llvm-project/clang/lib/Sema/AnalysisBasedWarnings.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

3129 lines
114 KiB
C++

//=== AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/Analyses/CalledOnceCheck.h"
#include "clang/Analysis/Analyses/Consumed.h"
#include "clang/Analysis/Analyses/LifetimeSafety.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/Analysis/Analyses/UnsafeBufferUsage.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLFunctionalExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <deque>
#include <iterator>
#include <optional>
using namespace clang;
//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//
namespace {
class UnreachableCodeHandler : public reachable_code::Callback {
Sema &S;
SourceRange PreviousSilenceableCondVal;
public:
UnreachableCodeHandler(Sema &s) : S(s) {}
void HandleUnreachable(reachable_code::UnreachableKind UK, SourceLocation L,
SourceRange SilenceableCondVal, SourceRange R1,
SourceRange R2, bool HasFallThroughAttr) override {
// If the diagnosed code is `[[fallthrough]];` and
// `-Wunreachable-code-fallthrough` is enabled, suppress `code will never
// be executed` warning to avoid generating diagnostic twice
if (HasFallThroughAttr &&
!S.getDiagnostics().isIgnored(diag::warn_unreachable_fallthrough_attr,
SourceLocation()))
return;
// Avoid reporting multiple unreachable code diagnostics that are
// triggered by the same conditional value.
if (PreviousSilenceableCondVal.isValid() &&
SilenceableCondVal.isValid() &&
PreviousSilenceableCondVal == SilenceableCondVal)
return;
PreviousSilenceableCondVal = SilenceableCondVal;
unsigned diag = diag::warn_unreachable;
switch (UK) {
case reachable_code::UK_Break:
diag = diag::warn_unreachable_break;
break;
case reachable_code::UK_Return:
diag = diag::warn_unreachable_return;
break;
case reachable_code::UK_Loop_Increment:
diag = diag::warn_unreachable_loop_increment;
break;
case reachable_code::UK_Other:
break;
}
S.Diag(L, diag) << R1 << R2;
SourceLocation Open = SilenceableCondVal.getBegin();
if (Open.isValid()) {
SourceLocation Close = SilenceableCondVal.getEnd();
Close = S.getLocForEndOfToken(Close);
if (Close.isValid()) {
S.Diag(Open, diag::note_unreachable_silence)
<< FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
<< FixItHint::CreateInsertion(Close, ")");
}
}
}
};
} // anonymous namespace
/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
// As a heuristic prune all diagnostics not in the main file. Currently
// the majority of warnings in headers are false positives. These
// are largely caused by configuration state, e.g. preprocessor
// defined code, etc.
//
// Note that this is also a performance optimization. Analyzing
// headers many times can be expensive.
if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
return;
UnreachableCodeHandler UC(S);
reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
}
namespace {
/// Warn on logical operator errors in CFGBuilder
class LogicalErrorHandler : public CFGCallback {
Sema &S;
public:
LogicalErrorHandler(Sema &S) : S(S) {}
static bool HasMacroID(const Expr *E) {
if (E->getExprLoc().isMacroID())
return true;
// Recurse to children.
for (const Stmt *SubStmt : E->children())
if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
if (HasMacroID(SubExpr))
return true;
return false;
}
void logicAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
if (HasMacroID(B))
return;
unsigned DiagID = isAlwaysTrue
? diag::warn_tautological_negation_or_compare
: diag::warn_tautological_negation_and_compare;
SourceRange DiagRange = B->getSourceRange();
S.Diag(B->getExprLoc(), DiagID) << DiagRange;
}
void compareAlwaysTrue(const BinaryOperator *B,
bool isAlwaysTrueOrFalse) override {
if (HasMacroID(B))
return;
SourceRange DiagRange = B->getSourceRange();
S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
<< DiagRange << isAlwaysTrueOrFalse;
}
void compareBitwiseEquality(const BinaryOperator *B,
bool isAlwaysTrue) override {
if (HasMacroID(B))
return;
SourceRange DiagRange = B->getSourceRange();
S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
<< DiagRange << isAlwaysTrue;
}
void compareBitwiseOr(const BinaryOperator *B) override {
if (HasMacroID(B))
return;
SourceRange DiagRange = B->getSourceRange();
S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
}
static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
SourceLocation Loc) {
return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
!Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc) ||
!Diags.isIgnored(diag::warn_tautological_negation_and_compare, Loc);
}
};
} // anonymous namespace
//===----------------------------------------------------------------------===//
// Check for infinite self-recursion in functions
//===----------------------------------------------------------------------===//
// Returns true if the function is called anywhere within the CFGBlock.
// For member functions, the additional condition of being call from the
// this pointer is required.
static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
// Process all the Stmt's in this block to find any calls to FD.
for (const auto &B : Block) {
if (B.getKind() != CFGElement::Statement)
continue;
const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
if (!CE || !CE->getCalleeDecl() ||
CE->getCalleeDecl()->getCanonicalDecl() != FD)
continue;
// Skip function calls which are qualified with a templated class.
if (const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts()))
if (NestedNameSpecifier NNS = DRE->getQualifier();
NNS.getKind() == NestedNameSpecifier::Kind::Type)
if (isa_and_nonnull<TemplateSpecializationType>(NNS.getAsType()))
continue;
const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
!MCE->getMethodDecl()->isVirtual())
return true;
}
return false;
}
// Returns true if every path from the entry block passes through a call to FD.
static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
llvm::SmallPtrSet<CFGBlock *, 16> Visited;
llvm::SmallVector<CFGBlock *, 16> WorkList;
// Keep track of whether we found at least one recursive path.
bool foundRecursion = false;
const unsigned ExitID = cfg->getExit().getBlockID();
// Seed the work list with the entry block.
WorkList.push_back(&cfg->getEntry());
while (!WorkList.empty()) {
CFGBlock *Block = WorkList.pop_back_val();
for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
if (CFGBlock *SuccBlock = *I) {
if (!Visited.insert(SuccBlock).second)
continue;
// Found a path to the exit node without a recursive call.
if (ExitID == SuccBlock->getBlockID())
return false;
// If the successor block contains a recursive call, end analysis there.
if (hasRecursiveCallInPath(FD, *SuccBlock)) {
foundRecursion = true;
continue;
}
WorkList.push_back(SuccBlock);
}
}
}
return foundRecursion;
}
static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
const Stmt *Body, AnalysisDeclContext &AC) {
FD = FD->getCanonicalDecl();
// Only run on non-templated functions and non-templated members of
// templated classes.
if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
return;
CFG *cfg = AC.getCFG();
if (!cfg) return;
// If the exit block is unreachable, skip processing the function.
if (cfg->getExit().pred_empty())
return;
// Emit diagnostic if a recursive function call is detected for all paths.
if (checkForRecursiveFunctionCall(FD, cfg))
S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
}
//===----------------------------------------------------------------------===//
// Check for throw in a non-throwing function.
//===----------------------------------------------------------------------===//
/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
/// can reach ExitBlock.
static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
CFG *Body) {
SmallVector<CFGBlock *, 16> Stack;
llvm::BitVector Queued(Body->getNumBlockIDs());
Stack.push_back(&ThrowBlock);
Queued[ThrowBlock.getBlockID()] = true;
while (!Stack.empty()) {
CFGBlock &UnwindBlock = *Stack.pop_back_val();
for (auto &Succ : UnwindBlock.succs()) {
if (!Succ.isReachable() || Queued[Succ->getBlockID()])
continue;
if (Succ->getBlockID() == Body->getExit().getBlockID())
return true;
if (auto *Catch =
dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
QualType Caught = Catch->getCaughtType();
if (Caught.isNull() || // catch (...) catches everything
!E->getSubExpr() || // throw; is considered cuaght by any handler
S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
// Exception doesn't escape via this path.
break;
} else {
Stack.push_back(Succ);
Queued[Succ->getBlockID()] = true;
}
}
}
return false;
}
static void visitReachableThrows(
CFG *BodyCFG,
llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
for (CFGBlock *B : *BodyCFG) {
if (!Reachable[B->getBlockID()])
continue;
for (CFGElement &E : *B) {
std::optional<CFGStmt> S = E.getAs<CFGStmt>();
if (!S)
continue;
if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
Visit(Throw, *B);
}
}
}
static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
const FunctionDecl *FD) {
if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
FD->getTypeSourceInfo()) {
S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
if (S.getLangOpts().CPlusPlus11 &&
(isa<CXXDestructorDecl>(FD) ||
FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
getAs<FunctionProtoType>())
S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
<< !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
<< FD->getExceptionSpecSourceRange();
} else
S.Diag(FD->getLocation(), diag::note_throw_in_function)
<< FD->getExceptionSpecSourceRange();
}
}
static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
AnalysisDeclContext &AC) {
CFG *BodyCFG = AC.getCFG();
if (!BodyCFG)
return;
if (BodyCFG->getExit().pred_empty())
return;
visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
if (throwEscapes(S, Throw, Block, BodyCFG))
EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
});
}
static bool isNoexcept(const FunctionDecl *FD) {
const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
return true;
return false;
}
/// Checks if the given expression is a reference to a function with
/// 'noreturn' attribute.
static bool isReferenceToNoReturn(const Expr *E) {
if (auto *DRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
if (auto *FD = dyn_cast<FunctionDecl>(DRef->getDecl()))
return FD->isNoReturn();
return false;
}
/// Checks if the given variable, which is assumed to be a function pointer, is
/// initialized with a function having 'noreturn' attribute.
static bool isInitializedWithNoReturn(const VarDecl *VD) {
if (const Expr *Init = VD->getInit()) {
if (auto *ListInit = dyn_cast<InitListExpr>(Init);
ListInit && ListInit->getNumInits() > 0)
Init = ListInit->getInit(0);
return isReferenceToNoReturn(Init);
}
return false;
}
namespace {
/// Looks for statements, that can define value of the given variable.
struct TransferFunctions : public StmtVisitor<TransferFunctions> {
const VarDecl *Var;
std::optional<bool> AllValuesAreNoReturn;
TransferFunctions(const VarDecl *VD) : Var(VD) {}
void reset() { AllValuesAreNoReturn = std::nullopt; }
void VisitDeclStmt(DeclStmt *DS) {
for (auto *DI : DS->decls())
if (auto *VD = dyn_cast<VarDecl>(DI))
if (VarDecl *Def = VD->getDefinition())
if (Def == Var)
AllValuesAreNoReturn = isInitializedWithNoReturn(Def);
}
void VisitUnaryOperator(UnaryOperator *UO) {
if (UO->getOpcode() == UO_AddrOf) {
if (auto *DRef =
dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParenCasts()))
if (DRef->getDecl() == Var)
AllValuesAreNoReturn = false;
}
}
void VisitBinaryOperator(BinaryOperator *BO) {
if (BO->getOpcode() == BO_Assign)
if (auto *DRef = dyn_cast<DeclRefExpr>(BO->getLHS()->IgnoreParenCasts()))
if (DRef->getDecl() == Var)
AllValuesAreNoReturn = isReferenceToNoReturn(BO->getRHS());
}
void VisitCallExpr(CallExpr *CE) {
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E;
++I) {
const Expr *Arg = *I;
if (Arg->isGLValue() && !Arg->getType().isConstQualified())
if (auto *DRef = dyn_cast<DeclRefExpr>(Arg->IgnoreParenCasts()))
if (auto VD = dyn_cast<VarDecl>(DRef->getDecl()))
if (VD->getDefinition() == Var)
AllValuesAreNoReturn = false;
}
}
};
} // namespace
// Checks if all possible values of the given variable are functions with
// 'noreturn' attribute.
