llvm-project/clang/lib/Sema/HeuristicResolver.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

614 lines
22 KiB
C++

//===--- HeuristicResolver.cpp ---------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/HeuristicResolver.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/identity.h"
namespace clang {
namespace {
// Helper class for implementing HeuristicResolver.
// Unlike HeuristicResolver which is a long-lived class,
// a new instance of this class is created for every external
// call into a HeuristicResolver operation. That allows this
// class to store state that's local to such a top-level call,
// particularly "recursion protection sets" that keep track of
// nodes that have already been seen to avoid infinite recursion.
class HeuristicResolverImpl {
public:
HeuristicResolverImpl(ASTContext &Ctx) : Ctx(Ctx) {}
// These functions match the public interface of HeuristicResolver
// (but aren't const since they may modify the recursion protection sets).
std::vector<const NamedDecl *>
resolveMemberExpr(const CXXDependentScopeMemberExpr *ME);
std::vector<const NamedDecl *>
resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE);
std::vector<const NamedDecl *> resolveTypeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *> resolveCalleeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *>
resolveUsingValueDecl(const UnresolvedUsingValueDecl *UUVD);
std::vector<const NamedDecl *>
resolveDependentNameType(const DependentNameType *DNT);
std::vector<const NamedDecl *> resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST);
QualType resolveNestedNameSpecifierToType(NestedNameSpecifier NNS);
QualType getPointeeType(QualType T);
std::vector<const NamedDecl *>
lookupDependentName(CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
TagDecl *resolveTypeToTagDecl(QualType T);
QualType simplifyType(QualType Type, const Expr *E, bool UnwrapPointer);
FunctionProtoTypeLoc getFunctionProtoTypeLoc(const Expr *Fn);
private:
ASTContext &Ctx;
// Recursion protection sets
llvm::SmallSet<const DependentNameType *, 4> SeenDependentNameTypes;
// Given a tag-decl type and a member name, heuristically resolve the
// name to one or more declarations.
// The current heuristic is simply to look up the name in the primary
// template. This is a heuristic because the template could potentially
// have specializations that declare different members.
// Multiple declarations could be returned if the name is overloaded
// (e.g. an overloaded method in the primary template).
// This heuristic will give the desired answer in many cases, e.g.
// for a call to vector<T>::size().
std::vector<const NamedDecl *>
resolveDependentMember(QualType T, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
// Try to heuristically resolve the type of a possibly-dependent expression
// `E`.
QualType resolveExprToType(const Expr *E);
std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E);
bool findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
DeclarationName Name);
};
// Convenience lambdas for use as the 'Filter' parameter of
// HeuristicResolver::resolveDependentMember().
const auto NoFilter = [](const NamedDecl *D) { return true; };
const auto NonStaticFilter = [](const NamedDecl *D) {
return D->isCXXInstanceMember();
};
const auto StaticFilter = [](const NamedDecl *D) {
return !D->isCXXInstanceMember();
};
const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(D); };
const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(D); };
const auto TemplateFilter = [](const NamedDecl *D) {
return isa<TemplateDecl>(D);
};
QualType resolveDeclsToType(const std::vector<const NamedDecl *> &Decls,
ASTContext &Ctx) {
if (Decls.size() != 1) // Names an overload set -- just bail.
return QualType();
if (const auto *TD = dyn_cast<TypeDecl>(Decls[0]))
return Ctx.getCanonicalTypeDeclType(TD);
if (const auto *VD = dyn_cast<ValueDecl>(Decls[0])) {
return VD->getType();
}
return QualType();
}
TemplateName getReferencedTemplateName(const Type *T) {
if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
return TST->getTemplateName();
}
if (const auto *DTST = T->getAs<DeducedTemplateSpecializationType>()) {
return DTST->getTemplateName();
}
return TemplateName();
}
// Helper function for HeuristicResolver::resolveDependentMember()
// which takes a possibly-dependent type `T` and heuristically
// resolves it to a CXXRecordDecl in which we can try name lookup.
TagDecl *HeuristicResolverImpl::resolveTypeToTagDecl(QualType QT) {
const Type *T = QT.getTypePtrOrNull();
if (!T)
return nullptr;
// Unwrap type sugar such as type aliases.
T = T->getCanonicalTypeInternal().getTypePtr();
if (const auto *DNT = T->getAs<DependentNameType>()) {
T = resolveDeclsToType(resolveDependentNameType(DNT), Ctx)
.getTypePtrOrNull();
if (!T)
return nullptr;
T = T->getCanonicalTypeInternal().getTypePtr();
}
if (auto *TD = T->getAsTagDecl()) {
// Template might not be instantiated yet, fall back to primary template
// in such cases.
