
This commit tweaks the interface of `CheckerRegistry::addChecker` to make it more practical for plugins and tests: - The parameter `IsHidden` now defaults to `false` even in the non-templated overload (because setting it to true is unusual, especially in plugins). - The parameter `DocsUri` defaults to the dummy placeholder string `"NoDocsUri"` because (as of now) nothing queries its value from the checker registry (it's only used by the logic that generates the clang-tidy documentation, but that loads it directly from `Checkers.td` without involving the `CheckerRegistry`), so there is no reason to demand specifying this value. In addition to propagating these changes, this commit clarifies, corrects and extends lots of comments and performs various minor code quality improvements in the code of unit tests and example plugins. I originally wrote the bulk of this commit when I was planning to add an extra parameter to `addChecker` in order to implement some technical details of the CheckerFamily framework. At the end I decided against adding that extra parameter, so this cleanup was left out of the PR https://github.com/llvm/llvm-project/pull/139256 and I'm merging it now as a separate commit (after minor tweaks). This commit is mostly NFC: the only functional change is that the analyzer will be compatible with plugins that rely on the default argument values and don't specify `IsHidden` or `DocsUri`. (But existing plugin code will remain valid as well.)
656 lines
21 KiB
C++
656 lines
21 KiB
C++
//===- unittests/StaticAnalyzer/CallDescriptionTest.cpp -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CheckerRegistration.h"
|
|
#include "Reusables.h"
|
|
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Analysis/PathDiagnostic.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Frontend/AnalysisConsumer.h"
|
|
#include "clang/StaticAnalyzer/Frontend/CheckerRegistry.h"
|
|
#include "clang/Tooling/Tooling.h"
|
|
#include "gtest/gtest.h"
|
|
#include <type_traits>
|
|
|
|
namespace clang {
|
|
namespace ento {
|
|
namespace {
|
|
|
|
// A wrapper around CallDescriptionMap<bool> that allows verifying that
|
|
// all functions have been found. This is needed because CallDescriptionMap
|
|
// isn't supposed to support iteration.
|
|
class ResultMap {
|
|
size_t Found, Total;
|
|
CallDescriptionMap<bool> Impl;
|
|
|
|
public:
|
|
ResultMap(std::initializer_list<std::pair<CallDescription, bool>> Data)
|
|
: Found(0), Total(llvm::count(llvm::make_second_range(Data), true)),
|
|
Impl(std::move(Data)) {}
|
|
|
|
const bool *lookup(const CallEvent &Call) {
|
|
const bool *Result = Impl.lookup(Call);
|
|
// If it's a function we expected to find, remember that we've found it.
|
|
if (Result && *Result)
|
|
++Found;
|
|
return Result;
|
|
}
|
|
|
|
// Fail the test if we haven't found all the true-calls we were looking for.
|
|
~ResultMap() { EXPECT_EQ(Found, Total); }
|
|
};
|
|
|
|
// Scan the code body for call expressions and see if we find all calls that
|
|
// we were supposed to find ("true" in the provided ResultMap) and that we
|
|
// don't find the ones that we weren't supposed to find
|
|
// ("false" in the ResultMap).
|
|
template <typename MatchedExprT>
|
|
class CallDescriptionConsumer : public ExprEngineConsumer {
|
|
ResultMap &RM;
|
|
void performTest(const Decl *D) {
|
|
using namespace ast_matchers;
|
|
using T = MatchedExprT;
|
|
|
|
if (!D->hasBody())
|
|
return;
|
|
|
|
const StackFrameContext *SFC =
|
|
Eng.getAnalysisDeclContextManager().getStackFrame(D);
|
|
const ProgramStateRef State = Eng.getInitialState(SFC);
|
|
|
|
// FIXME: Maybe use std::variant and std::visit for these.