static bool areAllValuesNoReturn(const VarDecl *VD, const CFGBlock &VarBlk,
AnalysisDeclContext &AC) {
// The set of possible values of a constant variable is determined by
// its initializer, unless it is a function parameter.
if (!isa<ParmVarDecl>(VD) && VD->getType().isConstant(AC.getASTContext())) {
if (const VarDecl *Def = VD->getDefinition())
return isInitializedWithNoReturn(Def);
return false;
}
// In multithreaded environment the value of a global variable may be changed
// asynchronously.
if (!VD->getDeclContext()->isFunctionOrMethod())
return false;
// Check the condition "all values are noreturn". It is satisfied if the
// variable is set to "noreturn" value in the current block or all its
// predecessors satisfies the condition.
using MapTy = llvm::DenseMap<const CFGBlock *, std::optional<bool>>;
using ValueTy = MapTy::value_type;
MapTy BlocksToCheck;
BlocksToCheck[&VarBlk] = std::nullopt;
const auto BlockSatisfiesCondition = [](ValueTy Item) {
return Item.getSecond().value_or(false);
};
TransferFunctions TF(VD);
BackwardDataflowWorklist Worklist(*AC.getCFG(), AC);
llvm::DenseSet<const CFGBlock *> Visited;
Worklist.enqueueBlock(&VarBlk);
while (const CFGBlock *B = Worklist.dequeue()) {
if (Visited.contains(B))
continue;
Visited.insert(B);
// First check the current block.
for (CFGBlock::const_reverse_iterator ri = B->rbegin(), re = B->rend();
ri != re; ++ri) {
if (std::optional<CFGStmt> cs = ri->getAs<CFGStmt>()) {
const Stmt *S = cs->getStmt();
TF.reset();
TF.Visit(const_cast<Stmt *>(S));
if (TF.AllValuesAreNoReturn) {
if (!TF.AllValuesAreNoReturn.value())
return false;
BlocksToCheck[B] = true;
break;
}
}
}
// If all checked blocks satisfy the condition, the check is finished.
if (llvm::all_of(BlocksToCheck, BlockSatisfiesCondition))
return true;
// If this block does not contain the variable definition, check
// its predecessors.
if (!BlocksToCheck[B]) {
Worklist.enqueuePredecessors(B);
BlocksToCheck.erase(B);
for (const auto &PredBlk : B->preds())
if (!BlocksToCheck.contains(PredBlk))
BlocksToCheck[PredBlk] = std::nullopt;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//
enum ControlFlowKind {
UnknownFallThrough,
NeverFallThrough,
MaybeFallThrough,
AlwaysFallThrough,
NeverFallThroughOrReturn
};
/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return. We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return. We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
CFG *cfg = AC.getCFG();
if (!cfg) return UnknownFallThrough;
// The CFG leaves in dead things, and we don't want the dead code paths to
// confuse us, so we mark all live things first.
llvm::BitVector live(cfg->getNumBlockIDs());
unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
live);
bool AddEHEdges = AC.getAddEHEdges();
if (!AddEHEdges && count != cfg->getNumBlockIDs())
// When there are things remaining dead, and we didn't add EH edges
// from CallExprs to the catch clauses, we have to go back and
// mark them as live.
for (const auto *B : *cfg) {
if (!live[B->getBlockID()]) {
if (B->preds().empty()) {
const Stmt *Term = B->getTerminatorStmt();
if (isa_and_nonnull<CXXTryStmt>(Term))
// When not adding EH edges from calls, catch clauses
// can otherwise seem dead. Avoid noting them as dead.
count += reachable_code::ScanReachableFromBlock(B, live);
continue;
}
}
}
// Now we know what is live, we check the live precessors of the exit block
// and look for fall through paths, being careful to ignore normal returns,
// and exceptional paths.
bool HasLiveReturn = false;
bool HasFakeEdge = false;
bool HasPlainEdge = false;
bool HasAbnormalEdge = false;
// Ignore default cases that aren't likely to be reachable because all
// enums in a switch(X) have explicit case statements.
CFGBlock::FilterOptions FO;
FO.IgnoreDefaultsWithCoveredEnums = 1;
for (CFGBlock::filtered_pred_iterator I =
cfg->getExit().filtered_pred_start_end(FO);
I.hasMore(); ++I) {
const CFGBlock &B = **I;
if (!live[B.getBlockID()])
continue;
// Skip blocks which contain an element marked as no-return. They don't
// represent actually viable edges into the exit block, so mark them as
// abnormal.
if (B.hasNoReturnElement()) {
HasAbnormalEdge = true;
continue;
}
// Destructors can appear after the 'return' in the CFG. This is
// normal. We need to look pass the destructors for the return
// statement (if it exists).
CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
for ( ; ri != re ; ++ri)
if (ri->getAs<CFGStmt>())
break;
// No more CFGElements in the block?
if (ri == re) {
const Stmt *Term = B.getTerminatorStmt();
if (Term && (isa<CXXTryStmt>(Term) || isa<ObjCAtTryStmt>(Term))) {
HasAbnormalEdge = true;
continue;
}
// A labeled empty statement, or the entry block...
HasPlainEdge = true;
continue;
}
CFGStmt CS = ri->castAs<CFGStmt>();
const Stmt *S = CS.getStmt();
if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
HasLiveReturn = true;
continue;
}
if (isa<ObjCAtThrowStmt>(S)) {
HasFakeEdge = true;
continue;
}
if (isa<CXXThrowExpr>(S)) {
HasFakeEdge = true;
continue;
}
if (isa<MSAsmStmt>(S)) {
// TODO: Verify this is correct.
HasFakeEdge = true;
HasLiveReturn = true;
continue;
}
if (isa<CXXTryStmt>(S)) {
HasAbnormalEdge = true;
continue;
}
if (!llvm::is_contained(B.succs(), &cfg->getExit())) {
HasAbnormalEdge = true;
continue;
}
if (auto *Call = dyn_cast<CallExpr>(S)) {
const Expr *Callee = Call->getCallee();
if (Callee->getType()->isPointerType())
if (auto *DeclRef =
dyn_cast<DeclRefExpr>(Callee->IgnoreParenImpCasts()))
if (auto *VD = dyn_cast<VarDecl>(DeclRef->getDecl()))
if (areAllValuesNoReturn(VD, B, AC)) {
HasAbnormalEdge = true;
continue;
}
}
HasPlainEdge = true;
}
if (!HasPlainEdge) {
if (HasLiveReturn)
return NeverFallThrough;
return NeverFallThroughOrReturn;
}
if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
return MaybeFallThrough;
// This says AlwaysFallThrough for calls to functions that are not marked
// noreturn, that don't return. If people would like this warning to be more
// accurate, such functions should be marked as noreturn.
return AlwaysFallThrough;
}
namespace {
struct CheckFallThroughDiagnostics {
unsigned diag_FallThrough_HasNoReturn = 0;
unsigned diag_FallThrough_ReturnsNonVoid = 0;
unsigned diag_NeverFallThroughOrReturn = 0;
unsigned FunKind; // TODO: use diag::FalloffFunctionKind
SourceLocation FuncLoc;
static CheckFallThroughDiagnostics MakeForFunction(Sema &S,
const Decl *Func) {
CheckFallThroughDiagnostics D;
D.FuncLoc = Func->getLocation();
D.diag_FallThrough_HasNoReturn = diag::warn_noreturn_has_return_expr;
D.diag_FallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid;
// Don't suggest that virtual functions be marked "noreturn", since they
// might be overridden by non-noreturn functions.
bool isVirtualMethod = false;
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
isVirtualMethod = Method->isVirtual();
// Don't suggest that template instantiations be marked "noreturn"
bool isTemplateInstantiation = false;
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func)) {
isTemplateInstantiation = Function->isTemplateInstantiation();
if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C99 &&
Function->isMain()) {
D.diag_FallThrough_ReturnsNonVoid = diag::ext_main_no_return;
}
}
if (!isVirtualMethod && !isTemplateInstantiation)
D.diag_NeverFallThroughOrReturn = diag::warn_suggest_noreturn_function;
D.FunKind = diag::FalloffFunctionKind::Function;
return D;
}
static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
CheckFallThroughDiagnostics D;
D.FuncLoc = Func->getLocation();
D.diag_FallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid;
D.FunKind = diag::FalloffFunctionKind::Coroutine;
return D;
}
static CheckFallThroughDiagnostics MakeForBlock() {
CheckFallThroughDiagnostics D;
D.diag_FallThrough_HasNoReturn = diag::err_noreturn_has_return_expr;
D.diag_FallThrough_ReturnsNonVoid = diag::err_falloff_nonvoid;
D.FunKind = diag::FalloffFunctionKind::Block;
return D;
}
static CheckFallThroughDiagnostics MakeForLambda() {
CheckFallThroughDiagnostics D;
D.diag_FallThrough_HasNoReturn = diag::err_noreturn_has_return_expr;
D.diag_FallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid;
D.FunKind = diag::FalloffFunctionKind::Lambda;
return D;
}
bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
bool HasNoReturn) const {
if (FunKind == diag::FalloffFunctionKind::Function) {
return (ReturnsVoid ||
D.isIgnored(diag::warn_falloff_nonvoid, FuncLoc)) &&
(!HasNoReturn ||
D.isIgnored(diag::warn_noreturn_has_return_expr, FuncLoc)) &&
(!ReturnsVoid ||
D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
}
if (FunKind == diag::FalloffFunctionKind::Coroutine) {
return (ReturnsVoid ||
D.isIgnored(diag::warn_falloff_nonvoid, FuncLoc)) &&
(!HasNoReturn);
}
// For blocks / lambdas.
return ReturnsVoid && !HasNoReturn;
}
};
} // anonymous namespace
/// CheckFallThroughForBody - Check that we don't fall off the end of a
/// function that should return a value. Check that we don't fall off the end
/// of a noreturn function. We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
QualType BlockType,
const CheckFallThroughDiagnostics &CD,
AnalysisDeclContext &AC) {
bool ReturnsVoid = false;
bool HasNoReturn = false;
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
else
ReturnsVoid = FD->getReturnType()->isVoidType();
HasNoReturn = FD->isNoReturn() || FD->hasAttr<InferredNoReturnAttr>();
}
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
ReturnsVoid = MD->getReturnType()->isVoidType();
HasNoReturn = MD->hasAttr<NoReturnAttr>();
}
else if (isa<BlockDecl>(D)) {
if (const FunctionType *FT =
BlockType->getPointeeType()->getAs<FunctionType>()) {
if (FT->getReturnType()->isVoidType())
ReturnsVoid = true;
if (FT->getNoReturnAttr())
HasNoReturn = true;
}
}
DiagnosticsEngine &Diags = S.getDiagnostics();
// Short circuit for compilation speed.
if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
return;
SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
// cpu_dispatch functions permit empty function bodies for ICC compatibility.
if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
return;
// Either in a function body compound statement, or a function-try-block.
switch (int FallThroughType = CheckFallThrough(AC)) {
case UnknownFallThrough:
break;
case MaybeFallThrough:
case AlwaysFallThrough:
if (HasNoReturn) {
if (CD.diag_FallThrough_HasNoReturn)
S.Diag(RBrace, CD.diag_FallThrough_HasNoReturn) << CD.FunKind;
} else if (!ReturnsVoid && CD.diag_FallThrough_ReturnsNonVoid) {
// If the final statement is a call to an always-throwing function,
// don't warn about the fall-through.
if (D->getAsFunction()) {
if (const auto *CS = dyn_cast<CompoundStmt>(Body);
CS && !CS->body_empty()) {
const Stmt *LastStmt = CS->body_back();
// Unwrap ExprWithCleanups if necessary.
if (const auto *EWC = dyn_cast<ExprWithCleanups>(LastStmt)) {
LastStmt = EWC->getSubExpr();
}
if (const auto *CE = dyn_cast<CallExpr>(LastStmt)) {
if (const FunctionDecl *Callee = CE->getDirectCallee();
Callee && Callee->hasAttr<InferredNoReturnAttr>()) {
return; // Don't warn about fall-through.
