions();
Error rewriteAltInstructions();
/// Read .pci_fixup
Error readPCIFixupTable();
/// Handle static keys jump table.
Error readStaticKeysJumpTable();
Error rewriteStaticKeysJumpTable();
Error updateStaticKeysJumpTablePostEmit();
/// Mark instructions referenced by kernel metadata.
Error markInstructions();
public:
LinuxKernelRewriter(BinaryContext &BC)
: MetadataRewriter("linux-kernel-rewriter", BC) {}
Error preCFGInitializer() override {
processLKSections();
if (Error E = markInstructions())
return E;
if (Error E = readORCTables())
return E;
if (Error E = readStaticCalls())
return E;
if (Error E = readExceptionTable())
return E;
if (Error E = readParaInstructions())
return E;
if (Error E = readBugTable())
return E;
if (Error E = readAltInstructions())
return E;
if (Error E = readPCIFixupTable())
return E;
if (Error E = readStaticKeysJumpTable())
return E;
return Error::success();
}
Error postCFGInitializer() override {
if (Error E = processORCPostCFG())
return E;
return Error::success();
}
Error preEmitFinalizer() override {
// Since rewriteExceptionTable() can mark functions as non-simple, run it
// before other rewriters that depend on simple/emit status.
if (Error E = rewriteExceptionTable())
return E;
if (Error E = rewriteAltInstructions())
return E;
if (Error E = rewriteParaInstructions())
return E;
if (Error E = rewriteORCTables())
return E;
if (Error E = rewriteStaticCalls())
return E;
if (Error E = rewriteStaticKeysJumpTable())
return E;
if (Error E = rewriteBugTable())
return E;
return Error::success();
}
Error postEmitFinalizer() override {
updateLKMarkers();
if (Error E = updateStaticKeysJumpTablePostEmit())
return E;
if (Error E = validateORCTables())
return E;
return Error::success();
}
};
Error LinuxKernelRewriter::markInstructions() {
for (const uint64_t PC : llvm::make_first_range(LKMarkers)) {
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(PC);
if (!BF || !BC.shouldEmit(*BF))
continue;
const uint64_t Offset = PC - BF->getAddress();
MCInst *Inst = BF->getInstructionAtOffset(Offset);
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction matches kernel marker offset");
BC.MIB->setOffset(*Inst, static_cast<uint32_t>(Offset));
BF->setHasSDTMarker(true);
}
return Error::success();
}
void LinuxKernelRewriter::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
int32_t PCRelativeOffset,
bool IsPCRelative,
StringRef SectionName) {
LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
}
void LinuxKernelRewriter::processLKSections() {
processLKKSymtab();
processLKKSymtab(true);
processLKSMPLocks();
}
/// Process __ksymtab[_gpl] sections of Linux Kernel.
/// This section lists all the vmlinux symbols that kernel modules can access.
///
/// All the entries are 4 bytes each and hence we can read them by one by one
/// and ignore the ones that are not pointing to the .text section. All pointers
/// are PC relative offsets. Always, points to the beginning of the function.
void LinuxKernelRewriter::processLKKSymtab(bool IsGPL) {
StringRef SectionName = "__ksymtab";
if (IsGPL)
SectionName = "__ksymtab_gpl";
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName(SectionName);
assert(SectionOrError &&
"__ksymtab[_gpl] section not found in Linux Kernel binary");
const uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the __ksymtab[_gpl] section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
const int32_t SignedOffset = *Offset;
const uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *BF = BC.getBinaryFunctionAtAddress(RefAddress);
if (!BF)
continue;
BC.addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
*Offset);
}
}
/// .smp_locks section contains PC-relative references to instructions with LOCK
/// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
void LinuxKernelRewriter::processLKSMPLocks() {
ErrorOr<BinarySection &> SectionOrError =
BC.getUniqueSectionByName(".smp_locks");
if (!SectionOrError)
return;
uint64_t SectionSize = SectionOrError->getSize();
const uint64_t SectionAddress = SectionOrError->getAddress();
assert((SectionSize % 4) == 0 &&
"The size of the .smp_locks section should be a multiple of 4");
for (uint64_t I = 0; I < SectionSize; I += 4) {
const uint64_t EntryAddress = SectionAddress + I;
ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
int32_t SignedOffset = *Offset;
uint64_t RefAddress = EntryAddress + SignedOffset;
BinaryFunction *ContainingBF =
BC.getBinaryFunctionContainingAddress(RefAddress);
if (!ContainingBF)
continue;
insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
}
}
void LinuxKernelRewriter::updateLKMarkers() {
if (LKMarkers.size() == 0)
return;
std::unordered_map<std::string, uint64_t> PatchCounts;
for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
&LKMarkerInfoKV : LKMarkers) {
const uint64_t OriginalAddress = LKMarkerInfoKV.first;
const BinaryFunction *BF =
BC.getBinaryFunctionContainingAddress(OriginalAddress, false, true);
if (!BF)
continue;
uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
if (NewAddress == 0)
continue;
// Apply base address.
if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
NewAddress = NewAddress + 0xffffffff00000000;
if (OriginalAddress == NewAddress)
continue;
for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
StringRef SectionName = LKMarkerInfo.SectionName;
SimpleBinaryPatcher *LKPatcher;
ErrorOr<BinarySection &> BSec = BC.getUniqueSectionByName(SectionName);
assert(BSec && "missing section info for kernel section");
if (!BSec->getPatcher())
BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
PatchCounts[std::string(SectionName)]++;
if (LKMarkerInfo.IsPCRelative)
LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
NewAddress - OriginalAddress +
LKMarkerInfo.PCRelativeOffset);
else
LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
}
}
BC.outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
"section are as follows:\n";
for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
BC.outs() << " Section: " << KV.first << ", patch-counts: " << KV.second
<< '\n';
}
Error LinuxKernelRewriter::readORCTables() {
// NOTE: we should ignore relocations for orc tables as the tables are sorted
// post-link time and relocations are not updated.
