
The viewLikeOpInterface abstracts the behavior of an operation view one buffer as another. However, the current interface only includes a "getViewSource" method and lacks a "getViewDest" method. Previously, it was generally assumed that viewLikeOpInterface operations would have only one return value, which was the view dest. This assumption was broken by memref.extract_strided_metadata, and more operations may break these silent conventions in the future. Calling "viewLikeInterface->getResult(0)" may lead to a core dump at runtime. Therefore, we need 'getViewDest' method to standardize our behavior. This patch adds the getViewDest function to viewLikeOpInterface and modifies the usage points of viewLikeOpInterface to standardize its use.
290 lines
11 KiB
C++
290 lines
11 KiB
C++
//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for the MemRef dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Interfaces/ViewLikeInterface.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
namespace mlir {
|
|
namespace memref {
|
|
|
|
bool isStaticShapeAndContiguousRowMajor(MemRefType type) {
|
|
if (!type.hasStaticShape())
|
|
return false;
|
|
|
|
SmallVector<int64_t> strides;
|
|
int64_t offset;
|
|
if (failed(type.getStridesAndOffset(strides, offset)))
|
|
return false;
|
|
|
|
// MemRef is contiguous if outer dimensions are size-1 and inner
|
|
// dimensions have unit strides.
|
|
int64_t runningStride = 1;
|
|
int64_t curDim = strides.size() - 1;
|
|
// Finds all inner dimensions with unit strides.
|
|
while (curDim >= 0 && strides[curDim] == runningStride) {
|
|
runningStride *= type.getDimSize(curDim);
|
|
--curDim;
|
|
}
|
|
|
|
// Check if other dimensions are size-1.
|
|
while (curDim >= 0 && type.getDimSize(curDim) == 1) {
|
|
--curDim;
|
|
}
|
|
|
|
// All dims are unit-strided or size-1.
|
|
return curDim < 0;
|
|
}
|
|
|
|
std::pair<LinearizedMemRefInfo, OpFoldResult> getLinearizedMemRefOffsetAndSize(
|
|
OpBuilder &builder, Location loc, int srcBits, int dstBits,
|
|
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
|
|
ArrayRef<OpFoldResult> strides, ArrayRef<OpFoldResult> indices) {
|
|
unsigned sourceRank = sizes.size();
|
|
assert(sizes.size() == strides.size() &&
|
|
"expected as many sizes as strides for a memref");
|
|
SmallVector<OpFoldResult> indicesVec = llvm::to_vector(indices);
|
|
if (indices.empty())
|
|
indicesVec.resize(sourceRank, builder.getIndexAttr(0));
|
|
assert(indicesVec.size() == strides.size() &&
|
|
"expected as many indices as rank of memref");
|
|
|
|
// Create the affine symbols and values for linearization.
|
|
SmallVector<AffineExpr> symbols(2 * sourceRank);
|
|
bindSymbolsList(builder.getContext(), MutableArrayRef{symbols});
|
|
AffineExpr addMulMap = builder.getAffineConstantExpr(0);
|
|
|
|
SmallVector<OpFoldResult> offsetValues(2 * sourceRank);
|
|
|
|
for (unsigned i = 0; i < sourceRank; ++i) {
|
|
unsigned offsetIdx = 2 * i;
|
|
addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1];
|
|
offsetValues[offsetIdx] = indicesVec[i];
|
|
offsetValues[offsetIdx + 1] = strides[i];
|
|
}
|
|
// Adjust linearizedIndices and size by the scale factor (dstBits / srcBits).
|
|
int64_t scaler = dstBits / srcBits;
|
|
OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply(
|
|
builder, loc, addMulMap.floorDiv(scaler), offsetValues);
|
|
|
|
size_t symbolIndex = 0;
|
|
SmallVector<OpFoldResult> values;
|
|
SmallVector<AffineExpr> productExpressions;
|
|
for (unsigned i = 0; i < sourceRank; ++i) {
|
|
AffineExpr strideExpr = symbols[symbolIndex++];
|
|
values.push_back(strides[i]);
|
|
AffineExpr sizeExpr = symbols[symbolIndex++];
|
|
values.push_back(sizes[i]);
|
|
|
|
productExpressions.push_back((strideExpr * sizeExpr).floorDiv(scaler));
|
|
}
|
|
AffineMap maxMap = AffineMap::get(
|
|
/*dimCount=*/0, /*symbolCount=*/symbolIndex, productExpressions,
|
|
builder.getContext());
|
|
OpFoldResult linearizedSize =
|
|
affine::makeComposedFoldedAffineMax(builder, loc, maxMap, values);
|
|
|
|
// Adjust baseOffset by the scale factor (dstBits / srcBits).