}
}
// Direct throw.
if (isa<CXXThrowExpr>(LastStmt)) {
return; // Don't warn about fall-through.
}
}
}
bool NotInAllControlPaths = FallThroughType == MaybeFallThrough;
S.Diag(RBrace, CD.diag_FallThrough_ReturnsNonVoid)
<< CD.FunKind << NotInAllControlPaths;
}
break;
case NeverFallThroughOrReturn:
if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
} else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
} else {
S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
}
}
break;
case NeverFallThrough:
break;
}
}
//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//
namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
bool FoundReference;
const DeclRefExpr *Needle;
public:
typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
: Inherited(Context), FoundReference(false), Needle(Needle) {}
void VisitExpr(const Expr *E) {
// Stop evaluating if we already have a reference.
if (FoundReference)
return;
Inherited::VisitExpr(E);
}
void VisitDeclRefExpr(const DeclRefExpr *E) {
if (E == Needle)
FoundReference = true;
else
Inherited::VisitDeclRefExpr(E);
}
bool doesContainReference() const { return FoundReference; }
};
} // anonymous namespace
static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
QualType VariableTy = VD->getType().getCanonicalType();
if (VariableTy->isBlockPointerType() &&
!VD->hasAttr<BlocksAttr>()) {
S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
<< VD->getDeclName()
<< FixItHint::CreateInsertion(VD->getLocation(), "__block ");
return true;
}
// Don't issue a fixit if there is already an initializer.
if (VD->getInit())
return false;
// Don't suggest a fixit inside macros.
if (VD->getEndLoc().isMacroID())
return false;
SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
// Suggest possible initialization (if any).
std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
if (Init.empty())
return false;
S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
<< FixItHint::CreateInsertion(Loc, Init);
return true;
}
/// Create a fixit to remove an if-like statement, on the assumption that its
/// condition is CondVal.
static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
const Stmt *Else, bool CondVal,
FixItHint &Fixit1, FixItHint &Fixit2) {
if (CondVal) {
// If condition is always true, remove all but the 'then'.
Fixit1 = FixItHint::CreateRemoval(
CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
if (Else) {
SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
Fixit2 =
FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
}
} else {
// If condition is always false, remove all but the 'else'.
if (Else)
Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
If->getBeginLoc(), Else->getBeginLoc()));
else
Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
}
}
/// DiagUninitUse -- Helper function to produce a diagnostic for an
/// uninitialized use of a variable.
static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
bool IsCapturedByBlock) {
bool Diagnosed = false;
switch (Use.getKind()) {
case UninitUse::Always:
S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
<< VD->getDeclName() << IsCapturedByBlock
<< Use.getUser()->getSourceRange();
return;
case UninitUse::AfterDecl:
case UninitUse::AfterCall:
S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
<< VD->getDeclName() << IsCapturedByBlock
<< (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
<< const_cast<DeclContext*>(VD->getLexicalDeclContext())
<< VD->getSourceRange();
S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
<< IsCapturedByBlock << Use.getUser()->getSourceRange();
return;
case UninitUse::Maybe:
case UninitUse::Sometimes:
// Carry on to report sometimes-uninitialized branches, if possible,
// or a 'may be used uninitialized' diagnostic otherwise.
break;
}
// Diagnose each branch which leads to a sometimes-uninitialized use.
for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
I != E; ++I) {
assert(Use.getKind() == UninitUse::Sometimes);
const Expr *User = Use.getUser();
const Stmt *Term = I->Terminator;
// Information used when building the diagnostic.
unsigned DiagKind;
StringRef Str;
SourceRange Range;
// FixIts to suppress the diagnostic by removing the dead condition.
// For all binary terminators, branch 0 is taken if the condition is true,
// and branch 1 is taken if the condition is false.
int RemoveDiagKind = -1;
const char *FixitStr =
S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
: (I->Output ? "1" : "0");
FixItHint Fixit1, Fixit2;
switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
default:
// Don't know how to report this. Just fall back to 'may be used
// uninitialized'. FIXME: Can this happen?
continue;
// "condition is true / condition is false".
case Stmt::IfStmtClass: {
const IfStmt *IS = cast<IfStmt>(Term);
DiagKind = 0;
Str = "if";
Range = IS->getCond()->getSourceRange();
RemoveDiagKind = 0;
CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
I->Output, Fixit1, Fixit2);
break;
}
case Stmt::ConditionalOperatorClass: {
const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
DiagKind = 0;
Str = "?:";
Range = CO->getCond()->getSourceRange();
RemoveDiagKind = 0;
CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
I->Output, Fixit1, Fixit2);
break;
}
case Stmt::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(Term);
if (!BO->isLogicalOp())
continue;
DiagKind = 0;
Str = BO->getOpcodeStr();
Range = BO->getLHS()->getSourceRange();
RemoveDiagKind = 0;
if ((BO->getOpcode() == BO_LAnd && I->Output) ||
(BO->getOpcode() == BO_LOr && !I->Output))
// true && y -> y, false || y -> y.
Fixit1 = FixItHint::CreateRemoval(
SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
else
// false && y -> false, true || y -> true.
Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
break;
}
// "loop is entered / loop is exited".
case Stmt::WhileStmtClass:
DiagKind = 1;
Str = "while";
Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
RemoveDiagKind = 1;
Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
break;
case Stmt::ForStmtClass:
DiagKind = 1;
Str = "for";
Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
RemoveDiagKind = 1;
if (I->Output)
Fixit1 = FixItHint::CreateRemoval(Range);
else
Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
break;
case Stmt::CXXForRangeStmtClass:
if (I->Output == 1) {
// The use occurs if a range-based for loop's body never executes.
// That may be impossible, and there's no syntactic fix for this,
// so treat it as a 'may be uninitialized' case.
continue;
}
DiagKind = 1;
Str = "for";
Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
break;
// "condition is true / loop is exited".
case Stmt::DoStmtClass:
DiagKind = 2;
Str = "do";
Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
RemoveDiagKind = 1;
Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
break;
// "switch case is taken".
case Stmt::CaseStmtClass:
DiagKind = 3;
Str = "case";
Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
break;
case Stmt::DefaultStmtClass:
DiagKind = 3;
Str = "default";
Range = cast<DefaultStmt>(Term)->getDefaultLoc();
break;
}
S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
<< VD->getDeclName() << IsCapturedByBlock << DiagKind
<< Str << I->Output << Range;
S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
<< IsCapturedByBlock << User->getSourceRange();
if (RemoveDiagKind != -1)
S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
<< RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
Diagnosed = true;
}
if (!Diagnosed)
S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
<< VD->getDeclName() << IsCapturedByBlock
<< Use.getUser()->getSourceRange();
}
/// Diagnose uninitialized const reference usages.
static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD,
const UninitUse &Use) {
S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference)
<< VD->getDeclName() << Use.getUser()->getSourceRange();
return !S.getDiagnostics().isLastDiagnosticIgnored();
}
/// Diagnose uninitialized const pointer usages.
static bool DiagnoseUninitializedConstPtrUse(Sema &S, const VarDecl *VD,
const UninitUse &Use) {
S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_pointer)
<< VD->getDeclName() << Use.getUser()->getSourceRange();
return !S.getDiagnostics().isLastDiagnosticIgnored();
}
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a particular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
const UninitUse &Use,
bool alwaysReportSelfInit = false) {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
// Inspect the initializer of the variable declaration which is
// being referenced prior to its initialization. We emit
// specialized diagnostics for self-initialization, and we
// specifically avoid warning about self references which take the
// form of:
//
// int x = x;
//
// This is used to indicate to GCC that 'x' is intentionally left
// uninitialized. Proven code paths which access 'x' in
// an uninitialized state after this will still warn.
if (const Expr *Initializer = VD->getInit()) {
if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
return false;
ContainsReference CR(S.Context, DRE);
CR.Visit(Initializer);
if (CR.doesContainReference()) {
S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
<< VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
return !S.getDiagnostics().isLastDiagnosticIgnored();
}
}
DiagUninitUse(S, VD, Use, false);
} else {
const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
S.Diag(BE->getBeginLoc(),
diag::warn_uninit_byref_blockvar_captured_by_block)
<< VD->getDeclName()
<< VD->getType().getQualifiers().hasObjCLifetime();
else
DiagUninitUse(S, VD, Use, true);
}
// Report where the variable was declared when the use wasn't within
// the initializer of that declaration & we didn't already suggest
// an initialization fixit.
if (!SuggestInitializationFixit(S, VD))
S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
<< VD->getDeclName();
return !S.getDiagnostics().isLastDiagnosticIgnored();
}
namespace {
class FallthroughMapper : public DynamicRecursiveASTVisitor {
public:
FallthroughMapper(Sema &S) : FoundSwitchStatements(false), S(S) {
ShouldWalkTypesOfTypeLocs = false;
}
bool foundSwitchStatements() const { return FoundSwitchStatements; }
void markFallthroughVisited(const AttributedStmt *Stmt) {
bool Found = FallthroughStmts.erase(Stmt);
assert(Found);
(void)Found;
}
typedef llvm::SmallPtrSet<const AttributedStmt *, 8> AttrStmts;
const AttrStmts &getFallthroughStmts() const { return FallthroughStmts; }
void fillReachableBlocks(CFG *Cfg) {
assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
std::deque<const CFGBlock *> BlockQueue;
ReachableBlocks.insert(&Cfg->getEntry());
BlockQueue.push_back(&Cfg->getEntry());
// Mark all case blocks reachable to avoid problems with switching on
// constants, covered enums, etc.