ORCUnwindSection = BC.getUniqueSectionByName(".orc_unwind");
ORCUnwindIPSection = BC.getUniqueSectionByName(".orc_unwind_ip");
if (!ORCUnwindSection && !ORCUnwindIPSection)
return Error::success();
if (!ORCUnwindSection || !ORCUnwindIPSection)
return createStringError(errc::executable_format_error,
"missing ORC section");
NumORCEntries = ORCUnwindIPSection->getSize() / ORC_UNWIND_IP_ENTRY_SIZE;
if (ORCUnwindSection->getSize() != NumORCEntries * ORC_UNWIND_ENTRY_SIZE ||
ORCUnwindIPSection->getSize() != NumORCEntries * ORC_UNWIND_IP_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"ORC entries number mismatch detected");
const uint64_t IPSectionAddress = ORCUnwindIPSection->getAddress();
DataExtractor OrcDE = DataExtractor(ORCUnwindSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor IPDE = DataExtractor(ORCUnwindIPSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor ORCCursor(0);
DataExtractor::Cursor IPCursor(0);
uint64_t PrevIP = 0;
for (uint32_t Index = 0; Index < NumORCEntries; ++Index) {
const uint64_t IP =
IPSectionAddress + IPCursor.tell() + (int32_t)IPDE.getU32(IPCursor);
// Consume the status of the cursor.
if (!IPCursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading ORC IP table: %s",
toString(IPCursor.takeError()).c_str());
if (IP < PrevIP && opts::Verbosity)
BC.errs() << "BOLT-WARNING: out of order IP 0x" << Twine::utohexstr(IP)
<< " detected while reading ORC\n";
PrevIP = IP;
// Store all entries, includes those we are not going to update as the
// tables need to be sorted globally before being written out.
ORCEntries.push_back(ORCListEntry());
ORCListEntry &Entry = ORCEntries.back();
Entry.IP = IP;
Entry.ORC.SPOffset = (int16_t)OrcDE.getU16(ORCCursor);
Entry.ORC.BPOffset = (int16_t)OrcDE.getU16(ORCCursor);
Entry.ORC.Info = (int16_t)OrcDE.getU16(ORCCursor);
Entry.BF = nullptr;
// Consume the status of the cursor.
if (!ORCCursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading ORC: %s",
toString(ORCCursor.takeError()).c_str());
if (Entry.ORC == NullORC)
continue;
BinaryFunction *&BF = Entry.BF;
BF = BC.getBinaryFunctionContainingAddress(IP, /*CheckPastEnd*/ true);
// If the entry immediately pointing past the end of the function is not
// the terminator entry, then it does not belong to this function.
if (BF && BF->getAddress() + BF->getSize() == IP)
BF = 0;
if (!BF) {
if (opts::Verbosity)
BC.errs() << "BOLT-WARNING: no binary function found matching ORC 0x"
<< Twine::utohexstr(IP) << ": " << Entry.ORC << '\n';
continue;
}
BF->setHasORC(true);
if (!BF->hasInstructions())
continue;
MCInst *Inst = BF->getInstructionAtOffset(IP - BF->getAddress());
if (!Inst)
return createStringError(
errc::executable_format_error,
"no instruction at address 0x%" PRIx64 " in .orc_unwind_ip", IP);
// Some addresses will have two entries associated with them. The first
// one being a "weak" section terminator. Since we ignore the terminator,
// we should only assign one entry per instruction.
if (BC.MIB->hasAnnotation(*Inst, "ORC"))
return createStringError(
errc::executable_format_error,
"duplicate non-terminal ORC IP 0x%" PRIx64 " in .orc_unwind_ip", IP);
BC.MIB->addAnnotation(*Inst, "ORC", Entry.ORC);
}
BC.outs() << "BOLT-INFO: parsed " << NumORCEntries << " ORC entries\n";
if (opts::DumpORC) {
BC.outs() << "BOLT-INFO: ORC unwind information:\n";
for (const ORCListEntry &E : ORCEntries) {
BC.outs() << "0x" << Twine::utohexstr(E.IP) << ": " << E.ORC;
if (E.BF)
BC.outs() << ": " << *E.BF;
BC.outs() << '\n';
}
}
// Add entries for functions that don't have explicit ORC info at the start.
// We'll have the correct info for them even if ORC for the preceding function
// changes.
ORCListType NewEntries;
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
auto It = llvm::partition_point(ORCEntries, [&](const ORCListEntry &E) {
return E.IP <= BF.getAddress();
});
if (It != ORCEntries.begin())
--It;
if (It->BF == &BF)
continue;
if (It->ORC == NullORC && It->IP == BF.getAddress()) {
assert(!It->BF);
It->BF = &BF;
continue;
}
NewEntries.push_back({BF.getAddress(), &BF, It->ORC});
if (It->ORC != NullORC)
BF.setHasORC(true);
}
llvm::copy(NewEntries, std::back_inserter(ORCEntries));
llvm::sort(ORCEntries);
if (opts::DumpORC) {
BC.outs() << "BOLT-INFO: amended ORC unwind information:\n";
for (const ORCListEntry &E : ORCEntries) {
BC.outs() << "0x" << Twine::utohexstr(E.IP) << ": " << E.ORC;
if (E.BF)
BC.outs() << ": " << *E.BF;
BC.outs() << '\n';
}
}
return Error::success();
}
Error LinuxKernelRewriter::processORCPostCFG() {
if (!NumORCEntries)
return Error::success();
// Propagate ORC to the rest of the function. We can annotate every
// instruction in every function, but to minimize the overhead, we annotate
// the first instruction in every basic block to reflect the state at the
// entry. This way, the ORC state can be calculated based on annotations
// regardless of the basic block layout. Note that if we insert/delete
// instructions, we must take care to attach ORC info to the new/deleted ones.
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
std::optional<ORCState> CurrentState;
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
ErrorOr<ORCState> State =
BC.MIB->tryGetAnnotationAs<ORCState>(Inst, "ORC");
if (State) {
CurrentState = *State;
continue;
}
// Get state for the start of the function.
if (!CurrentState) {
// A terminator entry (NullORC) can match the function address. If
// there's also a non-terminator entry, it will be placed after the
// terminator. Hence, we are looking for the last ORC entry that
// matches the address.
auto It =
llvm::partition_point(ORCEntries, [&](const ORCListEntry &E) {
return E.IP <= BF.getAddress();
});
if (It != ORCEntries.begin())
--It;
assert(It->IP == BF.getAddress() && (!It->BF || It->BF == &BF) &&
"ORC info at function entry expected.");
if (It->ORC == NullORC && BF.hasORC()) {
BC.errs() << "BOLT-WARNING: ORC unwind info excludes prologue for "
<< BF << '\n';
}
It->BF = &BF;
CurrentState = It->ORC;
if (It->ORC != NullORC)
BF.setHasORC(true);
}
// While printing ORC, attach info to every instruction for convenience.
if (opts::PrintORC || &Inst == &BB.front())
BC.MIB->addAnnotation(Inst, "ORC", *CurrentState);
}
}
}
return Error::success();
}
Error LinuxKernelRewriter::rewriteORCTables() {
if (!NumORCEntries)
return Error::success();
// Update ORC sections in-place. As we change the code, the number of ORC
// entries may increase for some functions. However, as we remove terminator
// redundancy (see below), more space is freed up and we should always be able
// to fit new ORC tables in the reserved space.
