
- Relevant piece is `DXILFlattenArrays.cpp` - Loads and Store Instruction visits are just for finding GetElementPtrConstantExpr and splitting them. - Allocas needed to be replaced with flattened allocas. - Global arrays were similar to allocas. Only interesting piece here is around initializers. - Most of the work went into building correct GEP chains. The approach here was a recursive strategy via `recursivelyCollectGEPs`. - All intermediary GEPs get marked for deletion and only the leaf GEPs get updated with the new index. fixes [89646](https://github.com/llvm/llvm-project/issues/89646)
444 lines
16 KiB
C++
444 lines
16 KiB
C++
//===- DXILFlattenArrays.cpp - Flattens DXIL Arrays-----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// \file This file contains a pass to flatten arrays for the DirectX Backend.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DXILFlattenArrays.h"
|
|
#include "DirectX.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/DXILResource.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/ReplaceConstant.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "dxil-flatten-arrays"
|
|
|
|
using namespace llvm;
|
|
namespace {
|
|
|
|
class DXILFlattenArraysLegacy : public ModulePass {
|
|
|
|
public:
|
|
bool runOnModule(Module &M) override;
|
|
DXILFlattenArraysLegacy() : ModulePass(ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
static char ID; // Pass identification.
|
|
};
|
|
|
|
struct GEPData {
|
|
ArrayType *ParentArrayType;
|
|
Value *ParendOperand;
|
|
SmallVector<Value *> Indices;
|
|
SmallVector<uint64_t> Dims;
|
|
bool AllIndicesAreConstInt;
|
|
};
|
|
|
|
class DXILFlattenArraysVisitor
|
|
: public InstVisitor<DXILFlattenArraysVisitor, bool> {
|
|
public:
|
|
DXILFlattenArraysVisitor() {}
|
|
bool visit(Function &F);
|
|
// InstVisitor methods. They return true if the instruction was scalarized,
|
|
// false if nothing changed.
|
|
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
|
|
bool visitAllocaInst(AllocaInst &AI);
|
|
bool visitInstruction(Instruction &I) { return false; }
|
|
bool visitSelectInst(SelectInst &SI) { return false; }
|
|
bool visitICmpInst(ICmpInst &ICI) { return false; }
|
|
bool visitFCmpInst(FCmpInst &FCI) { return false; }
|
|
bool visitUnaryOperator(UnaryOperator &UO) { return false; }
|
|
bool visitBinaryOperator(BinaryOperator &BO) { return false; }
|
|
bool visitCastInst(CastInst &CI) { return false; }
|
|
bool visitBitCastInst(BitCastInst &BCI) { return false; }
|
|
bool visitInsertElementInst(InsertElementInst &IEI) { return false; }
|
|
bool visitExtractElementInst(ExtractElementInst &EEI) { return false; }
|
|
bool visitShuffleVectorInst(ShuffleVectorInst &SVI) { return false; }
|
|
bool visitPHINode(PHINode &PHI) { return false; }
|
|
bool visitLoadInst(LoadInst &LI);
|
|
bool visitStoreInst(StoreInst &SI);
|
|
bool visitCallInst(CallInst &ICI) { return false; }
|
|
bool visitFreezeInst(FreezeInst &FI) { return false; }
|
|