|
|
AffineExpr s0;
|
|
bindSymbols(builder.getContext(), s0);
|
|
OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply(
|
|
builder, loc, s0.floorDiv(scaler), {offset});
|
|
|
|
OpFoldResult intraVectorOffset = affine::makeComposedFoldedAffineApply(
|
|
builder, loc, addMulMap % scaler, offsetValues);
|
|
|
|
return {{adjustBaseOffset, linearizedSize, intraVectorOffset},
|
|
linearizedIndices};
|
|
}
|
|
|
|
LinearizedMemRefInfo
|
|
getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits,
|
|
int dstBits, OpFoldResult offset,
|
|
ArrayRef<OpFoldResult> sizes) {
|
|
SmallVector<OpFoldResult> strides(sizes.size());
|
|
if (!sizes.empty()) {
|
|
strides.back() = builder.getIndexAttr(1);
|
|
AffineExpr s0, s1;
|
|
bindSymbols(builder.getContext(), s0, s1);
|
|
for (int index = sizes.size() - 1; index > 0; --index) {
|
|
strides[index - 1] = affine::makeComposedFoldedAffineApply(
|
|
builder, loc, s0 * s1,
|
|
ArrayRef<OpFoldResult>{strides[index], sizes[index]});
|
|
}
|
|
}
|
|
|
|
LinearizedMemRefInfo linearizedMemRefInfo;
|
|
std::tie(linearizedMemRefInfo, std::ignore) =
|
|
getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset,
|
|
sizes, strides);
|
|
return linearizedMemRefInfo;
|
|
}
|
|
|
|
/// Returns true if all the uses of op are not read/load.
|
|
/// There can be SubviewOp users as long as all its users are also
|
|
/// StoreOp/transfer_write. If return true it also fills out the uses, if it
|
|
/// returns false uses is unchanged.
|
|
static bool resultIsNotRead(Operation *op, std::vector<Operation *> &uses) {
|
|
std::vector<Operation *> opUses;
|
|
for (OpOperand &use : op->getUses()) {
|
|
Operation *useOp = use.getOwner();
|
|
if (isa<memref::DeallocOp>(useOp) ||
|
|
(useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 &&
|
|
!mlir::hasEffect<MemoryEffects::Read>(useOp)) ||
|
|
(isa<memref::SubViewOp>(useOp) && resultIsNotRead(useOp, opUses))) {
|
|
opUses.push_back(useOp);
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
llvm::append_range(uses, opUses);
|
|
return true;
|
|
}
|
|
|
|
void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) {
|
|
std::vector<Operation *> opToErase;
|
|
parentOp->walk([&](Operation *op) {
|
|
std::vector<Operation *> candidates;
|
|
if (isa<memref::AllocOp, memref::AllocaOp>(op) &&
|
|
resultIsNotRead(op, candidates)) {
|
|
llvm::append_range(opToErase, candidates);
|
|
opToErase.push_back(op);
|
|
}
|
|
});
|
|
|
|
for (Operation *op : opToErase)
|
|
rewriter.eraseOp(op);
|
|
}
|
|
|
|
static SmallVector<OpFoldResult>
|
|
computeSuffixProductIRBlockImpl(Location loc, OpBuilder &builder,
|
|
ArrayRef<OpFoldResult> sizes,
|
|
OpFoldResult unit) {
|
|
SmallVector<OpFoldResult> strides(sizes.size(), unit);
|
|
AffineExpr s0, s1;
|
|
bindSymbols(builder.getContext(), s0, s1);
|
|
|
|
for (int64_t r = strides.size() - 1; r > 0; --r) {
|
|
strides[r - 1] = affine::makeComposedFoldedAffineApply(
|
|
builder, loc, s0 * s1, {strides[r], sizes[r]});
|
|
}
|
|
return strides;
|
|
}
|
|
|
|
SmallVector<OpFoldResult>
|
|
computeSuffixProductIRBlock(Location loc, OpBuilder &builder,
|
|
ArrayRef<OpFoldResult> sizes) {
|
|
OpFoldResult unit = builder.getIndexAttr(1);
|
|
return computeSuffixProductIRBlockImpl(loc, builder, sizes, unit);
|
|
}
|
|
|
|
MemrefValue skipFullyAliasingOperations(MemrefValue source) {
|
|
while (auto op = source.getDefiningOp()) {
|
|
if (auto subViewOp = dyn_cast<memref::SubViewOp>(op);
|
|
subViewOp && subViewOp.hasZeroOffset() && subViewOp.hasUnitStride()) {
|
|
// A `memref.subview` with an all zero offset, and all unit strides, still
|
|
// points to the same memory.