auto createInPlaceWriter = [&](BinarySection &Section) -> BinaryStreamWriter {
const size_t Size = Section.getSize();
uint8_t *NewContents = new uint8_t[Size];
Section.updateContents(NewContents, Size);
Section.setOutputFileOffset(Section.getInputFileOffset());
return BinaryStreamWriter({NewContents, Size}, BC.AsmInfo->isLittleEndian()
? endianness::little
: endianness::big);
};
BinaryStreamWriter UnwindWriter = createInPlaceWriter(*ORCUnwindSection);
BinaryStreamWriter UnwindIPWriter = createInPlaceWriter(*ORCUnwindIPSection);
uint64_t NumEmitted = 0;
std::optional<ORCState> LastEmittedORC;
auto emitORCEntry = [&](const uint64_t IP, const ORCState &ORC,
MCSymbol *Label = 0, bool Force = false) -> Error {
if (LastEmittedORC && ORC == *LastEmittedORC && !Force)
return Error::success();
LastEmittedORC = ORC;
if (++NumEmitted > NumORCEntries)
return createStringError(errc::executable_format_error,
"exceeded the number of allocated ORC entries");
if (Label)
ORCUnwindIPSection->addRelocation(UnwindIPWriter.getOffset(), Label,
Relocation::getPC32(), /*Addend*/ 0);
const int32_t IPValue =
IP - ORCUnwindIPSection->getAddress() - UnwindIPWriter.getOffset();
if (Error E = UnwindIPWriter.writeInteger(IPValue))
return E;
if (Error E = UnwindWriter.writeInteger(ORC.SPOffset))
return E;
if (Error E = UnwindWriter.writeInteger(ORC.BPOffset))
return E;
if (Error E = UnwindWriter.writeInteger(ORC.Info))
return E;
return Error::success();
};
// Emit new ORC entries for the emitted function.
auto emitORC = [&](const FunctionFragment &FF) -> Error {
ORCState CurrentState = NullORC;
for (BinaryBasicBlock *BB : FF) {
for (MCInst &Inst : *BB) {
ErrorOr<ORCState> ErrorOrState =
BC.MIB->tryGetAnnotationAs<ORCState>(Inst, "ORC");
if (!ErrorOrState || *ErrorOrState == CurrentState)
continue;
// Issue label for the instruction.
MCSymbol *Label =
BC.MIB->getOrCreateInstLabel(Inst, "__ORC_", BC.Ctx.get());
if (Error E = emitORCEntry(0, *ErrorOrState, Label))
return E;
CurrentState = *ErrorOrState;
}
}
return Error::success();
};
// Emit ORC entries for cold fragments. We assume that these fragments are
// emitted contiguously in memory using reserved space in the kernel. This
// assumption is validated in post-emit pass validateORCTables() where we
// check that ORC entries are sorted by their addresses.
auto emitColdORC = [&]() -> Error {
for (BinaryFunction &BF :
llvm::make_second_range(BC.getBinaryFunctions())) {
if (!BC.shouldEmit(BF))
continue;
for (FunctionFragment &FF : BF.getLayout().getSplitFragments())
if (Error E = emitORC(FF))
return E;
}
return Error::success();
};
bool ShouldEmitCold = !BC.BOLTReserved.empty();
for (ORCListEntry &Entry : ORCEntries) {
if (ShouldEmitCold && Entry.IP > BC.BOLTReserved.start()) {
if (Error E = emitColdORC())
return E;
// Emit terminator entry at the end of the reserved region.
if (Error E = emitORCEntry(BC.BOLTReserved.end(), NullORC))
return E;
ShouldEmitCold = false;
}
// Emit original entries for functions that we haven't modified.
if (!Entry.BF || !BC.shouldEmit(*Entry.BF)) {
// Emit terminator only if it marks the start of a function.
if (Entry.ORC == NullORC && !Entry.BF)
continue;
if (Error E = emitORCEntry(Entry.IP, Entry.ORC))
return E;
continue;
}
// Emit all ORC entries for a function referenced by an entry and skip over
// the rest of entries for this function by resetting its ORC attribute.
if (Entry.BF->hasORC()) {
if (Error E = emitORC(Entry.BF->getLayout().getMainFragment()))
return E;
Entry.BF->setHasORC(false);
}
}
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted " << NumEmitted
<< " ORC entries\n");
// Populate ORC tables with a terminator entry with max address to match the
// original table sizes.
const uint64_t LastIP = std::numeric_limits<uint64_t>::max();
while (UnwindWriter.bytesRemaining()) {
if (Error E = emitORCEntry(LastIP, NullORC, nullptr, /*Force*/ true))
return E;
}
return Error::success();
}
Error LinuxKernelRewriter::validateORCTables() {
if (!ORCUnwindIPSection)
return Error::success();
const uint64_t IPSectionAddress = ORCUnwindIPSection->getAddress();
DataExtractor IPDE = DataExtractor(ORCUnwindIPSection->getOutputContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor IPCursor(0);
uint64_t PrevIP = 0;
for (uint32_t Index = 0; Index < NumORCEntries; ++Index) {
const uint64_t IP =
IPSectionAddress + IPCursor.tell() + (int32_t)IPDE.getU32(IPCursor);
if (!IPCursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading ORC IP table: %s",
toString(IPCursor.takeError()).c_str());
assert(IP >= PrevIP && "Unsorted ORC table detected");
(void)PrevIP;
PrevIP = IP;
}
return Error::success();
}
/// The static call site table is created by objtool and contains entries in the
/// following format:
///
/// struct static_call_site {
/// s32 addr;
/// s32 key;
/// };
///
Error LinuxKernelRewriter::readStaticCalls() {
const BinaryData *StaticCallTable =
BC.getBinaryDataByName("__start_static_call_sites");
if (!StaticCallTable)
return Error::success();
StaticCallTableAddress = StaticCallTable->getAddress();
const BinaryData *Stop = BC.getBinaryDataByName("__stop_static_call_sites");
if (!Stop)
return createStringError(errc::executable_format_error,
"missing __stop_static_call_sites symbol");
ErrorOr<BinarySection &> ErrorOrSection =
BC.getSectionForAddress(StaticCallTableAddress);
if (!ErrorOrSection)
return createStringError(errc::executable_format_error,
"no section matching __start_static_call_sites");
StaticCallSection = *ErrorOrSection;
if (!StaticCallSection->containsAddress(Stop->getAddress() - 1))
return createStringError(errc::executable_format_error,
"__stop_static_call_sites not in the same section "
"as __start_static_call_sites");
if ((Stop->getAddress() - StaticCallTableAddress) % STATIC_CALL_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"static call table size error");
const uint64_t SectionAddress = StaticCallSection->getAddress();
DataExtractor DE(StaticCallSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor Cursor(StaticCallTableAddress - SectionAddress);
uint32_t EntryID = 0;
while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) {
const uint64_t CallAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t KeyAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
// Consume the status of the cursor.