static bool isMultiDimensionalArray(Type *T);
|
|
static std::pair<unsigned, Type *> getElementCountAndType(Type *ArrayTy);
|
|
|
|
private:
|
|
SmallVector<WeakTrackingVH> PotentiallyDeadInstrs;
|
|
DenseMap<GetElementPtrInst *, GEPData> GEPChainMap;
|
|
bool finish();
|
|
ConstantInt *genConstFlattenIndices(ArrayRef<Value *> Indices,
|
|
ArrayRef<uint64_t> Dims,
|
|
IRBuilder<> &Builder);
|
|
Value *genInstructionFlattenIndices(ArrayRef<Value *> Indices,
|
|
ArrayRef<uint64_t> Dims,
|
|
IRBuilder<> &Builder);
|
|
void
|
|
recursivelyCollectGEPs(GetElementPtrInst &CurrGEP,
|
|
ArrayType *FlattenedArrayType, Value *PtrOperand,
|
|
unsigned &GEPChainUseCount,
|
|
SmallVector<Value *> Indices = SmallVector<Value *>(),
|
|
SmallVector<uint64_t> Dims = SmallVector<uint64_t>(),
|
|
bool AllIndicesAreConstInt = true);
|
|
bool visitGetElementPtrInstInGEPChain(GetElementPtrInst &GEP);
|
|
bool visitGetElementPtrInstInGEPChainBase(GEPData &GEPInfo,
|
|
GetElementPtrInst &GEP);
|
|
};
|
|
} // namespace
|
|
|
|
bool DXILFlattenArraysVisitor::finish() {
|
|
RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
|
|
return true;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::isMultiDimensionalArray(Type *T) {
|
|
if (ArrayType *ArrType = dyn_cast<ArrayType>(T))
|
|
return isa<ArrayType>(ArrType->getElementType());
|
|
return false;
|
|
}
|
|
|
|
std::pair<unsigned, Type *>
|
|
DXILFlattenArraysVisitor::getElementCountAndType(Type *ArrayTy) {
|
|
unsigned TotalElements = 1;
|
|
Type *CurrArrayTy = ArrayTy;
|
|
while (auto *InnerArrayTy = dyn_cast<ArrayType>(CurrArrayTy)) {
|
|
TotalElements *= InnerArrayTy->getNumElements();
|
|
CurrArrayTy = InnerArrayTy->getElementType();
|
|
}
|
|
return std::make_pair(TotalElements, CurrArrayTy);
|
|
}
|
|
|
|
ConstantInt *DXILFlattenArraysVisitor::genConstFlattenIndices(
|
|
ArrayRef<Value *> Indices, ArrayRef<uint64_t> Dims, IRBuilder<> &Builder) {
|
|
assert(Indices.size() == Dims.size() &&
|
|
"Indicies and dimmensions should be the same");
|
|
unsigned FlatIndex = 0;
|
|
unsigned Multiplier = 1;
|
|
|
|
for (int I = Indices.size() - 1; I >= 0; --I) {
|
|
unsigned DimSize = Dims[I];
|
|
ConstantInt *CIndex = dyn_cast<ConstantInt>(Indices[I]);
|
|
assert(CIndex && "This function expects all indicies to be ConstantInt");
|
|
FlatIndex += CIndex->getZExtValue() * Multiplier;
|
|
Multiplier *= DimSize;
|
|
}
|
|
return Builder.getInt32(FlatIndex);
|
|
}
|
|
|
|
Value *DXILFlattenArraysVisitor::genInstructionFlattenIndices(
|
|
ArrayRef<Value *> Indices, ArrayRef<uint64_t> Dims, IRBuilder<> &Builder) {
|
|
if (Indices.size() == 1)
|
|
return Indices[0];
|
|
|
|
Value *FlatIndex = Builder.getInt32(0);
|
|
unsigned Multiplier = 1;
|
|
|
|
for (int I = Indices.size() - 1; I >= 0; --I) {
|
|
unsigned DimSize = Dims[I];
|
|
Value *VMultiplier = Builder.getInt32(Multiplier);
|
|
Value *ScaledIndex = Builder.CreateMul(Indices[I], VMultiplier);
|
|
FlatIndex = Builder.CreateAdd(FlatIndex, ScaledIndex);
|
|
Multiplier *= DimSize;
|
|
}