// These blocks can contain fall-through annotations, and we don't want to
// issue a warn_fallthrough_attr_unreachable for them.
for (const auto *B : *Cfg) {
const Stmt *L = B->getLabel();
if (isa_and_nonnull<SwitchCase>(L) && ReachableBlocks.insert(B).second)
BlockQueue.push_back(B);
}
while (!BlockQueue.empty()) {
const CFGBlock *P = BlockQueue.front();
BlockQueue.pop_front();
for (const CFGBlock *B : P->succs()) {
if (B && ReachableBlocks.insert(B).second)
BlockQueue.push_back(B);
}
}
}
bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
bool IsTemplateInstantiation) {
assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
int UnannotatedCnt = 0;
AnnotatedCnt = 0;
std::deque<const CFGBlock *> BlockQueue(B.pred_begin(), B.pred_end());
while (!BlockQueue.empty()) {
const CFGBlock *P = BlockQueue.front();
BlockQueue.pop_front();
if (!P)
continue;
const Stmt *Term = P->getTerminatorStmt();
if (isa_and_nonnull<SwitchStmt>(Term))
continue; // Switch statement, good.
const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
continue; // Previous case label has no statements, good.
const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
continue; // Case label is preceded with a normal label, good.
if (!ReachableBlocks.count(P)) {
for (const CFGElement &Elem : llvm::reverse(*P)) {
if (std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>()) {
if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
// Don't issue a warning for an unreachable fallthrough
// attribute in template instantiations as it may not be
// unreachable in all instantiations of the template.
if (!IsTemplateInstantiation)
S.Diag(AS->getBeginLoc(),
diag::warn_unreachable_fallthrough_attr);
markFallthroughVisited(AS);
++AnnotatedCnt;
break;
}
// Don't care about other unreachable statements.
}
}
// If there are no unreachable statements, this may be a special
// case in CFG:
// case X: {
// A a; // A has a destructor.
// break;
// }
// // <<<< This place is represented by a 'hanging' CFG block.
// case Y:
continue;
}
const Stmt *LastStmt = getLastStmt(*P);
if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
markFallthroughVisited(AS);
++AnnotatedCnt;
continue; // Fallthrough annotation, good.
}
if (!LastStmt) { // This block contains no executable statements.
// Traverse its predecessors.
std::copy(P->pred_begin(), P->pred_end(),
std::back_inserter(BlockQueue));
continue;
}
++UnannotatedCnt;
}
return !!UnannotatedCnt;
}
bool VisitAttributedStmt(AttributedStmt *S) override {
if (asFallThroughAttr(S))
FallthroughStmts.insert(S);
return true;
}
bool VisitSwitchStmt(SwitchStmt *S) override {
FoundSwitchStatements = true;
return true;
}
// We don't want to traverse local type declarations. We analyze their
// methods separately.
bool TraverseDecl(Decl *D) override { return true; }
// We analyze lambda bodies separately. Skip them here.
bool TraverseLambdaExpr(LambdaExpr *LE) override {
// Traverse the captures, but not the body.
for (const auto C : zip(LE->captures(), LE->capture_inits()))
TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
return true;
}
private:
static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
return AS;
}
return nullptr;
}
static const Stmt *getLastStmt(const CFGBlock &B) {
if (const Stmt *Term = B.getTerminatorStmt())
return Term;
for (const CFGElement &Elem : llvm::reverse(B))
if (std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>())
return CS->getStmt();
// Workaround to detect a statement thrown out by CFGBuilder:
// case X: {} case Y:
// case X: ; case Y:
if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
if (!isa<SwitchCase>(SW->getSubStmt()))
return SW->getSubStmt();
return nullptr;
}
bool FoundSwitchStatements;
AttrStmts FallthroughStmts;
Sema &S;
llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
};
} // anonymous namespace
static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
SourceLocation Loc) {
TokenValue FallthroughTokens[] = {
tok::l_square, tok::l_square,
PP.getIdentifierInfo("fallthrough"),
tok::r_square, tok::r_square
};
TokenValue ClangFallthroughTokens[] = {
tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
tok::r_square, tok::r_square
};
bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C23;
StringRef MacroName;
if (PreferClangAttr)
MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
if (MacroName.empty())
MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
if (MacroName.empty() && !PreferClangAttr)
MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
if (MacroName.empty()) {
if (!PreferClangAttr)
MacroName = "[[fallthrough]]";
else if (PP.getLangOpts().CPlusPlus)
MacroName = "[[clang::fallthrough]]";
else
MacroName = "__attribute__((fallthrough))";
}
return MacroName;
}
static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
bool PerFunction) {
FallthroughMapper FM(S);
FM.TraverseStmt(AC.getBody());
if (!FM.foundSwitchStatements())
return;
if (PerFunction && FM.getFallthroughStmts().empty())
return;
CFG *Cfg = AC.getCFG();
if (!Cfg)
return;
FM.fillReachableBlocks(Cfg);
for (const CFGBlock *B : llvm::reverse(*Cfg)) {
const Stmt *Label = B->getLabel();
if (!isa_and_nonnull<SwitchCase>(Label))
continue;
int AnnotatedCnt;
bool IsTemplateInstantiation = false;
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
IsTemplateInstantiation = Function->isTemplateInstantiation();
if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
IsTemplateInstantiation))
continue;
S.Diag(Label->getBeginLoc(),
PerFunction ? diag::warn_unannotated_fallthrough_per_function
: diag::warn_unannotated_fallthrough);
if (!AnnotatedCnt) {
SourceLocation L = Label->getBeginLoc();
if (L.isMacroID())
continue;
const Stmt *Term = B->getTerminatorStmt();
// Skip empty cases.
while (B->empty() && !Term && B->succ_size() == 1) {
B = *B->succ_begin();
Term = B->getTerminatorStmt();
}
if (!(B->empty() && isa_and_nonnull<BreakStmt>(Term))) {
Preprocessor &PP = S.getPreprocessor();
StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
SmallString<64> TextToInsert(AnnotationSpelling);
TextToInsert += "; ";
S.Diag(L, diag::note_insert_fallthrough_fixit)
<< AnnotationSpelling
<< FixItHint::CreateInsertion(L, TextToInsert);
}
S.Diag(L, diag::note_insert_break_fixit)
<< FixItHint::CreateInsertion(L, "break; ");
}
}
for (const auto *F : FM.getFallthroughStmts())
S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
}
static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
const Stmt *S) {
assert(S);
do {
switch (S->getStmtClass()) {
case Stmt::ForStmtClass:
case Stmt::WhileStmtClass:
case Stmt::CXXForRangeStmtClass:
case Stmt::ObjCForCollectionStmtClass:
return true;
case Stmt::DoStmtClass: {
Expr::EvalResult Result;
if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
return true;
return Result.Val.getInt().getBoolValue();
}
default:
break;
}
} while ((S = PM.getParent(S)));
return false;
}
static void diagnoseRepeatedUseOfWeak(Sema &S,
const sema::FunctionScopeInfo *CurFn,
const Decl *D,
const ParentMap &PM) {
typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
StmtUsesPair;
ASTContext &Ctx = S.getASTContext();
const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
// Extract all weak objects that are referenced more than once.
SmallVector<StmtUsesPair, 8> UsesByStmt;
for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
I != E; ++I) {
const WeakUseVector &Uses = I->second;
// Find the first read of the weak object.
WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
for ( ; UI != UE; ++UI) {
if (UI->isUnsafe())
break;
}
// If there were only writes to this object, don't warn.
if (UI == UE)
continue;
// If there was only one read, followed by any number of writes, and the
// read is not within a loop, don't warn. Additionally, don't warn in a
// loop if the base object is a local variable -- local variables are often
// changed in loops.
if (UI == Uses.begin()) {
WeakUseVector::const_iterator UI2 = UI;
for (++UI2; UI2 != UE; ++UI2)
if (UI2->isUnsafe())
break;
if (UI2 == UE) {
if (!isInLoop(Ctx, PM, UI->getUseExpr()))
continue;
const WeakObjectProfileTy &Profile = I->first;
if (!Profile.isExactProfile())
continue;
const NamedDecl *Base = Profile.getBase();
if (!Base)
Base = Profile.getProperty();
assert(Base && "A profile always has a base or property.");
if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
continue;
}
}
UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
}
if (UsesByStmt.empty())
return;
// Sort by first use so that we emit the warnings in a deterministic order.
SourceManager &SM = S.getSourceManager();
llvm::sort(UsesByStmt,
[&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
RHS.first->getBeginLoc());
});
// Classify the current code body for better warning text.
// This enum should stay in sync with the cases in
// warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
// FIXME: Should we use a common classification enum and the same set of
// possibilities all throughout Sema?
enum {
Function,
Method,
Block,
Lambda
} FunctionKind;
if (isa<sema::BlockScopeInfo>(CurFn))
FunctionKind = Block;
else if (isa<sema::LambdaScopeInfo>(CurFn))
FunctionKind = Lambda;
else if (isa<ObjCMethodDecl>(D))
FunctionKind = Method;
else
FunctionKind = Function;
// Iterate through the sorted problems and emit warnings for each.
for (const auto &P : UsesByStmt) {
const Stmt *FirstRead = P.first;
const WeakObjectProfileTy &Key = P.second->first;
const WeakUseVector &Uses = P.second->second;
// For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
// may not contain enough information to determine that these are different
// properties. We can only be 100% sure of a repeated use in certain cases,
// and we adjust the diagnostic kind accordingly so that the less certain
// case can be turned off if it is too noisy.
unsigned DiagKind;
if (Key.isExactProfile())
DiagKind = diag::warn_arc_repeated_use_of_weak;
else
DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
// Classify the weak object being accessed for better warning text.
// This enum should stay in sync with the cases in
// warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
enum {
Variable,
Property,
ImplicitProperty,
Ivar
} ObjectKind;
const NamedDecl *KeyProp = Key.getProperty();
if (isa<VarDecl>(KeyProp))
ObjectKind = Variable;
else if (isa<ObjCPropertyDecl>(KeyProp))
ObjectKind = Property;
else if (isa<ObjCMethodDecl>(KeyProp))
ObjectKind = ImplicitProperty;
else if (isa<ObjCIvarDecl>(KeyProp))
ObjectKind = Ivar;
else
llvm_unreachable("Unexpected weak object kind!");
// Do not warn about IBOutlet weak property receivers being set to null
// since they are typically only used from the main thread.
if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
if (Prop->hasAttr<IBOutletAttr>())
continue;
// Show the first time the object was read.