|
|
const auto MatcherCreator = []() {
|
|
if (std::is_same<T, CallExpr>::value)
|
|
return callExpr();
|
|
if (std::is_same<T, CXXConstructExpr>::value)
|
|
return cxxConstructExpr();
|
|
if (std::is_same<T, CXXMemberCallExpr>::value)
|
|
return cxxMemberCallExpr();
|
|
if (std::is_same<T, CXXOperatorCallExpr>::value)
|
|
return cxxOperatorCallExpr();
|
|
llvm_unreachable("Only these expressions are supported for now.");
|
|
};
|
|
|
|
const Expr *E = findNode<T>(D, MatcherCreator());
|
|
|
|
CallEventManager &CEMgr = Eng.getStateManager().getCallEventManager();
|
|
CallEventRef<> Call = [=, &CEMgr]() -> CallEventRef<CallEvent> {
|
|
CFGBlock::ConstCFGElementRef ElemRef = {SFC->getCallSiteBlock(),
|
|
SFC->getIndex()};
|
|
if (std::is_base_of<CallExpr, T>::value)
|
|
return CEMgr.getCall(E, State, SFC, ElemRef);
|
|
if (std::is_same<T, CXXConstructExpr>::value)
|
|
return CEMgr.getCXXConstructorCall(cast<CXXConstructExpr>(E),
|
|
/*Target=*/nullptr, State, SFC,
|
|
ElemRef);
|
|
llvm_unreachable("Only these expressions are supported for now.");
|
|
}();
|
|
|
|
// If the call actually matched, check if we really expected it to match.
|
|
const bool *LookupResult = RM.lookup(*Call);
|
|
EXPECT_TRUE(!LookupResult || *LookupResult);
|
|
|
|
// ResultMap is responsible for making sure that we've found *all* calls.
|
|
}
|
|
|
|
public:
|
|
CallDescriptionConsumer(CompilerInstance &C,
|
|
ResultMap &RM)
|
|
: ExprEngineConsumer(C), RM(RM) {}
|
|
|
|
bool HandleTopLevelDecl(DeclGroupRef DG) override {
|
|
for (const auto *D : DG)
|
|
performTest(D);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename MatchedExprT = CallExpr>
|
|
class CallDescriptionAction : public ASTFrontendAction {
|
|
ResultMap RM;
|
|
|
|
public:
|
|
CallDescriptionAction(
|
|
std::initializer_list<std::pair<CallDescription, bool>> Data)
|
|
: RM(Data) {}
|
|
|
|
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &Compiler,
|
|
StringRef File) override {
|
|
return std::make_unique<CallDescriptionConsumer<MatchedExprT>>(Compiler,
|
|
RM);
|
|
}
|
|
};
|
|
|
|
TEST(CallDescription, SimpleNameMatching) {
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"bar"}},
|
|
false}, // false: there's no call to 'bar' in this code.
|
|
{{CDM::SimpleFunc, {"foo"}},
|
|
true}, // true: there's a call to 'foo' in this code.