if (!Cursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading static calls: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
if (opts::DumpStaticCalls) {
BC.outs() << "Static Call Site: " << EntryID << '\n';
BC.outs() << "\tCallAddress: 0x" << Twine::utohexstr(CallAddress)
<< "\n\tKeyAddress: 0x" << Twine::utohexstr(KeyAddress)
<< '\n';
}
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(CallAddress);
if (!BF)
continue;
if (!BC.shouldEmit(*BF))
continue;
if (!BF->hasInstructions())
continue;
MCInst *Inst = BF->getInstructionAtOffset(CallAddress - BF->getAddress());
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction at call site address 0x%" PRIx64,
CallAddress);
// Check for duplicate entries.
if (BC.MIB->hasAnnotation(*Inst, "StaticCall"))
return createStringError(errc::executable_format_error,
"duplicate static call site at 0x%" PRIx64,
CallAddress);
BC.MIB->addAnnotation(*Inst, "StaticCall", EntryID);
MCSymbol *Label =
BC.MIB->getOrCreateInstLabel(*Inst, "__SC_", BC.Ctx.get());
StaticCallEntries.push_back({EntryID, BF, Label});
}
BC.outs() << "BOLT-INFO: parsed " << StaticCallEntries.size()
<< " static call entries\n";
return Error::success();
}
/// The static call table is sorted during boot time in
/// static_call_sort_entries(). This makes it possible to update existing
/// entries in-place ignoring their relative order.
Error LinuxKernelRewriter::rewriteStaticCalls() {
if (!StaticCallTableAddress || !StaticCallSection)
return Error::success();
for (auto &Entry : StaticCallEntries) {
if (!Entry.Function)
continue;
BinaryFunction &BF = *Entry.Function;
if (!BC.shouldEmit(BF))
continue;
// Create a relocation against the label.
const uint64_t EntryOffset = StaticCallTableAddress -
StaticCallSection->getAddress() +
(Entry.ID - 1) * STATIC_CALL_ENTRY_SIZE;
StaticCallSection->addRelocation(EntryOffset, Entry.Label,
ELF::R_X86_64_PC32, /*Addend*/ 0);
}
return Error::success();
}
/// Instructions that access user-space memory can cause page faults. These
/// faults will be handled by the kernel and execution will resume at the fixup
/// code location if the address was invalid. The kernel uses the exception
/// table to match the faulting instruction to its fixup. The table consists of
/// the following entries:
///
/// struct exception_table_entry {
/// int insn;
/// int fixup;
/// int data;
/// };
///
/// More info at:
/// https://www.kernel.org/doc/Documentation/x86/exception-tables.txt
Error LinuxKernelRewriter::readExceptionTable() {
ExceptionsSection = BC.getUniqueSectionByName("__ex_table");
if (!ExceptionsSection)
return Error::success();
if (ExceptionsSection->getSize() % EXCEPTION_TABLE_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"exception table size error");
const uint64_t SectionAddress = ExceptionsSection->getAddress();
DataExtractor DE(ExceptionsSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor Cursor(0);
uint32_t EntryID = 0;
while (Cursor && Cursor.tell() < ExceptionsSection->getSize()) {
const uint64_t InstAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t FixupAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t Data = DE.getU32(Cursor);
// Consume the status of the cursor.
if (!Cursor)
return createStringError(
errc::executable_format_error,
"out of bounds while reading exception table: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
if (opts::DumpExceptions) {
BC.outs() << "Exception Entry: " << EntryID << '\n';
BC.outs() << "\tInsn: 0x" << Twine::utohexstr(InstAddress) << '\n'
<< "\tFixup: 0x" << Twine::utohexstr(FixupAddress) << '\n'
<< "\tData: 0x" << Twine::utohexstr(Data) << '\n';
}
MCInst *Inst = nullptr;
MCSymbol *FixupLabel = nullptr;
BinaryFunction *InstBF = BC.getBinaryFunctionContainingAddress(InstAddress);
if (InstBF && BC.shouldEmit(*InstBF)) {
Inst = InstBF->getInstructionAtOffset(InstAddress - InstBF->getAddress());
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction at address 0x%" PRIx64
" in exception table",
InstAddress);
BC.MIB->addAnnotation(*Inst, "ExceptionEntry", EntryID);
FunctionsWithExceptions.insert(InstBF);
}
if (!InstBF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches instruction at 0x"
<< Twine::utohexstr(InstAddress)
<< " referenced by Linux exception table\n";
}
BinaryFunction *FixupBF =
BC.getBinaryFunctionContainingAddress(FixupAddress);
if (FixupBF && BC.shouldEmit(*FixupBF)) {
const uint64_t Offset = FixupAddress - FixupBF->getAddress();
if (!FixupBF->getInstructionAtOffset(Offset))
return createStringError(errc::executable_format_error,
"no instruction at fixup address 0x%" PRIx64
" in exception table",
FixupAddress);
FixupLabel = Offset ? FixupBF->addEntryPointAtOffset(Offset)
: FixupBF->getSymbol();
if (Inst)
BC.MIB->addAnnotation(*Inst, "Fixup", FixupLabel->getName());
FunctionsWithExceptions.insert(FixupBF);
}
if (!FixupBF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches fixup code at 0x"
<< Twine::utohexstr(FixupAddress)
<< " referenced by Linux exception table\n";
}
}
BC.outs() << "BOLT-INFO: parsed "
<< ExceptionsSection->getSize() / EXCEPTION_TABLE_ENTRY_SIZE
<< " exception table entries\n";
return Error::success();
}
/// Depending on the value of CONFIG_BUILDTIME_TABLE_SORT, the kernel expects
/// the exception table to be sorted. Hence we have to sort it after code
/// reordering.
Error LinuxKernelRewriter::rewriteExceptionTable() {
// Disable output of functions with exceptions before rewrite support is
// added.
for (BinaryFunction *BF : FunctionsWithExceptions)
BF->setSimple(false);
return Error::success();
}
/// .parainsrtuctions section contains information for patching parvirtual call
/// instructions during runtime. The entries in the section are in the form:
///
/// struct paravirt_patch_site {
/// u8 *instr; /* original instructions */
/// u8 type; /* type of this instruction */
/// u8 len; /* length of original instruction */
/// };
///
/// Note that the structures are aligned at 8-byte boundary.