S.Diag(FirstRead->getBeginLoc(), DiagKind)
<< int(ObjectKind) << KeyProp << int(FunctionKind)
<< FirstRead->getSourceRange();
// Print all the other accesses as notes.
for (const auto &Use : Uses) {
if (Use.getUseExpr() == FirstRead)
continue;
S.Diag(Use.getUseExpr()->getBeginLoc(),
diag::note_arc_weak_also_accessed_here)
<< Use.getUseExpr()->getSourceRange();
}
}
}
namespace clang {
namespace {
typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
typedef std::list<DelayedDiag> DiagList;
struct SortDiagBySourceLocation {
SourceManager &SM;
SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
// Although this call will be slow, this is only called when outputting
// multiple warnings.
return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
}
};
} // anonymous namespace
} // namespace clang
namespace {
class UninitValsDiagReporter : public UninitVariablesHandler {
Sema &S;
typedef SmallVector<UninitUse, 2> UsesVec;
typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
// Prefer using MapVector to DenseMap, so that iteration order will be
// the same as insertion order. This is needed to obtain a deterministic
// order of diagnostics when calling flushDiagnostics().
typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
UsesMap uses;
public:
UninitValsDiagReporter(Sema &S) : S(S) {}
~UninitValsDiagReporter() override { flushDiagnostics(); }
MappedType &getUses(const VarDecl *vd) {
MappedType &V = uses[vd];
if (!V.getPointer())
V.setPointer(new UsesVec());
return V;
}
void handleUseOfUninitVariable(const VarDecl *vd,
const UninitUse &use) override {
getUses(vd).getPointer()->push_back(use);
}
void handleSelfInit(const VarDecl *vd) override { getUses(vd).setInt(true); }
void flushDiagnostics() {
for (const auto &P : uses) {
const VarDecl *vd = P.first;
const MappedType &V = P.second;
UsesVec *vec = V.getPointer();
bool hasSelfInit = V.getInt();
diagnoseUnitializedVar(vd, hasSelfInit, vec);
// Release the uses vector.
delete vec;
}
uses.clear();
}
private:
static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
return llvm::any_of(*vec, [](const UninitUse &U) {
return U.getKind() == UninitUse::Always ||
U.getKind() == UninitUse::AfterCall ||
U.getKind() == UninitUse::AfterDecl;
});
}
// Print the diagnostic for the variable. We try to warn only on the first
// point at which a variable is used uninitialized. After the first
// diagnostic is printed, further diagnostics for this variable are skipped.
void diagnoseUnitializedVar(const VarDecl *vd, bool hasSelfInit,
UsesVec *vec) {
// Specially handle the case where we have uses of an uninitialized
// variable, but the root cause is an idiomatic self-init. We want
// to report the diagnostic at the self-init since that is the root cause.
if (hasSelfInit && hasAlwaysUninitializedUse(vec)) {
if (DiagnoseUninitializedUse(S, vd,
UninitUse(vd->getInit()->IgnoreParenCasts(),
/*isAlwaysUninit=*/true),
/*alwaysReportSelfInit=*/true))
return;
}
// Sort the uses by their SourceLocations. While not strictly
// guaranteed to produce them in line/column order, this will provide
// a stable ordering.
llvm::sort(*vec, [](const UninitUse &a, const UninitUse &b) {
// Prefer the direct use of an uninitialized variable over its use via
// constant reference or pointer.
if (a.isConstRefOrPtrUse() != b.isConstRefOrPtrUse())
return b.isConstRefOrPtrUse();
// Prefer a more confident report over a less confident one.
if (a.getKind() != b.getKind())
return a.getKind() > b.getKind();
return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
});
for (const auto &U : *vec) {
if (U.isConstRefUse()) {
if (DiagnoseUninitializedConstRefUse(S, vd, U))
return;
} else if (U.isConstPtrUse()) {
if (DiagnoseUninitializedConstPtrUse(S, vd, U))
return;
} else {
// If we have self-init, downgrade all uses to 'may be uninitialized'.
UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
if (DiagnoseUninitializedUse(S, vd, Use))
return;
}
}
}
};
/// Inter-procedural data for the called-once checker.
class CalledOnceInterProceduralData {
public:
// Add the delayed warning for the given block.
void addDelayedWarning(const BlockDecl *Block,
PartialDiagnosticAt &&Warning) {
DelayedBlockWarnings[Block].emplace_back(std::move(Warning));
}
// Report all of the warnings we've gathered for the given block.
void flushWarnings(const BlockDecl *Block, Sema &S) {
for (const PartialDiagnosticAt &Delayed : DelayedBlockWarnings[Block])
S.Diag(Delayed.first, Delayed.second);
discardWarnings(Block);
}
// Discard all of the warnings we've gathered for the given block.
void discardWarnings(const BlockDecl *Block) {
DelayedBlockWarnings.erase(Block);
}
private:
using DelayedDiagnostics = SmallVector<PartialDiagnosticAt, 2>;
llvm::DenseMap<const BlockDecl *, DelayedDiagnostics> DelayedBlockWarnings;
};
class CalledOnceCheckReporter : public CalledOnceCheckHandler {
public:
CalledOnceCheckReporter(Sema &S, CalledOnceInterProceduralData &Data)
: S(S), Data(Data) {}
void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call,
const Expr *PrevCall, bool IsCompletionHandler,
bool Poised) override {
auto DiagToReport = IsCompletionHandler
? diag::warn_completion_handler_called_twice
: diag::warn_called_once_gets_called_twice;
S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter;
S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice)
<< Poised;
}
void handleNeverCalled(const ParmVarDecl *Parameter,
bool IsCompletionHandler) override {
auto DiagToReport = IsCompletionHandler
? diag::warn_completion_handler_never_called
: diag::warn_called_once_never_called;
S.Diag(Parameter->getBeginLoc(), DiagToReport)
<< Parameter << /* Captured */ false;
}
void handleNeverCalled(const ParmVarDecl *Parameter, const Decl *Function,
const Stmt *Where, NeverCalledReason Reason,
bool IsCalledDirectly,
bool IsCompletionHandler) override {
auto DiagToReport = IsCompletionHandler
? diag::warn_completion_handler_never_called_when
: diag::warn_called_once_never_called_when;
PartialDiagnosticAt Warning(Where->getBeginLoc(), S.PDiag(DiagToReport)
<< Parameter
<< IsCalledDirectly
<< (unsigned)Reason);
if (const auto *Block = dyn_cast<BlockDecl>(Function)) {
// We shouldn't report these warnings on blocks immediately
Data.addDelayedWarning(Block, std::move(Warning));
} else {
S.Diag(Warning.first, Warning.second);
}
}
void handleCapturedNeverCalled(const ParmVarDecl *Parameter,
const Decl *Where,
bool IsCompletionHandler) override {
auto DiagToReport = IsCompletionHandler
? diag::warn_completion_handler_never_called
: diag::warn_called_once_never_called;
S.Diag(Where->getBeginLoc(), DiagToReport)
<< Parameter << /* Captured */ true;
}
void
handleBlockThatIsGuaranteedToBeCalledOnce(const BlockDecl *Block) override {
Data.flushWarnings(Block, S);
}
void handleBlockWithNoGuarantees(const BlockDecl *Block) override {
Data.discardWarnings(Block);
}
private:
Sema &S;
CalledOnceInterProceduralData &Data;
};
constexpr unsigned CalledOnceWarnings[] = {
diag::warn_called_once_never_called,
diag::warn_called_once_never_called_when,
diag::warn_called_once_gets_called_twice};
constexpr unsigned CompletionHandlerWarnings[]{
diag::warn_completion_handler_never_called,
diag::warn_completion_handler_never_called_when,
diag::warn_completion_handler_called_twice};
bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef<unsigned> DiagIDs,
const DiagnosticsEngine &Diags,
SourceLocation At) {
return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) {
return !Diags.isIgnored(DiagID, At);
});
}
bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags,
SourceLocation At) {
return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At);
}
bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags,
SourceLocation At) {
return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) ||
shouldAnalyzeCalledOnceConventions(Diags, At);
}
} // anonymous namespace
//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace clang {
namespace threadSafety {
namespace {
class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
Sema &S;
DiagList Warnings;
SourceLocation FunLocation, FunEndLocation;
const FunctionDecl *CurrentFunction;
bool Verbose;
OptionalNotes getNotes() const {
if (Verbose && CurrentFunction) {
PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
S.PDiag(diag::note_thread_warning_in_fun)
<< CurrentFunction);
return OptionalNotes(1, FNote);
}
return OptionalNotes();
}
OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
OptionalNotes ONS(1, Note);
if (Verbose && CurrentFunction) {
PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
S.PDiag(diag::note_thread_warning_in_fun)
<< CurrentFunction);
ONS.push_back(std::move(FNote));
}
return ONS;
}
OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
const PartialDiagnosticAt &Note2) const {
OptionalNotes ONS;
ONS.push_back(Note1);
ONS.push_back(Note2);
if (Verbose && CurrentFunction) {
PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
S.PDiag(diag::note_thread_warning_in_fun)
<< CurrentFunction);
ONS.push_back(std::move(FNote));
}
return ONS;
}
OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
return LocLocked.isValid()
? getNotes(PartialDiagnosticAt(
LocLocked, S.PDiag(diag::note_locked_here) << Kind))
: getNotes();
}
OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked,
StringRef Kind) {
return LocUnlocked.isValid()
? getNotes(PartialDiagnosticAt(
LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind))
: getNotes();
}
OptionalNotes makeManagedMismatchNoteForParam(SourceLocation DeclLoc) {
return DeclLoc.isValid()
? getNotes(PartialDiagnosticAt(
DeclLoc,
S.PDiag(diag::note_managed_mismatch_here_for_param)))
: getNotes();
}
public:
ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
: S(S), FunLocation(FL), FunEndLocation(FEL),
CurrentFunction(nullptr), Verbose(false) {}
void setVerbose(bool b) { Verbose = b; }
/// Emit all buffered diagnostics in order of sourcelocation.
/// We need to output diagnostics produced while iterating through
/// the lockset in deterministic order, so this function orders diagnostics
/// and outputs them.