|
|
})),
|
|
"void foo(); void bar() { foo(); }"));
|
|
}
|
|
|
|
TEST(CallDescription, RequiredArguments) {
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"foo"}, 1}, true},
|
|
{{CDM::SimpleFunc, {"foo"}, 2}, false},
|
|
})),
|
|
"void foo(int); void foo(int, int); void bar() { foo(1); }"));
|
|
}
|
|
|
|
TEST(CallDescription, LackOfRequiredArguments) {
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"foo"}, std::nullopt}, true},
|
|
{{CDM::SimpleFunc, {"foo"}, 2}, false},
|
|
})),
|
|
"void foo(int); void foo(int, int); void bar() { foo(1); }"));
|
|
}
|
|
|
|
constexpr StringRef MockStdStringHeader = R"code(
|
|
namespace std { inline namespace __1 {
|
|
template<typename T> class basic_string {
|
|
class Allocator {};
|
|
public:
|
|
basic_string();
|
|
explicit basic_string(const char*, const Allocator & = Allocator());
|
|
~basic_string();
|
|
T *c_str();
|
|
};
|
|
} // namespace __1
|
|
using string = __1::basic_string<char>;
|
|
} // namespace std
|
|
)code";
|
|
|
|
TEST(CallDescription, QualifiedNames) {
|
|
constexpr StringRef AdditionalCode = R"code(
|
|
void foo() {
|
|
using namespace std;
|
|
basic_string<char> s;
|
|
s.c_str();
|
|
})code";
|
|
const std::string Code = (Twine{MockStdStringHeader} + AdditionalCode).str();
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "basic_string", "c_str"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
|
|
TEST(CallDescription, MatchConstructor) {
|
|
constexpr StringRef AdditionalCode = R"code(
|
|
void foo() {
|
|
using namespace std;
|
|
basic_string<char> s("hello");
|
|
})code";
|
|
const std::string Code = (Twine{MockStdStringHeader} + AdditionalCode).str();
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(
|
|
new CallDescriptionAction<CXXConstructExpr>({
|
|
{{CDM::CXXMethod, {"std", "basic_string", "basic_string"}, 2, 2},
|
|
true},
|
|
})),
|
|
Code));
|
|
}
|
|
|
|
// FIXME: Test matching destructors: {"std", "basic_string", "~basic_string"}
|
|
// This feature is actually implemented, but the test infra is not yet
|
|
// sophisticated enough for testing this. To do that, we will need to
|
|
// implement a much more advanced dispatching mechanism using the CFG for
|
|
// the implicit destructor events.
|
|
|
|
TEST(CallDescription, MatchConversionOperator) {
|
|
constexpr StringRef Code = R"code(
|
|
namespace aaa {
|
|
namespace bbb {
|
|
struct Bar {
|
|
operator int();
|
|
};
|
|
} // bbb
|
|
} // aaa
|
|
void foo() {
|
|
aaa::bbb::Bar x;
|
|
int tmp = x;
|
|
})code";
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"aaa", "bbb", "Bar", "operator int"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
|
|
TEST(CallDescription, RejectOverQualifiedNames) {
|
|
constexpr auto Code = R"code(
|
|
namespace my {
|
|
namespace std {
|
|
struct container {
|
|
const char *data() const;
|
|
};
|
|
} // namespace std
|
|
} // namespace my
|
|
|
|
void foo() {
|
|
using namespace my;
|
|
std::container v;
|
|
v.data();
|
|
})code";
|
|
|
|
// FIXME: We should **not** match.
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "container", "data"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
|
|
TEST(CallDescription, DontSkipNonInlineNamespaces) {
|
|
constexpr auto Code = R"code(
|
|
namespace my {
|
|
/*not inline*/ namespace v1 {
|
|
void bar();
|
|
} // namespace v1
|
|
} // namespace my
|
|
void foo() {
|
|
my::v1::bar();
|
|
})code";
|
|
|
|
{
|
|
SCOPED_TRACE("my v1 bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"my", "v1", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
{
|
|
// FIXME: We should **not** skip non-inline namespaces.
|
|
SCOPED_TRACE("my bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"my", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
}
|
|
|
|
TEST(CallDescription, SkipTopInlineNamespaces) {
|
|
constexpr auto Code = R"code(
|
|
inline namespace my {
|
|
namespace v1 {
|
|
void bar();
|
|
} // namespace v1
|
|
} // namespace my
|
|
void foo() {
|
|
using namespace v1;
|
|
bar();
|
|
})code";
|
|
|
|
{
|
|
SCOPED_TRACE("my v1 bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"my", "v1", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
{
|
|
SCOPED_TRACE("v1 bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"v1", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
}
|
|
|
|
TEST(CallDescription, SkipAnonimousNamespaces) {
|
|
constexpr auto Code = R"code(
|
|
namespace {
|
|
namespace std {
|
|
namespace {
|
|
inline namespace {
|
|
struct container {
|
|
const char *data() const { return nullptr; };
|
|
};
|
|
} // namespace inline anonymous
|
|
} // namespace anonymous
|
|
} // namespace std
|
|
} // namespace anonymous
|
|
|
|
void foo() {
|
|
std::container v;
|
|
v.data();
|
|
})code";
|
|
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "container", "data"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
|
|
TEST(CallDescription, AliasNames) {
|
|
constexpr StringRef AliasNamesCode = R"code(
|
|
namespace std {
|
|
struct container {
|
|
const char *data() const;
|
|
};
|
|
using cont = container;
|
|
} // std
|
|
)code";
|
|
|
|
constexpr StringRef UseAliasInSpelling = R"code(
|
|
void foo() {
|
|
std::cont v;
|
|
v.data();
|
|
})code";
|
|
const std::string UseAliasInSpellingCode =
|
|
(Twine{AliasNamesCode} + UseAliasInSpelling).str();
|
|
|
|
// Test if the code spells the alias, wile we match against the struct name,
|
|
// and again matching against the alias.