Error LinuxKernelRewriter::readParaInstructions() {
ParavirtualPatchSection = BC.getUniqueSectionByName(".parainstructions");
if (!ParavirtualPatchSection)
return Error::success();
DataExtractor DE = DataExtractor(ParavirtualPatchSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
uint32_t EntryID = 0;
DataExtractor::Cursor Cursor(0);
while (Cursor && !DE.eof(Cursor)) {
const uint64_t NextOffset = alignTo(Cursor.tell(), Align(PARA_PATCH_ALIGN));
if (!DE.isValidOffset(NextOffset))
break;
Cursor.seek(NextOffset);
const uint64_t InstrLocation = DE.getU64(Cursor);
const uint8_t Type = DE.getU8(Cursor);
const uint8_t Len = DE.getU8(Cursor);
if (!Cursor)
return createStringError(
errc::executable_format_error,
"out of bounds while reading .parainstructions: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
if (opts::DumpParavirtualPatchSites) {
BC.outs() << "Paravirtual patch site: " << EntryID << '\n';
BC.outs() << "\tInstr: 0x" << Twine::utohexstr(InstrLocation)
<< "\n\tType: 0x" << Twine::utohexstr(Type) << "\n\tLen: 0x"
<< Twine::utohexstr(Len) << '\n';
}
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(InstrLocation);
if (!BF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches address 0x"
<< Twine::utohexstr(InstrLocation)
<< " referenced by paravirutal patch site\n";
}
if (BF && BC.shouldEmit(*BF)) {
MCInst *Inst =
BF->getInstructionAtOffset(InstrLocation - BF->getAddress());
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction at address 0x%" PRIx64
" in paravirtual call site %d",
InstrLocation, EntryID);
BC.MIB->addAnnotation(*Inst, "ParaSite", EntryID);
}
}
BC.outs() << "BOLT-INFO: parsed " << EntryID << " paravirtual patch sites\n";
return Error::success();
}
void LinuxKernelRewriter::skipFunctionsWithAnnotation(
StringRef Annotation) const {
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
if (!BC.shouldEmit(BF))
continue;
for (const BinaryBasicBlock &BB : BF) {
const bool HasAnnotation = llvm::any_of(BB, [&](const MCInst &Inst) {
return BC.MIB->hasAnnotation(Inst, Annotation);
});
if (HasAnnotation) {
BF.setSimple(false);
break;
}
}
}
}
Error LinuxKernelRewriter::rewriteParaInstructions() {
// Disable output of functions with paravirtual instructions before the
// rewrite support is complete.
skipFunctionsWithAnnotation("ParaSite");
return Error::success();
}
/// Process __bug_table section.
/// This section contains information useful for kernel debugging, mostly
/// utilized by WARN()/WARN_ON() macros and deprecated BUG()/BUG_ON().
///
/// Each entry in the section is a struct bug_entry that contains a pointer to
/// the ud2 instruction corresponding to the bug, corresponding file name (both
/// pointers use PC relative offset addressing), line number, and flags.
/// The definition of the struct bug_entry can be found in
/// `include/asm-generic/bug.h`. The first entry in the struct is an instruction
/// address encoded as a PC-relative offset. In theory, it could be an absolute
/// address if CONFIG_GENERIC_BUG_RELATIVE_POINTERS is not set, but in practice
/// the kernel code relies on it being a relative offset on x86-64.
Error LinuxKernelRewriter::readBugTable() {
BugTableSection = BC.getUniqueSectionByName("__bug_table");
if (!BugTableSection)
return Error::success();
if (BugTableSection->getSize() % BUG_TABLE_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"bug table size error");
const uint64_t SectionAddress = BugTableSection->getAddress();
DataExtractor DE(BugTableSection->getContents(), BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor Cursor(0);
uint32_t EntryID = 0;
while (Cursor && Cursor.tell() < BugTableSection->getSize()) {
const uint64_t Pos = Cursor.tell();
const uint64_t InstAddress =
SectionAddress + Pos + (int32_t)DE.getU32(Cursor);
Cursor.seek(Pos + BUG_TABLE_ENTRY_SIZE);
if (!Cursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading __bug_table: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(InstAddress);
if (!BF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches address 0x"
<< Twine::utohexstr(InstAddress)
<< " referenced by bug table\n";
}
if (BF && BC.shouldEmit(*BF)) {
MCInst *Inst = BF->getInstructionAtOffset(InstAddress - BF->getAddress());
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction at address 0x%" PRIx64
" referenced by bug table entry %d",
InstAddress, EntryID);
BC.MIB->addAnnotation(*Inst, "BugEntry", EntryID);
FunctionBugList[BF].push_back(EntryID);
}
}
BC.outs() << "BOLT-INFO: parsed " << EntryID << " bug table entries\n";
return Error::success();
}
/// find_bug() uses linear search to match an address to an entry in the bug
/// table. Hence, there is no need to sort entries when rewriting the table.
/// When we need to erase an entry, we set its instruction address to zero.
Error LinuxKernelRewriter::rewriteBugTable() {
if (!BugTableSection)
return Error::success();
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
if (!BC.shouldEmit(BF))
continue;
if (!FunctionBugList.count(&BF))
continue;
// Bugs that will be emitted for this function.
DenseSet<uint32_t> EmittedIDs;
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
if (!BC.MIB->hasAnnotation(Inst, "BugEntry"))
continue;
const uint32_t ID = BC.MIB->getAnnotationAs<uint32_t>(Inst, "BugEntry");
EmittedIDs.insert(ID);
// Create a relocation entry for this bug entry.
MCSymbol *Label =
BC.MIB->getOrCreateInstLabel(Inst, "__BUG_", BC.Ctx.get());
const uint64_t EntryOffset = (ID - 1) * BUG_TABLE_ENTRY_SIZE;
BugTableSection->addRelocation(EntryOffset, Label, ELF::R_X86_64_PC32,
/*Addend*/ 0);
}
}
// Clear bug entries that were not emitted for this function, e.g. as a
// result of DCE, but setting their instruction address to zero.
for (const uint32_t ID : FunctionBugList[&BF]) {
if (!EmittedIDs.count(ID)) {
const uint64_t EntryOffset = (ID - 1) * BUG_TABLE_ENTRY_SIZE;
BugTableSection->addRelocation(EntryOffset, nullptr, ELF::R_X86_64_PC32,
/*Addend*/ 0);
}
}
}
return Error::success();
}
/// The kernel can replace certain instruction sequences depending on hardware
/// it is running on and features specified during boot time. The information
/// about alternative instruction sequences is stored in .altinstructions
/// section. The format of entries in this section is defined in
/// arch/x86/include/asm/alternative.h:
///
/// struct alt_instr {
/// s32 instr_offset;
/// s32 repl_offset;
/// uXX feature;
/// u8 instrlen;
/// u8 replacementlen;
/// u8 padlen; // present in older kernels
/// } __packed;
///
/// Note the structures is packed.