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
if (CTSD->getTemplateSpecializationKind() == TSK_Undeclared) {
return CTSD->getSpecializedTemplate()->getTemplatedDecl();
}
}
return TD;
}
TemplateName TN = getReferencedTemplateName(T);
if (TN.isNull())
return nullptr;
const ClassTemplateDecl *TD =
dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
if (!TD)
return nullptr;
return TD->getTemplatedDecl();
}
QualType HeuristicResolverImpl::getPointeeType(QualType T) {
if (T.isNull())
return QualType();
if (T->isPointerType())
return T->castAs<PointerType>()->getPointeeType();
// Try to handle smart pointer types.
// Look up operator-> in the primary template. If we find one, it's probably a
// smart pointer type.
auto ArrowOps = resolveDependentMember(
T, Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow), NonStaticFilter);
if (ArrowOps.empty())
return QualType();
// Getting the return type of the found operator-> method decl isn't useful,
// because we discarded template arguments to perform lookup in the primary
// template scope, so the return type would just have the form U* where U is a
// template parameter type.
// Instead, just handle the common case where the smart pointer type has the
// form of SmartPtr<X, ...>, and assume X is the pointee type.
auto *TST = T->getAs<TemplateSpecializationType>();
if (!TST)
return QualType();
if (TST->template_arguments().size() == 0)
return QualType();
const TemplateArgument &FirstArg = TST->template_arguments()[0];
if (FirstArg.getKind() != TemplateArgument::Type)
return QualType();
return FirstArg.getAsType();
}
QualType HeuristicResolverImpl::simplifyType(QualType Type, const Expr *E,
bool UnwrapPointer) {
bool DidUnwrapPointer = false;
// A type, together with an optional expression whose type it represents
// which may have additional information about the expression's type
// not stored in the QualType itself.
struct TypeExprPair {
QualType Type;
const Expr *E = nullptr;
};
TypeExprPair Current{Type, E};
auto SimplifyOneStep = [UnwrapPointer, &DidUnwrapPointer,
this](TypeExprPair T) -> TypeExprPair {
if (UnwrapPointer) {
if (QualType Pointee = getPointeeType(T.Type); !Pointee.isNull()) {
DidUnwrapPointer = true;
return {Pointee};
}
}
if (const auto *RT = T.Type->getAs<ReferenceType>()) {
// Does not count as "unwrap pointer".
return {RT->getPointeeType()};
}
if (const auto *BT = T.Type->getAs<BuiltinType>()) {
// If BaseType is the type of a dependent expression, it's just
// represented as BuiltinType::Dependent which gives us no information. We
// can get further by analyzing the dependent expression.
if (T.E && BT->getKind() == BuiltinType::Dependent) {
return {resolveExprToType(T.E), T.E};
}
}
if (const auto *AT = T.Type->getContainedAutoType()) {
// If T contains a dependent `auto` type, deduction will not have
// been performed on it yet. In simple cases (e.g. `auto` variable with
// initializer), get the approximate type that would result from
// deduction.
// FIXME: A more accurate implementation would propagate things like the
// `const` in `const auto`.
if (T.E && AT->isUndeducedAutoType()) {
if (const auto *DRE = dyn_cast<DeclRefExpr>(T.E)) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
if (auto *Init = VD->getInit())
return {resolveExprToType(Init), Init};
}
}
}
}
if (const auto *TTPT = dyn_cast_if_present<TemplateTypeParmType>(T.Type)) {
// We can't do much useful with a template parameter (e.g. we cannot look
// up member names inside it). However, if the template parameter has a
// default argument, as a heuristic we can replace T with the default
// argument type.
if (const auto *TTPD = TTPT->getDecl()) {
if (TTPD->hasDefaultArgument()) {
const auto &DefaultArg = TTPD->getDefaultArgument().getArgument();
if (DefaultArg.getKind() == TemplateArgument::Type) {
return {DefaultArg.getAsType()};
}
}
}
}
return T;
};
// As an additional protection against infinite loops, bound the number of
// simplification steps.
size_t StepCount = 0;
const size_t MaxSteps = 64;
while (!Current.Type.isNull() && StepCount++ < MaxSteps) {
TypeExprPair New = SimplifyOneStep(Current);
if (New.Type == Current.Type)
break;
Current = New;
}
if (UnwrapPointer && !DidUnwrapPointer)
return QualType();
return Current.Type;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) {
// If the expression has a qualifier, try resolving the member inside the
// qualifier's type.
// Note that we cannot use a NonStaticFilter in either case, for a couple
// of reasons:
// 1. It's valid to access a static member using instance member syntax,
// e.g. `instance.static_member`.