|
|
return FlatIndex;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visitLoadInst(LoadInst &LI) {
|
|
unsigned NumOperands = LI.getNumOperands();
|
|
for (unsigned I = 0; I < NumOperands; ++I) {
|
|
Value *CurrOpperand = LI.getOperand(I);
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(CurrOpperand);
|
|
if (CE && CE->getOpcode() == Instruction::GetElementPtr) {
|
|
convertUsersOfConstantsToInstructions(CE,
|
|
/*RestrictToFunc=*/nullptr,
|
|
/*RemoveDeadConstants=*/false,
|
|
/*IncludeSelf=*/true);
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visitStoreInst(StoreInst &SI) {
|
|
unsigned NumOperands = SI.getNumOperands();
|
|
for (unsigned I = 0; I < NumOperands; ++I) {
|
|
Value *CurrOpperand = SI.getOperand(I);
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(CurrOpperand);
|
|
if (CE && CE->getOpcode() == Instruction::GetElementPtr) {
|
|
convertUsersOfConstantsToInstructions(CE,
|
|
/*RestrictToFunc=*/nullptr,
|
|
/*RemoveDeadConstants=*/false,
|
|
/*IncludeSelf=*/true);
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visitAllocaInst(AllocaInst &AI) {
|
|
if (!isMultiDimensionalArray(AI.getAllocatedType()))
|
|
return false;
|
|
|
|
ArrayType *ArrType = cast<ArrayType>(AI.getAllocatedType());
|
|
IRBuilder<> Builder(&AI);
|
|
auto [TotalElements, BaseType] = getElementCountAndType(ArrType);
|
|
|
|
ArrayType *FattenedArrayType = ArrayType::get(BaseType, TotalElements);
|
|
AllocaInst *FlatAlloca =
|
|
Builder.CreateAlloca(FattenedArrayType, nullptr, AI.getName() + ".flat");
|
|
FlatAlloca->setAlignment(AI.getAlign());
|
|
AI.replaceAllUsesWith(FlatAlloca);
|
|
AI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
void DXILFlattenArraysVisitor::recursivelyCollectGEPs(
|
|
GetElementPtrInst &CurrGEP, ArrayType *FlattenedArrayType,
|
|
Value *PtrOperand, unsigned &GEPChainUseCount, SmallVector<Value *> Indices,
|
|
SmallVector<uint64_t> Dims, bool AllIndicesAreConstInt) {
|
|
Value *LastIndex = CurrGEP.getOperand(CurrGEP.getNumOperands() - 1);
|
|
AllIndicesAreConstInt &= isa<ConstantInt>(LastIndex);
|
|
Indices.push_back(LastIndex);
|
|
assert(isa<ArrayType>(CurrGEP.getSourceElementType()));
|
|
Dims.push_back(
|
|
cast<ArrayType>(CurrGEP.getSourceElementType())->getNumElements());
|
|
bool IsMultiDimArr = isMultiDimensionalArray(CurrGEP.getSourceElementType());
|
|
if (!IsMultiDimArr) {
|
|
assert(GEPChainUseCount < FlattenedArrayType->getNumElements());
|
|
GEPChainMap.insert(
|
|
{&CurrGEP,
|
|
{std::move(FlattenedArrayType), PtrOperand, std::move(Indices),
|
|
std::move(Dims), AllIndicesAreConstInt}});
|
|
return;
|
|
}
|
|
bool GepUses = false;
|
|
for (auto *User : CurrGEP.users()) {
|
|
if (GetElementPtrInst *NestedGEP = dyn_cast<GetElementPtrInst>(User)) {
|
|
recursivelyCollectGEPs(*NestedGEP, FlattenedArrayType, PtrOperand,
|
|
++GEPChainUseCount, Indices, Dims,
|
|
AllIndicesAreConstInt);
|
|
GepUses = true;
|
|
}
|
|
}
|
|
// This case is just incase the gep chain doesn't end with a 1d array.