|
|
{
|
|
SCOPED_TRACE("Using alias in spelling");
|
|
{
|
|
SCOPED_TRACE("std container data");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "container", "data"}}, true},
|
|
})),
|
|
UseAliasInSpellingCode));
|
|
}
|
|
{
|
|
// FIXME: We should be able to see-through aliases.
|
|
SCOPED_TRACE("std cont data");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "cont", "data"}}, false},
|
|
})),
|
|
UseAliasInSpellingCode));
|
|
}
|
|
}
|
|
|
|
// Test if the code spells the struct name, wile we match against the struct
|
|
// name, and again matching against the alias.
|
|
{
|
|
SCOPED_TRACE("Using struct name in spelling");
|
|
{
|
|
SCOPED_TRACE("std container data");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "container", "data"}}, true},
|
|
})),
|
|
UseAliasInSpellingCode));
|
|
}
|
|
{
|
|
// FIXME: We should be able to see-through aliases.
|
|
SCOPED_TRACE("std cont data");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::CXXMethod, {"std", "cont", "data"}}, false},
|
|
})),
|
|
UseAliasInSpellingCode));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(CallDescription, AliasSingleNamespace) {
|
|
constexpr StringRef Code = R"code(
|
|
namespace aaa {
|
|
namespace bbb {
|
|
namespace ccc {
|
|
void bar();
|
|
}} // namespace bbb::ccc
|
|
namespace bbb_alias = bbb;
|
|
} // namespace aaa
|
|
void foo() {
|
|
aaa::bbb_alias::ccc::bar();
|
|
})code";
|
|
{
|
|
SCOPED_TRACE("aaa bbb ccc bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"aaa", "bbb", "ccc", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
{
|
|
// FIXME: We should be able to see-through namespace aliases.
|
|
SCOPED_TRACE("aaa bbb_alias ccc bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"aaa", "bbb_alias", "ccc", "bar"}}, false},
|
|
})),
|
|
Code));
|
|
}
|
|
}
|
|
|
|
TEST(CallDescription, AliasMultipleNamespaces) {
|
|
constexpr StringRef Code = R"code(
|
|
namespace aaa {
|
|
namespace bbb {
|
|
namespace ccc {
|
|
void bar();
|
|
}}} // namespace aaa::bbb::ccc
|
|
namespace aaa_bbb_ccc = aaa::bbb::ccc;
|
|
void foo() {
|
|
using namespace aaa_bbb_ccc;
|
|
bar();
|
|
})code";
|
|
{
|
|
SCOPED_TRACE("aaa bbb ccc bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"aaa", "bbb", "ccc", "bar"}}, true},
|
|
})),
|
|
Code));
|
|
}
|
|
{
|
|
// FIXME: We should be able to see-through namespace aliases.