void emitDiagnostics() {
Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
for (const auto &Diag : Warnings) {
S.Diag(Diag.first.first, Diag.first.second);
for (const auto &Note : Diag.second)
S.Diag(Note.first, Note.second);
}
}
void handleUnmatchedUnderlyingMutexes(SourceLocation Loc, SourceLocation DLoc,
Name scopeName, StringRef Kind,
Name expected, Name actual) override {
PartialDiagnosticAt Warning(Loc,
S.PDiag(diag::warn_unmatched_underlying_mutexes)
<< Kind << scopeName << expected << actual);
Warnings.emplace_back(std::move(Warning),
makeManagedMismatchNoteForParam(DLoc));
}
void handleExpectMoreUnderlyingMutexes(SourceLocation Loc,
SourceLocation DLoc, Name scopeName,
StringRef Kind,
Name expected) override {
PartialDiagnosticAt Warning(
Loc, S.PDiag(diag::warn_expect_more_underlying_mutexes)
<< Kind << scopeName << expected);
Warnings.emplace_back(std::move(Warning),
makeManagedMismatchNoteForParam(DLoc));
}
void handleExpectFewerUnderlyingMutexes(SourceLocation Loc,
SourceLocation DLoc, Name scopeName,
StringRef Kind,
Name actual) override {
PartialDiagnosticAt Warning(
Loc, S.PDiag(diag::warn_expect_fewer_underlying_mutexes)
<< Kind << scopeName << actual);
Warnings.emplace_back(std::move(Warning),
makeManagedMismatchNoteForParam(DLoc));
}
void handleInvalidLockExp(SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
<< Loc);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc,
SourceLocation LocPreviousUnlock) override {
if (Loc.isInvalid())
Loc = FunLocation;
PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
<< Kind << LockName);
Warnings.emplace_back(std::move(Warning),
makeUnlockedHereNote(LocPreviousUnlock, Kind));
}
void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
LockKind Expected, LockKind Received,
SourceLocation LocLocked,
SourceLocation LocUnlock) override {
if (LocUnlock.isInvalid())
LocUnlock = FunLocation;
PartialDiagnosticAt Warning(
LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
<< Kind << LockName << Received << Expected);
Warnings.emplace_back(std::move(Warning),
makeLockedHereNote(LocLocked, Kind));
}
void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
SourceLocation LocDoubleLock) override {
if (LocDoubleLock.isInvalid())
LocDoubleLock = FunLocation;
PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
<< Kind << LockName);
Warnings.emplace_back(std::move(Warning),
makeLockedHereNote(LocLocked, Kind));
}
void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
SourceLocation LocLocked,
SourceLocation LocEndOfScope,
LockErrorKind LEK,
bool ReentrancyMismatch) override {
unsigned DiagID = 0;
switch (LEK) {
case LEK_LockedSomePredecessors:
DiagID = diag::warn_lock_some_predecessors;
break;
case LEK_LockedSomeLoopIterations:
DiagID = diag::warn_expecting_lock_held_on_loop;
break;
case LEK_LockedAtEndOfFunction:
DiagID = diag::warn_no_unlock;
break;
case LEK_NotLockedAtEndOfFunction:
DiagID = diag::warn_expecting_locked;
break;
}
if (LocEndOfScope.isInvalid())
LocEndOfScope = FunEndLocation;
PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID)
<< Kind << LockName
<< ReentrancyMismatch);
Warnings.emplace_back(std::move(Warning),
makeLockedHereNote(LocLocked, Kind));
}
void handleExclusiveAndShared(StringRef Kind, Name LockName,
SourceLocation Loc1,
SourceLocation Loc2) override {
PartialDiagnosticAt Warning(Loc1,
S.PDiag(diag::warn_lock_exclusive_and_shared)
<< Kind << LockName);
PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
<< Kind << LockName);
Warnings.emplace_back(std::move(Warning), getNotes(Note));
}
void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
AccessKind AK, SourceLocation Loc) override {
unsigned DiagID = 0;
switch (POK) {
case POK_VarAccess:
case POK_PassByRef:
case POK_ReturnByRef:
case POK_PassPointer:
case POK_ReturnPointer:
DiagID = diag::warn_variable_requires_any_lock;
break;
case POK_VarDereference:
case POK_PtPassByRef:
case POK_PtReturnByRef:
case POK_PtPassPointer:
case POK_PtReturnPointer:
DiagID = diag::warn_var_deref_requires_any_lock;
break;
case POK_FunctionCall:
llvm_unreachable("Only works for variables");
break;
}
PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
<< D << getLockKindFromAccessKind(AK));
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
ProtectedOperationKind POK, Name LockName,
LockKind LK, SourceLocation Loc,
Name *PossibleMatch) override {
unsigned DiagID = 0;
if (PossibleMatch) {
switch (POK) {
case POK_VarAccess:
DiagID = diag::warn_variable_requires_lock_precise;
break;
case POK_VarDereference:
DiagID = diag::warn_var_deref_requires_lock_precise;
break;
case POK_FunctionCall:
DiagID = diag::warn_fun_requires_lock_precise;
break;
case POK_PassByRef:
DiagID = diag::warn_guarded_pass_by_reference;
break;
case POK_PtPassByRef:
DiagID = diag::warn_pt_guarded_pass_by_reference;
break;
case POK_ReturnByRef:
DiagID = diag::warn_guarded_return_by_reference;
break;
case POK_PtReturnByRef:
DiagID = diag::warn_pt_guarded_return_by_reference;
break;
case POK_PassPointer:
DiagID = diag::warn_guarded_pass_pointer;
break;
case POK_PtPassPointer:
DiagID = diag::warn_pt_guarded_pass_pointer;
break;
case POK_ReturnPointer:
DiagID = diag::warn_guarded_return_pointer;
break;
case POK_PtReturnPointer:
DiagID = diag::warn_pt_guarded_return_pointer;
break;
}
PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
<< D
<< LockName << LK);
PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
<< *PossibleMatch);
if (Verbose && POK == POK_VarAccess) {
PartialDiagnosticAt VNote(D->getLocation(),
S.PDiag(diag::note_guarded_by_declared_here)
<< D->getDeclName());
Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
} else
Warnings.emplace_back(std::move(Warning), getNotes(Note));
} else {
switch (POK) {
case POK_VarAccess:
DiagID = diag::warn_variable_requires_lock;
break;
case POK_VarDereference:
DiagID = diag::warn_var_deref_requires_lock;
break;
case POK_FunctionCall:
DiagID = diag::warn_fun_requires_lock;
break;
case POK_PassByRef:
DiagID = diag::warn_guarded_pass_by_reference;
break;
case POK_PtPassByRef:
DiagID = diag::warn_pt_guarded_pass_by_reference;
break;
case POK_ReturnByRef:
DiagID = diag::warn_guarded_return_by_reference;
break;
case POK_PtReturnByRef:
DiagID = diag::warn_pt_guarded_return_by_reference;
break;
case POK_PassPointer:
DiagID = diag::warn_guarded_pass_pointer;
break;
case POK_PtPassPointer:
DiagID = diag::warn_pt_guarded_pass_pointer;
break;
case POK_ReturnPointer:
DiagID = diag::warn_guarded_return_pointer;
break;
case POK_PtReturnPointer:
DiagID = diag::warn_pt_guarded_return_pointer;
break;
}
PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
<< D
<< LockName << LK);
if (Verbose && POK == POK_VarAccess) {
PartialDiagnosticAt Note(D->getLocation(),
S.PDiag(diag::note_guarded_by_declared_here));
Warnings.emplace_back(std::move(Warning), getNotes(Note));
} else
Warnings.emplace_back(std::move(Warning), getNotes());
}
}
void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc,
S.PDiag(diag::warn_acquire_requires_negative_cap)
<< Kind << LockName << Neg);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleNegativeNotHeld(const NamedDecl *D, Name LockName,
SourceLocation Loc) override {
PartialDiagnosticAt Warning(
Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
<< Kind << FunName << LockName);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc,
S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc,
S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
Warnings.emplace_back(std::move(Warning), getNotes());
}
void enterFunction(const FunctionDecl* FD) override {
CurrentFunction = FD;
}
void leaveFunction(const FunctionDecl* FD) override {
CurrentFunction = nullptr;
}
};
} // anonymous namespace
} // namespace threadSafety
} // namespace clang
//===----------------------------------------------------------------------===//
// -Wconsumed
//===----------------------------------------------------------------------===//
namespace clang {
namespace consumed {
namespace {
class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
Sema &S;
DiagList Warnings;
public:
ConsumedWarningsHandler(Sema &S) : S(S) {}
void emitDiagnostics() override {
Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
for (const auto &Diag : Warnings) {
S.Diag(Diag.first.first, Diag.first.second);
for (const auto &Note : Diag.second)
S.Diag(Note.first, Note.second);
}
}
void warnLoopStateMismatch(SourceLocation Loc,
StringRef VariableName) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
VariableName);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnParamReturnTypestateMismatch(SourceLocation Loc,
StringRef VariableName,
StringRef ExpectedState,
StringRef ObservedState) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(
diag::warn_param_return_typestate_mismatch) << VariableName <<
ExpectedState << ObservedState);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
StringRef ObservedState) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(
diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
StringRef TypeName) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(
diag::warn_return_typestate_for_unconsumable_type) << TypeName);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
StringRef ObservedState) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(
diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(
diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
StringRef State, SourceLocation Loc) override {
PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
MethodName << VariableName << State);
Warnings.emplace_back(std::move(Warning), OptionalNotes());
}
};
} // anonymous namespace
} // namespace consumed
} // namespace clang
//===----------------------------------------------------------------------===//
// Unsafe buffer usage analysis.
//===----------------------------------------------------------------------===//
namespace {
class UnsafeBufferUsageReporter : public UnsafeBufferUsageHandler {
Sema &S;
bool SuggestSuggestions; // Recommend -fsafe-buffer-usage-suggestions?
// Lists as a string the names of variables in `VarGroupForVD` except for `VD`
// itself:
std::string listVariableGroupAsString(
const VarDecl *VD, const ArrayRef<const VarDecl *> &VarGroupForVD) const {
if (VarGroupForVD.size() <= 1)
return "";
std::vector<StringRef> VarNames;
auto PutInQuotes = [](StringRef S) -> std::string {
return "'" + S.str() + "'";
};
for (auto *V : VarGroupForVD) {
if (V == VD)
continue;
VarNames.push_back(V->getName());
}
if (VarNames.size() == 1) {
return PutInQuotes(VarNames[0]);
}
if (VarNames.size() == 2) {
return PutInQuotes(VarNames[0]) + " and " + PutInQuotes(VarNames[1]);
}
assert(VarGroupForVD.size() > 3);
const unsigned N = VarNames.size() -
2; // need to print the last two names as "..., X, and Y"
std::string AllVars = "";
for (unsigned I = 0; I < N; ++I)
AllVars.append(PutInQuotes(VarNames[I]) + ", ");
AllVars.append(PutInQuotes(VarNames[N]) + ", and " +
PutInQuotes(VarNames[N + 1]));
return AllVars;
}
public:
UnsafeBufferUsageReporter(Sema &S, bool SuggestSuggestions)
: S(S), SuggestSuggestions(SuggestSuggestions) {}
void handleUnsafeOperation(const Stmt *Operation, bool IsRelatedToDecl,
ASTContext &Ctx) override {
SourceLocation Loc;
SourceRange Range;
unsigned MsgParam = 0;
NamedDecl *D = nullptr;
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Operation)) {
Loc = ASE->getBase()->getExprLoc();
Range = ASE->getBase()->getSourceRange();
MsgParam = 2;
} else if (const auto *BO = dyn_cast<BinaryOperator>(Operation)) {
BinaryOperator::Opcode Op = BO->getOpcode();
if (Op == BO_Add || Op == BO_AddAssign || Op == BO_Sub ||
Op == BO_SubAssign) {
if (BO->getRHS()->getType()->isIntegerType()) {
Loc = BO->getLHS()->getExprLoc();
Range = BO->getLHS()->getSourceRange();
} else {
Loc = BO->getRHS()->getExprLoc();
Range = BO->getRHS()->getSourceRange();
}
MsgParam = 1;
}
} else if (const auto *UO = dyn_cast<UnaryOperator>(Operation)) {
UnaryOperator::Opcode Op = UO->getOpcode();
if (Op == UO_PreInc || Op == UO_PreDec || Op == UO_PostInc ||
Op == UO_PostDec) {
Loc = UO->getSubExpr()->getExprLoc();
Range = UO->getSubExpr()->getSourceRange();
MsgParam = 1;
}
} else {
if (isa<CallExpr>(Operation) || isa<CXXConstructExpr>(Operation)) {
// note_unsafe_buffer_operation doesn't have this mode yet.
assert(!IsRelatedToDecl && "Not implemented yet!");
MsgParam = 3;
} else if (isa<MemberExpr>(Operation)) {
// note_unsafe_buffer_operation doesn't have this mode yet.