|
|
if (IsMultiDimArr && GEPChainUseCount > 0 && !GepUses) {
|
|
GEPChainMap.insert(
|
|
{&CurrGEP,
|
|
{std::move(FlattenedArrayType), PtrOperand, std::move(Indices),
|
|
std::move(Dims), AllIndicesAreConstInt}});
|
|
}
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visitGetElementPtrInstInGEPChain(
|
|
GetElementPtrInst &GEP) {
|
|
GEPData GEPInfo = GEPChainMap.at(&GEP);
|
|
return visitGetElementPtrInstInGEPChainBase(GEPInfo, GEP);
|
|
}
|
|
bool DXILFlattenArraysVisitor::visitGetElementPtrInstInGEPChainBase(
|
|
GEPData &GEPInfo, GetElementPtrInst &GEP) {
|
|
IRBuilder<> Builder(&GEP);
|
|
Value *FlatIndex;
|
|
if (GEPInfo.AllIndicesAreConstInt)
|
|
FlatIndex = genConstFlattenIndices(GEPInfo.Indices, GEPInfo.Dims, Builder);
|
|
else
|
|
FlatIndex =
|
|
genInstructionFlattenIndices(GEPInfo.Indices, GEPInfo.Dims, Builder);
|
|
|
|
ArrayType *FlattenedArrayType = GEPInfo.ParentArrayType;
|
|
Value *FlatGEP =
|
|
Builder.CreateGEP(FlattenedArrayType, GEPInfo.ParendOperand, FlatIndex,
|
|
GEP.getName() + ".flat", GEP.isInBounds());
|
|
|
|
GEP.replaceAllUsesWith(FlatGEP);
|
|
GEP.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
auto It = GEPChainMap.find(&GEP);
|
|
if (It != GEPChainMap.end())
|
|
return visitGetElementPtrInstInGEPChain(GEP);
|
|
if (!isMultiDimensionalArray(GEP.getSourceElementType()))
|
|
return false;
|
|
|
|
ArrayType *ArrType = cast<ArrayType>(GEP.getSourceElementType());
|
|
IRBuilder<> Builder(&GEP);
|
|
auto [TotalElements, BaseType] = getElementCountAndType(ArrType);
|
|
ArrayType *FlattenedArrayType = ArrayType::get(BaseType, TotalElements);
|
|
|
|
Value *PtrOperand = GEP.getPointerOperand();
|
|
|
|
unsigned GEPChainUseCount = 0;
|
|
recursivelyCollectGEPs(GEP, FlattenedArrayType, PtrOperand, GEPChainUseCount);
|
|
|
|
// NOTE: hasNUses(0) is not the same as GEPChainUseCount == 0.
|
|
// Here recursion is used to get the length of the GEP chain.
|
|
// Handle zero uses here because there won't be an update via
|
|
// a child in the chain later.
|
|
if (GEPChainUseCount == 0) {
|
|
SmallVector<Value *> Indices({GEP.getOperand(GEP.getNumOperands() - 1)});
|
|
SmallVector<uint64_t> Dims({ArrType->getNumElements()});
|
|
bool AllIndicesAreConstInt = isa<ConstantInt>(Indices[0]);
|
|
GEPData GEPInfo{std::move(FlattenedArrayType), PtrOperand,
|
|
std::move(Indices), std::move(Dims), AllIndicesAreConstInt};
|
|
return visitGetElementPtrInstInGEPChainBase(GEPInfo, GEP);
|
|
}
|
|
|
|
PotentiallyDeadInstrs.emplace_back(&GEP);
|
|
return false;
|
|
}
|
|
|
|
bool DXILFlattenArraysVisitor::visit(Function &F) {
|
|
bool MadeChange = false;
|
|
ReversePostOrderTraversal<Function *> RPOT(&F);
|
|
for (BasicBlock *BB : make_early_inc_range(RPOT)) {
|
|
for (Instruction &I : make_early_inc_range(*BB))
|
|
MadeChange |= InstVisitor::visit(I);
|
|
}
|
|
finish();
|
|
return MadeChange;
|
|
}
|
|
|
|
static void collectElements(Constant *Init,
|
|
SmallVectorImpl<Constant *> &Elements) {
|
|
// Base case: If Init is not an array, add it directly to the vector.
|
|
if (!isa<ArrayType>(Init->getType())) {
|
|
Elements.push_back(Init);
|
|
return;
|
|
}
|
|
|
|
// Recursive case: Process each element in the array.