|
|
SCOPED_TRACE("aaa_bbb_ccc bar");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::SimpleFunc, {"aaa_bbb_ccc", "bar"}}, false},
|
|
})),
|
|
Code));
|
|
}
|
|
}
|
|
|
|
TEST(CallDescription, NegativeMatchQualifiedNames) {
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>({
|
|
{{CDM::Unspecified, {"foo", "bar"}}, false},
|
|
{{CDM::Unspecified, {"bar", "foo"}}, false},
|
|
{{CDM::Unspecified, {"foo"}}, true},
|
|
})),
|
|
"void foo(); struct bar { void foo(); }; void test() { foo(); }"));
|
|
}
|
|
|
|
TEST(CallDescription, MatchBuiltins) {
|
|
// Test the matching modes CDM::CLibrary and CDM::CLibraryMaybeHardened,
|
|
// which can recognize builtin variants of C library functions.
|
|
{
|
|
SCOPED_TRACE("hardened variants of functions");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>(
|
|
{{{CDM::Unspecified, {"memset"}, 3}, false},
|
|
{{CDM::CLibrary, {"memset"}, 3}, false},
|
|
{{CDM::CLibraryMaybeHardened, {"memset"}, 3}, true}})),
|
|
"void foo() {"
|
|
" int x;"
|
|
" __builtin___memset_chk(&x, 0, sizeof(x),"
|
|
" __builtin_object_size(&x, 0));"
|
|
"}"));
|
|
}
|
|
{
|
|
SCOPED_TRACE("multiple similar builtins");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>(
|
|
{{{CDM::CLibrary, {"memcpy"}, 3}, false},
|
|
{{CDM::CLibrary, {"wmemcpy"}, 3}, true}})),
|
|
R"(void foo(wchar_t *x, wchar_t *y) {
|
|
__builtin_wmemcpy(x, y, sizeof(wchar_t));
|
|
})"));
|
|
}
|
|
{
|
|
SCOPED_TRACE("multiple similar builtins reversed order");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>(
|
|
{{{CDM::CLibrary, {"wmemcpy"}, 3}, true},
|
|
{{CDM::CLibrary, {"memcpy"}, 3}, false}})),
|
|
R"(void foo(wchar_t *x, wchar_t *y) {
|
|
__builtin_wmemcpy(x, y, sizeof(wchar_t));
|
|
})"));
|
|
}
|
|
{
|
|
SCOPED_TRACE("multiple similar builtins with hardened variant");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>(
|
|
{{{CDM::CLibraryMaybeHardened, {"memcpy"}, 3}, false},
|
|
{{CDM::CLibraryMaybeHardened, {"wmemcpy"}, 3}, true}})),
|
|
R"(typedef __typeof(sizeof(int)) size_t;
|
|
extern wchar_t *__wmemcpy_chk (wchar_t *__restrict __s1,
|
|
const wchar_t *__restrict __s2,
|
|
size_t __n, size_t __ns1);
|
|
void foo(wchar_t *x, wchar_t *y) {
|
|
__wmemcpy_chk(x, y, sizeof(wchar_t), 1234);
|
|
})"));
|
|
}
|
|
{
|
|
SCOPED_TRACE(
|
|
"multiple similar builtins with hardened variant reversed order");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(new CallDescriptionAction<>(
|
|
{{{CDM::CLibraryMaybeHardened, {"wmemcpy"}, 3}, true},
|
|
{{CDM::CLibraryMaybeHardened, {"memcpy"}, 3}, false}})),
|
|
R"(typedef __typeof(sizeof(int)) size_t;
|
|
extern wchar_t *__wmemcpy_chk (wchar_t *__restrict __s1,
|
|
const wchar_t *__restrict __s2,
|
|
size_t __n, size_t __ns1);
|
|
void foo(wchar_t *x, wchar_t *y) {
|
|
__wmemcpy_chk(x, y, sizeof(wchar_t), 1234);
|
|
})"));
|
|
}
|
|
{
|
|
SCOPED_TRACE("lookbehind and lookahead mismatches");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(
|
|
new CallDescriptionAction<>({{{CDM::CLibrary, {"func"}}, false}})),
|
|
R"(
|
|
void funcXXX();
|
|
void XXXfunc();
|
|
void XXXfuncXXX();
|
|
void test() {
|
|
funcXXX();
|
|
XXXfunc();
|
|
XXXfuncXXX();
|
|
})"));
|
|
}
|
|
{
|
|
SCOPED_TRACE("lookbehind and lookahead matches");
|
|
EXPECT_TRUE(tooling::runToolOnCode(
|
|
std::unique_ptr<FrontendAction>(
|
|
new CallDescriptionAction<>({{{CDM::CLibrary, {"func"}}, true}})),
|
|
R"(
|
|
void func();
|
|
void func_XXX();
|
|
void XXX_func();
|
|
void XXX_func_XXX();
|
|
|
|
void test() {
|
|
func(); // exact match
|
|
func_XXX();
|
|
XXX_func();
|
|
XXX_func_XXX();
|
|
})"));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Testing through a checker interface.