|
|
source = cast<MemrefValue>(subViewOp.getSource());
|
|
} else if (auto castOp = dyn_cast<memref::CastOp>(op)) {
|
|
// A `memref.cast` still points to the same memory.
|
|
source = castOp.getSource();
|
|
} else {
|
|
return source;
|
|
}
|
|
}
|
|
return source;
|
|
}
|
|
|
|
MemrefValue skipViewLikeOps(MemrefValue source) {
|
|
while (auto op = source.getDefiningOp()) {
|
|
if (auto viewLike = dyn_cast<ViewLikeOpInterface>(op)) {
|
|
if (source == viewLike.getViewDest()) {
|
|
source = cast<MemrefValue>(viewLike.getViewSource());
|
|
continue;
|
|
}
|
|
}
|
|
return source;
|
|
}
|
|
return source;
|
|
}
|
|
|
|
LogicalResult resolveSourceIndicesExpandShape(
|
|
Location loc, PatternRewriter &rewriter,
|
|
memref::ExpandShapeOp expandShapeOp, ValueRange indices,
|
|
SmallVectorImpl<Value> &sourceIndices, bool startsInbounds) {
|
|
SmallVector<OpFoldResult> destShape = expandShapeOp.getMixedOutputShape();
|
|
|
|
// Traverse all reassociation groups to determine the appropriate indices
|
|
// corresponding to each one of them post op folding.
|
|
for (ArrayRef<int64_t> group : expandShapeOp.getReassociationIndices()) {
|
|
assert(!group.empty() && "association indices groups cannot be empty");
|
|
int64_t groupSize = group.size();
|
|
if (groupSize == 1) {
|
|
sourceIndices.push_back(indices[group[0]]);
|
|
continue;
|
|
}
|
|
SmallVector<OpFoldResult> groupBasis =
|
|
llvm::map_to_vector(group, [&](int64_t d) { return destShape[d]; });
|
|
SmallVector<Value> groupIndices =
|
|
llvm::map_to_vector(group, [&](int64_t d) { return indices[d]; });
|
|
Value collapsedIndex = affine::AffineLinearizeIndexOp::create(
|
|
rewriter, loc, groupIndices, groupBasis, /*disjoint=*/startsInbounds);
|
|
sourceIndices.push_back(collapsedIndex);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
resolveSourceIndicesCollapseShape(Location loc, PatternRewriter &rewriter,
|
|
memref::CollapseShapeOp collapseShapeOp,
|
|
ValueRange indices,
|
|
SmallVectorImpl<Value> &sourceIndices) {
|
|
// Note: collapse_shape requires a strided memref, we can do this.
|
|
auto metadata = memref::ExtractStridedMetadataOp::create(
|
|
rewriter, loc, collapseShapeOp.getSrc());
|
|
SmallVector<OpFoldResult> sourceSizes = metadata.getConstifiedMixedSizes();
|
|
for (auto [index, group] :
|
|
llvm::zip(indices, collapseShapeOp.getReassociationIndices())) {
|
|
assert(!group.empty() && "association indices groups cannot be empty");
|
|
int64_t groupSize = group.size();
|
|
|
|
if (groupSize == 1) {
|
|
sourceIndices.push_back(index);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<OpFoldResult> basis =
|
|
llvm::map_to_vector(group, [&](int64_t d) { return sourceSizes[d]; });
|
|
auto delinearize = affine::AffineDelinearizeIndexOp::create(
|
|
rewriter, loc, index, basis, /*hasOuterBound=*/true);
|
|
llvm::append_range(sourceIndices, delinearize.getResults());
|
|
}
|
|
if (collapseShapeOp.getReassociationIndices().empty()) {
|
|
auto zeroAffineMap = rewriter.getConstantAffineMap(0);
|
|
int64_t srcRank =
|
|
cast<MemRefType>(collapseShapeOp.getViewSource().getType()).getRank();
|
|
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
|
|
rewriter, loc, zeroAffineMap, ArrayRef<OpFoldResult>{});
|
|
for (int64_t i = 0; i < srcRank; i++) {
|
|
sourceIndices.push_back(
|
|
getValueOrCreateConstantIndexOp(rewriter, loc, ofr));
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
} // namespace memref
|
|
} // namespace mlir
|