assert(!IsRelatedToDecl && "Not implemented yet!");
auto *ME = cast<MemberExpr>(Operation);
D = ME->getMemberDecl();
MsgParam = 5;
} else if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Operation)) {
QualType destType = ECE->getType();
bool destTypeComplete = true;
if (!isa<PointerType>(destType))
return;
destType = destType.getTypePtr()->getPointeeType();
if (const auto *D = destType->getAsTagDecl())
destTypeComplete = D->isCompleteDefinition();
// If destination type is incomplete, it is unsafe to cast to anyway, no
// need to check its type:
if (destTypeComplete) {
const uint64_t dSize = Ctx.getTypeSize(destType);
QualType srcType = ECE->getSubExpr()->getType();
assert(srcType->isPointerType());
const uint64_t sSize =
Ctx.getTypeSize(srcType.getTypePtr()->getPointeeType());
if (sSize >= dSize)
return;
}
if (const auto *CE = dyn_cast<CXXMemberCallExpr>(
ECE->getSubExpr()->IgnoreParens())) {
D = CE->getMethodDecl();
}
if (!D)
return;
MsgParam = 4;
}
Loc = Operation->getBeginLoc();
Range = Operation->getSourceRange();
}
if (IsRelatedToDecl) {
assert(!SuggestSuggestions &&
"Variables blamed for unsafe buffer usage without suggestions!");
S.Diag(Loc, diag::note_unsafe_buffer_operation) << MsgParam << Range;
} else {
if (D) {
S.Diag(Loc, diag::warn_unsafe_buffer_operation)
<< MsgParam << D << Range;
} else {
S.Diag(Loc, diag::warn_unsafe_buffer_operation) << MsgParam << Range;
}
if (SuggestSuggestions) {
S.Diag(Loc, diag::note_safe_buffer_usage_suggestions_disabled);
}
}
}
void handleUnsafeLibcCall(const CallExpr *Call, unsigned PrintfInfo,
ASTContext &Ctx,
const Expr *UnsafeArg = nullptr) override {
S.Diag(Call->getBeginLoc(), diag::warn_unsafe_buffer_libc_call)
<< Call->getDirectCallee() // We've checked there is a direct callee
<< Call->getSourceRange();
if (PrintfInfo > 0) {
SourceRange R =
UnsafeArg ? UnsafeArg->getSourceRange() : Call->getSourceRange();
S.Diag(R.getBegin(), diag::note_unsafe_buffer_printf_call)
<< PrintfInfo << R;
}
}
void handleUnsafeOperationInContainer(const Stmt *Operation,
bool IsRelatedToDecl,
ASTContext &Ctx) override {
SourceLocation Loc;
SourceRange Range;
unsigned MsgParam = 0;
// This function only handles SpanTwoParamConstructorGadget so far, which
// always gives a CXXConstructExpr.
const auto *CtorExpr = cast<CXXConstructExpr>(Operation);
Loc = CtorExpr->getLocation();
S.Diag(Loc, diag::warn_unsafe_buffer_usage_in_container);
if (IsRelatedToDecl) {
assert(!SuggestSuggestions &&
"Variables blamed for unsafe buffer usage without suggestions!");
S.Diag(Loc, diag::note_unsafe_buffer_operation) << MsgParam << Range;
}
}
void handleUnsafeVariableGroup(const VarDecl *Variable,
const VariableGroupsManager &VarGrpMgr,
FixItList &&Fixes, const Decl *D,
const FixitStrategy &VarTargetTypes) override {
assert(!SuggestSuggestions &&
"Unsafe buffer usage fixits displayed without suggestions!");
S.Diag(Variable->getLocation(), diag::warn_unsafe_buffer_variable)
<< Variable << (Variable->getType()->isPointerType() ? 0 : 1)
<< Variable->getSourceRange();
if (!Fixes.empty()) {
assert(isa<NamedDecl>(D) &&
"Fix-its are generated only for `NamedDecl`s");
const NamedDecl *ND = cast<NamedDecl>(D);
bool BriefMsg = false;
// If the variable group involves parameters, the diagnostic message will
// NOT explain how the variables are grouped as the reason is non-trivial
// and irrelavant to users' experience:
const auto VarGroupForVD = VarGrpMgr.getGroupOfVar(Variable, &BriefMsg);
unsigned FixItStrategy = 0;
switch (VarTargetTypes.lookup(Variable)) {
case clang::FixitStrategy::Kind::Span:
FixItStrategy = 0;
break;
case clang::FixitStrategy::Kind::Array:
FixItStrategy = 1;
break;
default:
assert(false && "We support only std::span and std::array");
};
const auto &FD =
S.Diag(Variable->getLocation(),
BriefMsg ? diag::note_unsafe_buffer_variable_fixit_together
: diag::note_unsafe_buffer_variable_fixit_group);
FD << Variable << FixItStrategy;
FD << listVariableGroupAsString(Variable, VarGroupForVD)
<< (VarGroupForVD.size() > 1) << ND;
for (const auto &F : Fixes) {
FD << F;
}
}
#ifndef NDEBUG
if (areDebugNotesRequested())
for (const DebugNote &Note: DebugNotesByVar[Variable])
S.Diag(Note.first, diag::note_safe_buffer_debug_mode) << Note.second;
#endif
}
bool isSafeBufferOptOut(const SourceLocation &Loc) const override {
return S.PP.isSafeBufferOptOut(S.getSourceManager(), Loc);
}
bool ignoreUnsafeBufferInContainer(const SourceLocation &Loc) const override {
return S.Diags.isIgnored(diag::warn_unsafe_buffer_usage_in_container, Loc);
}
bool ignoreUnsafeBufferInLibcCall(const SourceLocation &Loc) const override {
return S.Diags.isIgnored(diag::warn_unsafe_buffer_libc_call, Loc);
}
// Returns the text representation of clang::unsafe_buffer_usage attribute.
// `WSSuffix` holds customized "white-space"s, e.g., newline or whilespace
// characters.
std::string
getUnsafeBufferUsageAttributeTextAt(SourceLocation Loc,
StringRef WSSuffix = "") const override {
Preprocessor &PP = S.getPreprocessor();
TokenValue ClangUnsafeBufferUsageTokens[] = {
tok::l_square,
tok::l_square,
PP.getIdentifierInfo("clang"),
tok::coloncolon,
PP.getIdentifierInfo("unsafe_buffer_usage"),
tok::r_square,
tok::r_square};
StringRef MacroName;
// The returned macro (it returns) is guaranteed not to be function-like:
MacroName = PP.getLastMacroWithSpelling(Loc, ClangUnsafeBufferUsageTokens);
if (MacroName.empty())
MacroName = "[[clang::unsafe_buffer_usage]]";
return MacroName.str() + WSSuffix.str();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
// warnings on a function, method, or block.
//===----------------------------------------------------------------------===//
sema::AnalysisBasedWarnings::Policy::Policy() {
enableCheckFallThrough = 1;
enableCheckUnreachable = 0;
enableThreadSafetyAnalysis = 0;
enableConsumedAnalysis = 0;
}
/// InterProceduralData aims to be a storage of whatever data should be passed
/// between analyses of different functions.
///
/// At the moment, its primary goal is to make the information gathered during
/// the analysis of the blocks available during the analysis of the enclosing
/// function. This is important due to the fact that blocks are analyzed before
/// the enclosed function is even parsed fully, so it is not viable to access
/// anything in the outer scope while analyzing the block. On the other hand,
/// re-building CFG for blocks and re-analyzing them when we do have all the
/// information (i.e. during the analysis of the enclosing function) seems to be
/// ill-designed.
class sema::AnalysisBasedWarnings::InterProceduralData {
public:
// It is important to analyze blocks within functions because it's a very
// common pattern to capture completion handler parameters by blocks.
CalledOnceInterProceduralData CalledOnceData;
};
template <typename... Ts>
static bool areAnyEnabled(DiagnosticsEngine &D, SourceLocation Loc,
Ts... Diags) {
return (!D.isIgnored(Diags, Loc) || ...);
}
sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
: S(s), IPData(std::make_unique<InterProceduralData>()),
NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0),
MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0),
NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0),
NumUninitAnalysisBlockVisits(0),
MaxUninitAnalysisBlockVisitsPerFunction(0) {
}
// We need this here for unique_ptr with forward declared class.
sema::AnalysisBasedWarnings::~AnalysisBasedWarnings() = default;
sema::AnalysisBasedWarnings::Policy
sema::AnalysisBasedWarnings::getPolicyInEffectAt(SourceLocation Loc) {
using namespace diag;
DiagnosticsEngine &D = S.getDiagnostics();
Policy P;
// Note: The enabled checks should be kept in sync with the switch in
// SemaPPCallbacks::PragmaDiagnostic().
P.enableCheckUnreachable =
PolicyOverrides.enableCheckUnreachable ||
areAnyEnabled(D, Loc, warn_unreachable, warn_unreachable_break,
warn_unreachable_return, warn_unreachable_loop_increment);
P.enableThreadSafetyAnalysis = PolicyOverrides.enableThreadSafetyAnalysis ||
areAnyEnabled(D, Loc, warn_double_lock);
P.enableConsumedAnalysis = PolicyOverrides.enableConsumedAnalysis ||
areAnyEnabled(D, Loc, warn_use_in_invalid_state);
return P;
}
void sema::AnalysisBasedWarnings::clearOverrides() {
PolicyOverrides.enableCheckUnreachable = false;
PolicyOverrides.enableConsumedAnalysis = false;
PolicyOverrides.enableThreadSafetyAnalysis = false;
}
static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
for (const auto &D : fscope->PossiblyUnreachableDiags)
S.Diag(D.Loc, D.PD);
}
// An AST Visitor that calls a callback function on each callable DEFINITION
// that is NOT in a dependent context:
class CallableVisitor : public DynamicRecursiveASTVisitor {
private:
llvm::function_ref<void(const Decl *)> Callback;
const Module *const TUModule;
public:
CallableVisitor(llvm::function_ref<void(const Decl *)> Callback,
const Module *const TUModule)
: Callback(Callback), TUModule(TUModule) {
ShouldVisitTemplateInstantiations = true;
ShouldVisitImplicitCode = false;
}
bool TraverseDecl(Decl *Node) override {
// For performance reasons, only validate the current translation unit's
// module, and not modules it depends on.
// See https://issues.chromium.org/issues/351909443 for details.
if (Node && Node->getOwningModule() == TUModule)
return DynamicRecursiveASTVisitor::TraverseDecl(Node);
return true;
}
bool VisitFunctionDecl(FunctionDecl *Node) override {
if (cast<DeclContext>(Node)->isDependentContext())
return true; // Not to analyze dependent decl
// `FunctionDecl->hasBody()` returns true if the function has a body
// somewhere defined. But we want to know if this `Node` has a body
// child. So we use `doesThisDeclarationHaveABody`:
if (Node->doesThisDeclarationHaveABody())
Callback(Node);
return true;
}
bool VisitBlockDecl(BlockDecl *Node) override {
if (cast<DeclContext>(Node)->isDependentContext())
return true; // Not to analyze dependent decl
Callback(Node);
return true;
}
bool VisitObjCMethodDecl(ObjCMethodDecl *Node) override {
if (cast<DeclContext>(Node)->isDependentContext())
return true; // Not to analyze dependent decl
if (Node->hasBody())
Callback(Node);
return true;
}
bool VisitLambdaExpr(LambdaExpr *Node) override {
return VisitFunctionDecl(Node->getCallOperator());
}
};
void clang::sema::AnalysisBasedWarnings::IssueWarnings(
TranslationUnitDecl *TU) {
if (!TU)
return; // This is unexpected, give up quietly.