Error LinuxKernelRewriter::readAltInstructions() {
AltInstrSection = BC.getUniqueSectionByName(".altinstructions");
if (!AltInstrSection)
return Error::success();
const uint64_t Address = AltInstrSection->getAddress();
DataExtractor DE = DataExtractor(AltInstrSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
uint64_t EntryID = 0;
DataExtractor::Cursor Cursor(0);
while (Cursor && !DE.eof(Cursor)) {
const uint64_t OrgInstAddress =
Address + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t AltInstAddress =
Address + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t Feature = DE.getUnsigned(Cursor, opts::AltInstFeatureSize);
const uint8_t OrgSize = DE.getU8(Cursor);
const uint8_t AltSize = DE.getU8(Cursor);
// Older kernels may have the padlen field.
const uint8_t PadLen = opts::AltInstHasPadLen ? DE.getU8(Cursor) : 0;
if (!Cursor)
return createStringError(
errc::executable_format_error,
"out of bounds while reading .altinstructions: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
if (opts::DumpAltInstructions) {
BC.outs() << "Alternative instruction entry: " << EntryID
<< "\n\tOrg: 0x" << Twine::utohexstr(OrgInstAddress)
<< "\n\tAlt: 0x" << Twine::utohexstr(AltInstAddress)
<< "\n\tFeature: 0x" << Twine::utohexstr(Feature)
<< "\n\tOrgSize: " << (int)OrgSize
<< "\n\tAltSize: " << (int)AltSize << '\n';
if (opts::AltInstHasPadLen)
BC.outs() << "\tPadLen: " << (int)PadLen << '\n';
}
if (AltSize > OrgSize)
return createStringError(errc::executable_format_error,
"error reading .altinstructions");
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(OrgInstAddress);
if (!BF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches address 0x"
<< Twine::utohexstr(OrgInstAddress)
<< " of instruction from .altinstructions\n";
}
BinaryFunction *AltBF =
BC.getBinaryFunctionContainingAddress(AltInstAddress);
if (AltBF && BC.shouldEmit(*AltBF)) {
BC.errs()
<< "BOLT-WARNING: alternative instruction sequence found in function "
<< *AltBF << '\n';
AltBF->setIgnored();
}
if (!BF || !BC.shouldEmit(*BF))
continue;
if (OrgInstAddress + OrgSize > BF->getAddress() + BF->getSize())
return createStringError(errc::executable_format_error,
"error reading .altinstructions");
MCInst *Inst =
BF->getInstructionAtOffset(OrgInstAddress - BF->getAddress());
if (!Inst)
return createStringError(errc::executable_format_error,
"no instruction at address 0x%" PRIx64
" referenced by .altinstructions entry %d",
OrgInstAddress, EntryID);
// There could be more than one alternative instruction sequences for the
// same original instruction. Annotate each alternative separately.
std::string AnnotationName = "AltInst";
unsigned N = 2;
while (BC.MIB->hasAnnotation(*Inst, AnnotationName))
AnnotationName = "AltInst" + std::to_string(N++);
BC.MIB->addAnnotation(*Inst, AnnotationName, EntryID);
// Annotate all instructions from the original sequence. Note that it's not
// the most efficient way to look for instructions in the address range,
// but since alternative instructions are uncommon, it will do for now.
for (uint32_t Offset = 1; Offset < OrgSize; ++Offset) {
Inst = BF->getInstructionAtOffset(OrgInstAddress + Offset -
BF->getAddress());
if (Inst)
BC.MIB->addAnnotation(*Inst, AnnotationName, EntryID);
}
}
BC.outs() << "BOLT-INFO: parsed " << EntryID
<< " alternative instruction entries\n";
return Error::success();
}
Error LinuxKernelRewriter::rewriteAltInstructions() {
// Disable output of functions with alt instructions before the rewrite
// support is complete.
skipFunctionsWithAnnotation("AltInst");
return Error::success();
}
/// When the Linux kernel needs to handle an error associated with a given PCI
/// device, it uses a table stored in .pci_fixup section to locate a fixup code
/// specific to the vendor and the problematic device. The section contains a
/// list of the following structures defined in include/linux/pci.h:
///
/// struct pci_fixup {
/// u16 vendor; /* Or PCI_ANY_ID */
/// u16 device; /* Or PCI_ANY_ID */
/// u32 class; /* Or PCI_ANY_ID */
/// unsigned int class_shift; /* should be 0, 8, 16 */
/// int hook_offset;
/// };
///
/// Normally, the hook will point to a function start and we don't have to
/// update the pointer if we are not relocating functions. Hence, while reading
/// the table we validate this assumption. If a function has a fixup code in the
/// middle of its body, we issue a warning and ignore it.
Error LinuxKernelRewriter::readPCIFixupTable() {
PCIFixupSection = BC.getUniqueSectionByName(".pci_fixup");
if (!PCIFixupSection)
return Error::success();
if (PCIFixupSection->getSize() % PCI_FIXUP_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"PCI fixup table size error");
const uint64_t Address = PCIFixupSection->getAddress();
DataExtractor DE = DataExtractor(PCIFixupSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
uint64_t EntryID = 0;
DataExtractor::Cursor Cursor(0);
while (Cursor && !DE.eof(Cursor)) {
const uint16_t Vendor = DE.getU16(Cursor);
const uint16_t Device = DE.getU16(Cursor);
const uint32_t Class = DE.getU32(Cursor);
const uint32_t ClassShift = DE.getU32(Cursor);
const uint64_t HookAddress =
Address + Cursor.tell() + (int32_t)DE.getU32(Cursor);
if (!Cursor)
return createStringError(errc::executable_format_error,
"out of bounds while reading .pci_fixup: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
if (opts::DumpPCIFixups) {
BC.outs() << "PCI fixup entry: " << EntryID << "\n\tVendor 0x"
<< Twine::utohexstr(Vendor) << "\n\tDevice: 0x"
<< Twine::utohexstr(Device) << "\n\tClass: 0x"
<< Twine::utohexstr(Class) << "\n\tClassShift: 0x"
<< Twine::utohexstr(ClassShift) << "\n\tHookAddress: 0x"
<< Twine::utohexstr(HookAddress) << '\n';
}
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(HookAddress);
if (!BF && opts::Verbosity) {
BC.outs() << "BOLT-INFO: no function matches address 0x"
<< Twine::utohexstr(HookAddress)
<< " of hook from .pci_fixup\n";
}
if (!BF || !BC.shouldEmit(*BF))
continue;
if (const uint64_t Offset = HookAddress - BF->getAddress()) {
BC.errs() << "BOLT-WARNING: PCI fixup detected in the middle of function "
<< *BF << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
BF->setSimple(false);
}
}
BC.outs() << "BOLT-INFO: parsed " << EntryID << " PCI fixup entries\n";
return Error::success();
}
/// Runtime code modification used by static keys is the most ubiquitous
/// self-modifying feature of the Linux kernel. The idea is to eliminate the
/// condition check and associated conditional jump on a hot path if that
/// condition (based on a boolean value of a static key) does not change often.