// 2. We can sometimes get a CXXDependentScopeMemberExpr for static
// member syntax too, e.g. if `X::static_member` occurs inside
// an instance method, it's represented as a CXXDependentScopeMemberExpr
// with `this` as the base expression as `X` as the qualifier
// (which could be valid if `X` names a base class after instantiation).
if (NestedNameSpecifier NNS = ME->getQualifier()) {
if (QualType QualifierType = resolveNestedNameSpecifierToType(NNS);
!QualifierType.isNull()) {
auto Decls =
resolveDependentMember(QualifierType, ME->getMember(), NoFilter);
if (!Decls.empty())
return Decls;
}
// Do not proceed to try resolving the member in the expression's base type
// without regard to the qualifier, as that could produce incorrect results.
// For example, `void foo() { this->Base::foo(); }` shouldn't resolve to
// foo() itself!
return {};
}
// Try resolving the member inside the expression's base type.
Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase();
QualType BaseType = ME->getBaseType();
BaseType = simplifyType(BaseType, Base, ME->isArrow());
return resolveDependentMember(BaseType, ME->getMember(), NoFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE) {
QualType Qualifier = resolveNestedNameSpecifierToType(RE->getQualifier());
Qualifier = simplifyType(Qualifier, nullptr, /*UnwrapPointer=*/false);
return resolveDependentMember(Qualifier, RE->getDeclName(), StaticFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTypeOfCallExpr(const CallExpr *CE) {
QualType CalleeType = resolveExprToType(CE->getCallee());
if (CalleeType.isNull())
return {};
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>())
CalleeType = FnTypePtr->getPointeeType();
if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) {
if (const auto *D = resolveTypeToTagDecl(FnType->getReturnType())) {
return {D};
}
}
return {};
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveCalleeOfCallExpr(const CallExpr *CE) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
return {ND};
}
return resolveExprToDecls(CE->getCallee());
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) {
NestedNameSpecifier Qualifier = UUVD->getQualifier();
if (Qualifier.getKind() != NestedNameSpecifier::Kind::Type)
return {};
return resolveDependentMember(QualType(Qualifier.getAsType(), 0),
UUVD->getNameInfo().getName(), ValueFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDependentNameType(const DependentNameType *DNT) {
if (auto [_, inserted] = SeenDependentNameTypes.insert(DNT); !inserted)
return {};
return resolveDependentMember(
resolveNestedNameSpecifierToType(DNT->getQualifier()),
DNT->getIdentifier(), TypeFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) {
const DependentTemplateStorage &DTN = DTST->getDependentTemplateName();
return resolveDependentMember(
resolveNestedNameSpecifierToType(DTN.getQualifier()),
DTN.getName().getIdentifier(), TemplateFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveExprToDecls(const Expr *E) {
if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(E)) {
return resolveMemberExpr(ME);
}
if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
return resolveDeclRefExpr(RE);
}
if (const auto *OE = dyn_cast<OverloadExpr>(E)) {
return {OE->decls_begin(), OE->decls_end()};
}
if (const auto *CE = dyn_cast<CallExpr>(E)) {
return resolveTypeOfCallExpr(CE);
}
if (const auto *ME = dyn_cast<MemberExpr>(E))
return {ME->getMemberDecl()};
return {};
}
QualType HeuristicResolverImpl::resolveExprToType(const Expr *E) {
std::vector<const NamedDecl *> Decls = resolveExprToDecls(E);
if (!Decls.empty())
return resolveDeclsToType(Decls, Ctx);
return E->getType();
}
QualType HeuristicResolverImpl::resolveNestedNameSpecifierToType(
NestedNameSpecifier NNS) {
// The purpose of this function is to handle the dependent (Kind ==
// Identifier) case, but we need to recurse on the prefix because
// that may be dependent as well, so for convenience handle
// the TypeSpec cases too.
switch (NNS.getKind()) {
case NestedNameSpecifier::Kind::Type: {
const auto *T = NNS.getAsType();
// FIXME: Should this handle the DependentTemplateSpecializationType as
// well?
if (const auto *DTN = dyn_cast<DependentNameType>(T))
return resolveDeclsToType(
resolveDependentMember(
resolveNestedNameSpecifierToType(DTN->getQualifier()),
DTN->getIdentifier(), TypeFilter),
Ctx);
return QualType(T, 0);
}
default:
break;
}
return QualType();
}
bool isOrdinaryMember(const NamedDecl *ND) {
return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag |
Decl::IDNS_Member);
}
bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path,
DeclarationName Name) {
Path.Decls = RD->lookup(Name).begin();
for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I)
if (isOrdinaryMember(*I))
return true;
return false;
}
bool HeuristicResolverImpl::findOrdinaryMemberInDependentClasses(
const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
DeclarationName Name) {
TagDecl *TD = resolveTypeToTagDecl(Specifier->getType());
if (const auto *RD = dyn_cast_if_present<CXXRecordDecl>(TD)) {
return findOrdinaryMember(RD, Path, Name);
}
return false;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
std::vector<const NamedDecl *> Results;
// Lookup in the class.
bool AnyOrdinaryMembers = false;
for (const NamedDecl *ND : RD->lookup(Name)) {
if (isOrdinaryMember(ND))
AnyOrdinaryMembers = true;
if (Filter(ND))
Results.push_back(ND);
}
if (AnyOrdinaryMembers)
return Results;
// Perform lookup into our base classes.