|
|
if (auto *ArrayConstant = dyn_cast<ConstantArray>(Init)) {
|
|
for (unsigned I = 0; I < ArrayConstant->getNumOperands(); ++I) {
|
|
collectElements(ArrayConstant->getOperand(I), Elements);
|
|
}
|
|
} else if (auto *DataArrayConstant = dyn_cast<ConstantDataArray>(Init)) {
|
|
for (unsigned I = 0; I < DataArrayConstant->getNumElements(); ++I) {
|
|
collectElements(DataArrayConstant->getElementAsConstant(I), Elements);
|
|
}
|
|
} else {
|
|
llvm_unreachable(
|
|
"Expected a ConstantArray or ConstantDataArray for array initializer!");
|
|
}
|
|
}
|
|
|
|
static Constant *transformInitializer(Constant *Init, Type *OrigType,
|
|
ArrayType *FlattenedType,
|
|
LLVMContext &Ctx) {
|
|
// Handle ConstantAggregateZero (zero-initialized constants)
|
|
if (isa<ConstantAggregateZero>(Init))
|
|
return ConstantAggregateZero::get(FlattenedType);
|
|
|
|
// Handle UndefValue (undefined constants)
|
|
if (isa<UndefValue>(Init))
|
|
return UndefValue::get(FlattenedType);
|
|
|
|
if (!isa<ArrayType>(OrigType))
|
|
return Init;
|
|
|
|
SmallVector<Constant *> FlattenedElements;
|
|
collectElements(Init, FlattenedElements);
|
|
assert(FlattenedType->getNumElements() == FlattenedElements.size() &&
|
|
"The number of collected elements should match the FlattenedType");
|
|
return ConstantArray::get(FlattenedType, FlattenedElements);
|
|
}
|
|
|
|
static void
|
|
flattenGlobalArrays(Module &M,
|
|
DenseMap<GlobalVariable *, GlobalVariable *> &GlobalMap) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
for (GlobalVariable &G : M.globals()) {
|
|
Type *OrigType = G.getValueType();
|
|
if (!DXILFlattenArraysVisitor::isMultiDimensionalArray(OrigType))
|
|
continue;
|
|
|
|
ArrayType *ArrType = cast<ArrayType>(OrigType);
|
|
auto [TotalElements, BaseType] =
|
|
DXILFlattenArraysVisitor::getElementCountAndType(ArrType);
|
|
ArrayType *FattenedArrayType = ArrayType::get(BaseType, TotalElements);
|
|
|
|
// Create a new global variable with the updated type
|
|
// Note: Initializer is set via transformInitializer
|
|
GlobalVariable *NewGlobal =
|
|
new GlobalVariable(M, FattenedArrayType, G.isConstant(), G.getLinkage(),
|
|
/*Initializer=*/nullptr, G.getName() + ".1dim", &G,
|
|
G.getThreadLocalMode(), G.getAddressSpace(),
|
|
G.isExternallyInitialized());
|
|
|
|
// Copy relevant attributes
|
|
NewGlobal->setUnnamedAddr(G.getUnnamedAddr());
|
|
if (G.getAlignment() > 0) {
|
|
NewGlobal->setAlignment(G.getAlign());
|
|
}
|
|
|
|
if (G.hasInitializer()) {
|
|
Constant *Init = G.getInitializer();
|
|
Constant *NewInit =
|
|
transformInitializer(Init, OrigType, FattenedArrayType, Ctx);
|
|
NewGlobal->setInitializer(NewInit);
|
|
}
|
|
GlobalMap[&G] = NewGlobal;
|
|
}
|
|
}
|
|
|
|
static bool flattenArrays(Module &M) {
|
|
bool MadeChange = false;
|
|
DXILFlattenArraysVisitor Impl;
|
|
DenseMap<GlobalVariable *, GlobalVariable *> GlobalMap;
|
|
flattenGlobalArrays(M, GlobalMap);
|
|
for (auto &F : make_early_inc_range(M.functions())) {
|
|
if (F.isIntrinsic())
|
|
continue;
|
|
MadeChange |= Impl.visit(F);
|
|
}
|
|
for (auto &[Old, New] : GlobalMap) {
|
|
Old->replaceAllUsesWith(New);
|
|
Old->eraseFromParent();
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
PreservedAnalyses DXILFlattenArrays::run(Module &M, ModuleAnalysisManager &) {
|
|
bool MadeChanges = flattenArrays(M);
|
|
if (!MadeChanges)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DXILResourceAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
bool DXILFlattenArraysLegacy::runOnModule(Module &M) {
|
|
return flattenArrays(M);
|
|
}
|
|
|
|
void DXILFlattenArraysLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<DXILResourceWrapperPass>();
|
|
}
|
|
|
|
char DXILFlattenArraysLegacy::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(DXILFlattenArraysLegacy, DEBUG_TYPE,
|
|
"DXIL Array Flattener", false, false)
|
|
INITIALIZE_PASS_END(DXILFlattenArraysLegacy, DEBUG_TYPE, "DXIL Array Flattener",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createDXILFlattenArraysLegacyPass() {
|
|
return new DXILFlattenArraysLegacy();
|
|
}
|