DiagnosticsEngine &Diags = S.getDiagnostics();
if (S.hasUncompilableErrorOccurred() || Diags.getIgnoreAllWarnings())
// exit if having uncompilable errors or ignoring all warnings:
return;
DiagnosticOptions &DiagOpts = Diags.getDiagnosticOptions();
// UnsafeBufferUsage analysis settings.
bool UnsafeBufferUsageCanEmitSuggestions = S.getLangOpts().CPlusPlus20;
bool UnsafeBufferUsageShouldEmitSuggestions = // Should != Can.
UnsafeBufferUsageCanEmitSuggestions &&
DiagOpts.ShowSafeBufferUsageSuggestions;
bool UnsafeBufferUsageShouldSuggestSuggestions =
UnsafeBufferUsageCanEmitSuggestions &&
!DiagOpts.ShowSafeBufferUsageSuggestions;
UnsafeBufferUsageReporter R(S, UnsafeBufferUsageShouldSuggestSuggestions);
// The Callback function that performs analyses:
auto CallAnalyzers = [&](const Decl *Node) -> void {
if (Node->hasAttr<UnsafeBufferUsageAttr>())
return;
// Perform unsafe buffer usage analysis:
if (!Diags.isIgnored(diag::warn_unsafe_buffer_operation,
Node->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_unsafe_buffer_variable,
Node->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_unsafe_buffer_usage_in_container,
Node->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_unsafe_buffer_libc_call,
Node->getBeginLoc())) {
clang::checkUnsafeBufferUsage(Node, R,
UnsafeBufferUsageShouldEmitSuggestions);
}
// More analysis ...
};
// Emit per-function analysis-based warnings that require the whole-TU
// reasoning. Check if any of them is enabled at all before scanning the AST:
if (!Diags.isIgnored(diag::warn_unsafe_buffer_operation, SourceLocation()) ||
!Diags.isIgnored(diag::warn_unsafe_buffer_variable, SourceLocation()) ||
!Diags.isIgnored(diag::warn_unsafe_buffer_usage_in_container,
SourceLocation()) ||
(!Diags.isIgnored(diag::warn_unsafe_buffer_libc_call, SourceLocation()) &&
S.getLangOpts().CPlusPlus /* only warn about libc calls in C++ */)) {
CallableVisitor(CallAnalyzers, TU->getOwningModule())
.TraverseTranslationUnitDecl(TU);
}
}
void clang::sema::AnalysisBasedWarnings::IssueWarnings(
sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope,
const Decl *D, QualType BlockType) {
// We avoid doing analysis-based warnings when there are errors for
// two reasons:
// (1) The CFGs often can't be constructed (if the body is invalid), so
// don't bother trying.
// (2) The code already has problems; running the analysis just takes more
// time.
DiagnosticsEngine &Diags = S.getDiagnostics();
// Do not do any analysis if we are going to just ignore them.
if (Diags.getIgnoreAllWarnings() ||
(Diags.getSuppressSystemWarnings() &&
S.SourceMgr.isInSystemHeader(D->getLocation())))
return;
// For code in dependent contexts, we'll do this at instantiation time.
if (cast<DeclContext>(D)->isDependentContext())
return;
if (S.hasUncompilableErrorOccurred()) {
// Flush out any possibly unreachable diagnostics.
flushDiagnostics(S, fscope);
return;
}
const Stmt *Body = D->getBody();
assert(Body);
// Construct the analysis context with the specified CFG build options.
AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
// Don't generate EH edges for CallExprs as we'd like to avoid the n^2
// explosion for destructors that can result and the compile time hit.
AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
AC.getCFGBuildOptions().AddEHEdges = false;
AC.getCFGBuildOptions().AddInitializers = true;
AC.getCFGBuildOptions().AddImplicitDtors = true;
AC.getCFGBuildOptions().AddTemporaryDtors = true;
AC.getCFGBuildOptions().AddCXXNewAllocator = false;
AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
// Force that certain expressions appear as CFGElements in the CFG. This
// is used to speed up various analyses.
// FIXME: This isn't the right factoring. This is here for initial
// prototyping, but we need a way for analyses to say what expressions they
// expect to always be CFGElements and then fill in the BuildOptions
// appropriately. This is essentially a layering violation.
if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
P.enableConsumedAnalysis) {
// Unreachable code analysis and thread safety require a linearized CFG.
AC.getCFGBuildOptions().setAllAlwaysAdd();
}
else {
AC.getCFGBuildOptions()
.setAlwaysAdd(Stmt::BinaryOperatorClass)
.setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
.setAlwaysAdd(Stmt::BlockExprClass)
.setAlwaysAdd(Stmt::CStyleCastExprClass)
.setAlwaysAdd(Stmt::DeclRefExprClass)
.setAlwaysAdd(Stmt::ImplicitCastExprClass)
.setAlwaysAdd(Stmt::UnaryOperatorClass);
}
bool EnableLifetimeSafetyAnalysis = S.getLangOpts().EnableLifetimeSafety;
// Install the logical handler.
std::optional<LogicalErrorHandler> LEH;
if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
LEH.emplace(S);
AC.getCFGBuildOptions().Observer = &*LEH;
}
// Emit delayed diagnostics.
if (!fscope->PossiblyUnreachableDiags.empty()) {
bool analyzed = false;
// Register the expressions with the CFGBuilder.
for (const auto &D : fscope->PossiblyUnreachableDiags) {
for (const Stmt *S : D.Stmts)
AC.registerForcedBlockExpression(S);
}
if (AC.getCFG()) {
analyzed = true;
for (const auto &D : fscope->PossiblyUnreachableDiags) {
bool AllReachable = true;
for (const Stmt *S : D.Stmts) {
const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
CFGReverseBlockReachabilityAnalysis *cra =
AC.getCFGReachablityAnalysis();
// FIXME: We should be able to assert that block is non-null, but
// the CFG analysis can skip potentially-evaluated expressions in
// edge cases; see test/Sema/vla-2.c.
if (block && cra) {
// Can this block be reached from the entrance?
if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
AllReachable = false;
break;
}
}
// If we cannot map to a basic block, assume the statement is
// reachable.
}
if (AllReachable)
S.Diag(D.Loc, D.PD);
}
}
if (!analyzed)
flushDiagnostics(S, fscope);
}
// Warning: check missing 'return'
if (P.enableCheckFallThrough) {
const CheckFallThroughDiagnostics &CD =
(isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
: (isa<CXXMethodDecl>(D) &&
cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
cast<CXXMethodDecl>(D)->getParent()->isLambda())
? CheckFallThroughDiagnostics::MakeForLambda()
: (fscope->isCoroutine()
? CheckFallThroughDiagnostics::MakeForCoroutine(D)
: CheckFallThroughDiagnostics::MakeForFunction(S, D)));
CheckFallThroughForBody(S, D, Body, BlockType, CD, AC);
}
// Warning: check for unreachable code
if (P.enableCheckUnreachable) {
// Only check for unreachable code on non-template instantiations.
// Different template instantiations can effectively change the control-flow
// and it is very difficult to prove that a snippet of code in a template
// is unreachable for all instantiations.
bool isTemplateInstantiation = false;
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
isTemplateInstantiation = Function->isTemplateInstantiation();
if (!isTemplateInstantiation)
CheckUnreachable(S, AC);
}
// Check for thread safety violations
if (P.enableThreadSafetyAnalysis) {
SourceLocation FL = AC.getDecl()->getLocation();
SourceLocation FEL = AC.getDecl()->getEndLoc();
threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
Reporter.setIssueBetaWarnings(true);
if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
Reporter.setVerbose(true);
threadSafety::runThreadSafetyAnalysis(AC, Reporter,
&S.ThreadSafetyDeclCache);
Reporter.emitDiagnostics();
}
// Check for violations of consumed properties.
if (P.enableConsumedAnalysis) {
consumed::ConsumedWarningsHandler WarningHandler(S);
consumed::ConsumedAnalyzer Analyzer(WarningHandler);
Analyzer.run(AC);
}
if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc()) ||
!Diags.isIgnored(diag::warn_uninit_const_pointer, D->getBeginLoc())) {
if (CFG *cfg = AC.getCFG()) {
UninitValsDiagReporter reporter(S);
UninitVariablesAnalysisStats stats;
std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
reporter, stats);
if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
++NumUninitAnalysisFunctions;
NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
MaxUninitAnalysisVariablesPerFunction =
std::max(MaxUninitAnalysisVariablesPerFunction,
stats.NumVariablesAnalyzed);
MaxUninitAnalysisBlockVisitsPerFunction =
std::max(MaxUninitAnalysisBlockVisitsPerFunction,
stats.NumBlockVisits);
}
}
}
// TODO: Enable lifetime safety analysis for other languages once it is
// stable.
if (EnableLifetimeSafetyAnalysis && S.getLangOpts().CPlusPlus) {
if (AC.getCFG())
lifetimes::runLifetimeSafetyAnalysis(AC);
}
// Check for violations of "called once" parameter properties.
if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus &&
shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) {
if (AC.getCFG()) {
CalledOnceCheckReporter Reporter(S, IPData->CalledOnceData);
checkCalledOnceParameters(
AC, Reporter,
shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc()));
}
}
bool FallThroughDiagFull =
!Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
bool FallThroughDiagPerFunction = !Diags.isIgnored(
diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
if (FallThroughDiagFull || FallThroughDiagPerFunction ||
fscope->HasFallthroughStmt) {
DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
}
if (S.getLangOpts().ObjCWeak &&
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
// Check for infinite self-recursion in functions
if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
D->getBeginLoc())) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
checkRecursiveFunction(S, FD, Body, AC);
}
}
// Check for throw out of non-throwing function.
if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (S.getLangOpts().CPlusPlus && !fscope->isCoroutine() && isNoexcept(FD))
checkThrowInNonThrowingFunc(S, FD, AC);
// If none of the previous checks caused a CFG build, trigger one here
// for the logical error handler.
if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
AC.getCFG();
}
// Clear any of our policy overrides.
clearOverrides();
// Collect statistics about the CFG if it was built.
if (S.CollectStats && AC.isCFGBuilt()) {
++NumFunctionsAnalyzed;
if (CFG *cfg = AC.getCFG()) {
// If we successfully built a CFG for this context, record some more
// detail information about it.
NumCFGBlocks += cfg->getNumBlockIDs();
MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
cfg->getNumBlockIDs());
} else {
++NumFunctionsWithBadCFGs;
}
}
}
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
unsigned AvgCFGBlocksPerFunction =
!NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
<< NumFunctionsWithBadCFGs << " w/o CFGs).\n"
<< " " << NumCFGBlocks << " CFG blocks built.\n"
<< " " << AvgCFGBlocksPerFunction
<< " average CFG blocks per function.\n"
<< " " << MaxCFGBlocksPerFunction
<< " max CFG blocks per function.\n";
unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
: NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
llvm::errs() << NumUninitAnalysisFunctions
<< " functions analyzed for uninitialiazed variables\n"
<< " " << NumUninitAnalysisVariables << " variables analyzed.\n"
<< " " << AvgUninitVariablesPerFunction
<< " average variables per function.\n"
<< " " << MaxUninitAnalysisVariablesPerFunction
<< " max variables per function.\n"
<< " " << NumUninitAnalysisBlockVisits << " block visits.\n"
<< " " << AvgUninitBlockVisitsPerFunction
<< " average block visits per function.\n"
<< " " << MaxUninitAnalysisBlockVisitsPerFunction
<< " max block visits per function.\n";
}