|
|
//
|
|
// Above, the static analyzer isn't run properly, only the bare minimum to
|
|
// create CallEvents. This causes CallEvents through function pointers to not
|
|
// refer to the pointee function, but this works fine if we run
|
|
// AnalysisASTConsumer.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class CallDescChecker
|
|
: public Checker<check::PreCall, check::PreStmt<CallExpr>> {
|
|
CallDescriptionSet Set = {{CDM::SimpleFunc, {"bar"}, 0}};
|
|
|
|
public:
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const {
|
|
if (Set.contains(Call)) {
|
|
C.getBugReporter().EmitBasicReport(
|
|
Call.getDecl(), this, "CallEvent match", categories::LogicError,
|
|
"CallEvent match",
|
|
PathDiagnosticLocation{Call.getDecl(), C.getSourceManager()});
|
|
}
|
|
}
|
|
|
|
void checkPreStmt(const CallExpr *CE, CheckerContext &C) const {
|
|
if (Set.containsAsWritten(*CE)) {
|
|
C.getBugReporter().EmitBasicReport(
|
|
CE->getCalleeDecl(), this, "CallExpr match", categories::LogicError,
|
|
"CallExpr match",
|
|
PathDiagnosticLocation{CE->getCalleeDecl(), C.getSourceManager()});
|
|
}
|
|
}
|
|
};
|
|
|
|
void addCallDescChecker(AnalysisASTConsumer &AnalysisConsumer,
|
|
AnalyzerOptions &AnOpts) {
|
|
AnOpts.CheckersAndPackages = {{"test.CallDescChecker", true}};
|
|
AnalysisConsumer.AddCheckerRegistrationFn([](CheckerRegistry &Registry) {
|
|
Registry.addChecker<CallDescChecker>("test.CallDescChecker",
|
|
"MockDescription");
|
|
});
|
|
}
|
|
|
|
TEST(CallDescription, CheckCallExprMatching) {
|
|
// Imprecise matching shouldn't catch the call to bar, because its obscured
|
|
// by a function pointer.
|
|
constexpr StringRef FnPtrCode = R"code(
|
|
void bar();
|
|
void foo() {
|
|
void (*fnptr)() = bar;
|
|
fnptr();
|
|
})code";
|
|
std::string Diags;
|
|
EXPECT_TRUE(runCheckerOnCode<addCallDescChecker>(FnPtrCode.str(), Diags,
|
|
/*OnlyEmitWarnings*/ true));
|
|
EXPECT_EQ("test.CallDescChecker: CallEvent match\n", Diags);
|
|
|
|
// This should be caught properly by imprecise matching, as the call is done
|
|
// purely through syntactic means.
|
|
constexpr StringRef Code = R"code(
|
|
void bar();
|
|
void foo() {
|
|
bar();
|
|
})code";
|
|
Diags.clear();
|
|
EXPECT_TRUE(runCheckerOnCode<addCallDescChecker>(Code.str(), Diags,
|
|
/*OnlyEmitWarnings*/ true));
|
|
EXPECT_EQ("test.CallDescChecker: CallEvent match\n"
|
|
"test.CallDescChecker: CallExpr match\n",
|
|
Diags);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace ento
|
|
} // namespace clang
|