/// Whenever the condition changes, the kernel runtime modifies all code paths
/// associated with that key flipping the code between nop and (unconditional)
/// jump. The information about the code is stored in a static key jump table
/// and contains the list of entries of the following type from
/// include/linux/jump_label.h:
//
/// struct jump_entry {
/// s32 code;
/// s32 target;
/// long key; // key may be far away from the core kernel under KASLR
/// };
///
/// The list does not have to be stored in any sorted way, but it is sorted at
/// boot time (or module initialization time) first by "key" and then by "code".
/// jump_label_sort_entries() is responsible for sorting the table.
///
/// The key in jump_entry structure uses lower two bits of the key address
/// (which itself is aligned) to store extra information. We are interested in
/// the lower bit which indicates if the key is likely to be set on the code
/// path associated with this jump_entry.
///
/// static_key_{enable,disable}() functions modify the code based on key and
/// jump table entries.
///
/// jump_label_update() updates all code entries for a given key. Batch mode is
/// used for x86.
///
/// The actual patching happens in text_poke_bp_batch() that overrides the first
/// byte of the sequence with int3 before proceeding with actual code
/// replacement.
Error LinuxKernelRewriter::readStaticKeysJumpTable() {
const BinaryData *StaticKeysJumpTable =
BC.getBinaryDataByName("__start___jump_table");
if (!StaticKeysJumpTable)
return Error::success();
StaticKeysJumpTableAddress = StaticKeysJumpTable->getAddress();
const BinaryData *Stop = BC.getBinaryDataByName("__stop___jump_table");
if (!Stop)
return createStringError(errc::executable_format_error,
"missing __stop___jump_table symbol");
ErrorOr<BinarySection &> ErrorOrSection =
BC.getSectionForAddress(StaticKeysJumpTableAddress);
if (!ErrorOrSection)
return createStringError(errc::executable_format_error,
"no section matching __start___jump_table");
StaticKeysJumpSection = *ErrorOrSection;
if (!StaticKeysJumpSection->containsAddress(Stop->getAddress() - 1))
return createStringError(errc::executable_format_error,
"__stop___jump_table not in the same section "
"as __start___jump_table");
if ((Stop->getAddress() - StaticKeysJumpTableAddress) %
STATIC_KEYS_JUMP_ENTRY_SIZE)
return createStringError(errc::executable_format_error,
"static keys jump table size error");
const uint64_t SectionAddress = StaticKeysJumpSection->getAddress();
DataExtractor DE(StaticKeysJumpSection->getContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor Cursor(StaticKeysJumpTableAddress - SectionAddress);
uint32_t EntryID = 0;
while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) {
const uint64_t JumpAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t TargetAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t KeyAddress =
SectionAddress + Cursor.tell() + (int64_t)DE.getU64(Cursor);
// Consume the status of the cursor.
if (!Cursor)
return createStringError(
errc::executable_format_error,
"out of bounds while reading static keys jump table: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
JumpInfo.push_back(JumpInfoEntry());
JumpInfoEntry &Info = JumpInfo.back();
Info.Likely = KeyAddress & 1;
if (opts::DumpStaticKeys) {
BC.outs() << "Static key jump entry: " << EntryID
<< "\n\tJumpAddress: 0x" << Twine::utohexstr(JumpAddress)
<< "\n\tTargetAddress: 0x" << Twine::utohexstr(TargetAddress)
<< "\n\tKeyAddress: 0x" << Twine::utohexstr(KeyAddress)
<< "\n\tIsLikely: " << Info.Likely << '\n';
}
BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(JumpAddress);
if (!BF && opts::Verbosity) {
BC.outs()
<< "BOLT-INFO: no function matches address 0x"
<< Twine::utohexstr(JumpAddress)
<< " of jump instruction referenced from static keys jump table\n";
}
if (!BF || !BC.shouldEmit(*BF))
continue;
MCInst *Inst = BF->getInstructionAtOffset(JumpAddress - BF->getAddress());
if (!Inst)
return createStringError(
errc::executable_format_error,
"no instruction at static keys jump site address 0x%" PRIx64,
JumpAddress);
if (!BF->containsAddress(TargetAddress))
return createStringError(
errc::executable_format_error,
"invalid target of static keys jump at 0x%" PRIx64 " : 0x%" PRIx64,
JumpAddress, TargetAddress);
const bool IsBranch = BC.MIB->isBranch(*Inst);
if (!IsBranch && !BC.MIB->isNoop(*Inst))
return createStringError(errc::executable_format_error,
"jump or nop expected at address 0x%" PRIx64,
JumpAddress);
const uint64_t Size = BC.computeInstructionSize(*Inst);
if (Size != 2 && Size != 5) {
return createStringError(
errc::executable_format_error,
"unexpected static keys jump size at address 0x%" PRIx64,
JumpAddress);
}
MCSymbol *Target = BF->registerBranch(JumpAddress, TargetAddress);
MCInst StaticKeyBranch;
// Create a conditional branch instruction. The actual conditional code type
// should not matter as long as it's a valid code. The instruction should be
// treated as a conditional branch for control-flow purposes. Before we emit
// the code, it will be converted to a different instruction in
// rewriteStaticKeysJumpTable().
//
// NB: for older kernels, under LongJumpLabels option, we create long
// conditional branch to guarantee that code size estimation takes
// into account the extra bytes needed for long branch that will be used
// by the kernel patching code. Newer kernels can work with both short
// and long branches. The code for long conditional branch is larger
// than unconditional one, so we are pessimistic in our estimations.
if (opts::LongJumpLabels)
BC.MIB->createLongCondBranch(StaticKeyBranch, Target, 0, BC.Ctx.get());
else
BC.MIB->createCondBranch(StaticKeyBranch, Target, 0, BC.Ctx.get());
BC.MIB->moveAnnotations(std::move(*Inst), StaticKeyBranch);
BC.MIB->setDynamicBranch(StaticKeyBranch, EntryID);
*Inst = StaticKeyBranch;
// IsBranch = InitialValue ^ LIKELY
//
// 0 0 0
// 1 0 1
// 1 1 0
// 0 1 1
//
// => InitialValue = IsBranch ^ LIKELY
Info.InitValue = IsBranch ^ Info.Likely;
// Add annotations to facilitate manual code analysis.