CXXBasePaths Paths;
Paths.setOrigin(RD);
if (!RD->lookupInBases(
[&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
return findOrdinaryMemberInDependentClasses(Specifier, Path, Name);
},
Paths, /*LookupInDependent=*/true))
return Results;
for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
I != E; ++I) {
if (isOrdinaryMember(*I) && Filter(*I))
Results.push_back(*I);
}
return Results;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveDependentMember(
QualType QT, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
TagDecl *TD = resolveTypeToTagDecl(QT);
if (!TD)
return {};
if (auto *ED = dyn_cast<EnumDecl>(TD)) {
auto Result = ED->lookup(Name);
return {Result.begin(), Result.end()};
}
if (auto *RD = dyn_cast<CXXRecordDecl>(TD)) {
if (!RD->hasDefinition())
return {};
RD = RD->getDefinition();
return lookupDependentName(RD, Name, [&](const NamedDecl *ND) {
if (!Filter(ND))
return false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) {
return !MD->isInstance() ||
MD->getMethodQualifiers().compatiblyIncludes(QT.getQualifiers(),
Ctx);
}
return true;
});
}
return {};
}
FunctionProtoTypeLoc
HeuristicResolverImpl::getFunctionProtoTypeLoc(const Expr *Fn) {
TypeLoc Target;
const Expr *NakedFn = Fn->IgnoreParenCasts();
if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) {
Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc();
} else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) {
const auto *D = DR->getDecl();
if (const auto *const VD = dyn_cast<VarDecl>(D)) {
Target = VD->getTypeSourceInfo()->getTypeLoc();
}
} else if (const auto *ME = dyn_cast<MemberExpr>(NakedFn)) {
const auto *MD = ME->getMemberDecl();
if (const auto *FD = dyn_cast<FieldDecl>(MD)) {
Target = FD->getTypeSourceInfo()->getTypeLoc();
}
}
if (!Target)
return {};
// Unwrap types that may be wrapping the function type
while (true) {
if (auto P = Target.getAs<PointerTypeLoc>()) {
Target = P.getPointeeLoc();
continue;
}
if (auto A = Target.getAs<AttributedTypeLoc>()) {
Target = A.getModifiedLoc();
continue;
}
if (auto P = Target.getAs<ParenTypeLoc>()) {
Target = P.getInnerLoc();
continue;
}
break;
}
if (auto F = Target.getAs<FunctionProtoTypeLoc>()) {
// In some edge cases the AST can contain a "trivial" FunctionProtoTypeLoc
// which has null parameters. Avoid these as they don't contain useful
// information.
if (llvm::all_of(F.getParams(), llvm::identity<ParmVarDecl *>()))
return F;
}
return {};
}
} // namespace
std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) const {
return HeuristicResolverImpl(Ctx).resolveMemberExpr(ME);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr(
const DependentScopeDeclRefExpr *RE) const {
return HeuristicResolverImpl(Ctx).resolveDeclRefExpr(RE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveTypeOfCallExpr(CE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveCalleeOfCallExpr(CE);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) const {
return HeuristicResolverImpl(Ctx).resolveUsingValueDecl(UUVD);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType(
const DependentNameType *DNT) const {
return HeuristicResolverImpl(Ctx).resolveDependentNameType(DNT);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) const {
return HeuristicResolverImpl(Ctx).resolveTemplateSpecializationType(DTST);
}
QualType HeuristicResolver::resolveNestedNameSpecifierToType(
NestedNameSpecifier NNS) const {
return HeuristicResolverImpl(Ctx).resolveNestedNameSpecifierToType(NNS);
}
std::vector<const NamedDecl *> HeuristicResolver::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
return HeuristicResolverImpl(Ctx).lookupDependentName(RD, Name, Filter);
}
const QualType HeuristicResolver::getPointeeType(QualType T) const {
return HeuristicResolverImpl(Ctx).getPointeeType(T);
}
TagDecl *HeuristicResolver::resolveTypeToTagDecl(QualType T) const {
return HeuristicResolverImpl(Ctx).resolveTypeToTagDecl(T);
}
QualType HeuristicResolver::simplifyType(QualType Type, const Expr *E,
bool UnwrapPointer) {
return HeuristicResolverImpl(Ctx).simplifyType(Type, E, UnwrapPointer);
}
FunctionProtoTypeLoc
HeuristicResolver::getFunctionProtoTypeLoc(const Expr *Fn) const {
return HeuristicResolverImpl(Ctx).getFunctionProtoTypeLoc(Fn);
}
} // namespace clang