BC.MIB->addAnnotation(*Inst, "Likely", Info.Likely);
BC.MIB->addAnnotation(*Inst, "InitValue", Info.InitValue);
if (!BC.MIB->getSize(*Inst))
BC.MIB->setSize(*Inst, Size);
if (!BC.MIB->getOffset(*Inst))
BC.MIB->setOffset(*Inst, JumpAddress - BF->getAddress());
if (opts::LongJumpLabels)
BC.MIB->setSize(*Inst, 5);
}
BC.outs() << "BOLT-INFO: parsed " << EntryID << " static keys jump entries\n";
return Error::success();
}
// Pre-emit pass. Convert dynamic branch instructions into jumps that could be
// relaxed. In post-emit pass we will convert those jumps into nops when
// necessary. We do the unconditional conversion into jumps so that the jumps
// can be relaxed and the optimal size of jump/nop instruction is selected.
Error LinuxKernelRewriter::rewriteStaticKeysJumpTable() {
if (!StaticKeysJumpSection)
return Error::success();
uint64_t NumShort = 0;
uint64_t NumLong = 0;
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
if (!BC.shouldEmit(BF))
continue;
for (BinaryBasicBlock &BB : BF) {
for (MCInst &Inst : BB) {
if (!BC.MIB->isDynamicBranch(Inst))
continue;
const uint32_t EntryID = *BC.MIB->getDynamicBranchID(Inst);
MCSymbol *Target =
const_cast<MCSymbol *>(BC.MIB->getTargetSymbol(Inst));
assert(Target && "Target symbol should be set.");
const JumpInfoEntry &Info = JumpInfo[EntryID - 1];
const bool IsBranch = Info.Likely ^ Info.InitValue;
uint32_t Size = *BC.MIB->getSize(Inst);
if (Size == 2)
++NumShort;
else if (Size == 5)
++NumLong;
else
llvm_unreachable("Wrong size for static keys jump instruction.");
MCInst NewInst;
// Replace the instruction with unconditional jump even if it needs to
// be nop in the binary.
if (opts::LongJumpLabels) {
BC.MIB->createLongUncondBranch(NewInst, Target, BC.Ctx.get());
} else {
// Newer kernels can handle short and long jumps for static keys.
// Optimistically, emit short jump and check if it gets relaxed into
// a long one during post-emit. Only then convert the jump to a nop.
BC.MIB->createUncondBranch(NewInst, Target, BC.Ctx.get());
}
BC.MIB->moveAnnotations(std::move(Inst), NewInst);
Inst = NewInst;
// Mark the instruction for nop conversion.
if (!IsBranch)
NopIDs.insert(EntryID);
MCSymbol *Label =
BC.MIB->getOrCreateInstLabel(Inst, "__SK_", BC.Ctx.get());
// Create a relocation against the label.
const uint64_t EntryOffset = StaticKeysJumpTableAddress -
StaticKeysJumpSection->getAddress() +
(EntryID - 1) * 16;
StaticKeysJumpSection->addRelocation(EntryOffset, Label,
ELF::R_X86_64_PC32,
/*Addend*/ 0);
StaticKeysJumpSection->addRelocation(EntryOffset + 4, Target,
ELF::R_X86_64_PC32, /*Addend*/ 0);
}
}
}
BC.outs() << "BOLT-INFO: the input contains " << NumShort << " short and "
<< NumLong << " long static keys jumps in optimized functions\n";
return Error::success();
}
// Post-emit pass of static keys jump section. Convert jumps to nops.
Error LinuxKernelRewriter::updateStaticKeysJumpTablePostEmit() {
if (!StaticKeysJumpSection || !StaticKeysJumpSection->isFinalized())
return Error::success();
const uint64_t SectionAddress = StaticKeysJumpSection->getAddress();
DataExtractor DE(StaticKeysJumpSection->getOutputContents(),
BC.AsmInfo->isLittleEndian(),
BC.AsmInfo->getCodePointerSize());
DataExtractor::Cursor Cursor(StaticKeysJumpTableAddress - SectionAddress);
const BinaryData *Stop = BC.getBinaryDataByName("__stop___jump_table");
uint32_t EntryID = 0;
uint64_t NumShort = 0;
uint64_t NumLong = 0;
while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) {
const uint64_t JumpAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t TargetAddress =
SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
const uint64_t KeyAddress =
SectionAddress + Cursor.tell() + (int64_t)DE.getU64(Cursor);
// Consume the status of the cursor.
if (!Cursor)
return createStringError(errc::executable_format_error,
"out of bounds while updating static keys: %s",
toString(Cursor.takeError()).c_str());
++EntryID;
LLVM_DEBUG({
dbgs() << "\n\tJumpAddress: 0x" << Twine::utohexstr(JumpAddress)
<< "\n\tTargetAddress: 0x" << Twine::utohexstr(TargetAddress)
<< "\n\tKeyAddress: 0x" << Twine::utohexstr(KeyAddress) << '\n';
});
(void)TargetAddress;
(void)KeyAddress;
BinaryFunction *BF =
BC.getBinaryFunctionContainingAddress(JumpAddress,
/*CheckPastEnd*/ false,
/*UseMaxSize*/ true);
assert(BF && "Cannot get function for modified static key.");
if (!BF->isEmitted())
continue;
// Disassemble instruction to collect stats even if nop-conversion is
// unnecessary.
MutableArrayRef<uint8_t> Contents = MutableArrayRef<uint8_t>(
reinterpret_cast<uint8_t *>(BF->getImageAddress()), BF->getImageSize());
assert(Contents.size() && "Non-empty function image expected.");
MCInst Inst;
uint64_t Size;
const uint64_t JumpOffset = JumpAddress - BF->getAddress();
if (!BC.DisAsm->getInstruction(Inst, Size, Contents.slice(JumpOffset), 0,
nulls())) {
llvm_unreachable("Unable to disassemble jump instruction.");
}
assert(BC.MIB->isBranch(Inst) && "Branch instruction expected.");
if (Size == 2)
++NumShort;
else if (Size == 5)
++NumLong;
else
llvm_unreachable("Unexpected size for static keys jump instruction.");
// Check if we need to convert jump instruction into a nop.
if (!NopIDs.contains(EntryID))
continue;
SmallString<15> NopCode;
raw_svector_ostream VecOS(NopCode);
BC.MAB->writeNopData(VecOS, Size, BC.STI.get());
for (uint64_t I = 0; I < Size; ++I)
Contents[JumpOffset + I] = NopCode[I];
}
BC.outs() << "BOLT-INFO: written " << NumShort << " short and " << NumLong
<< " long static keys jumps in optimized functions\n";
return Error::success();
}
} // namespace
std::unique_ptr<MetadataRewriter>
llvm::bolt::createLinuxKernelRewriter(BinaryContext &BC) {
return std::make_unique<LinuxKernelRewriter>(BC);
}