Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

415 lines
14 KiB
C++

//===- unittests/StaticAnalyzer/SvalTest.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CheckerRegistration.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Frontend/AnalysisConsumer.h"
#include "clang/StaticAnalyzer/Frontend/CheckerRegistry.h"
#include "clang/Testing/TestClangConfig.h"
#include "clang/Tooling/Tooling.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
namespace clang {
// getType() tests include whole bunch of type comparisons,
// so when something is wrong, it's good to have gtest telling us
// what are those types.
LLVM_ATTRIBUTE_UNUSED std::ostream &operator<<(std::ostream &OS,
const QualType &T) {
return OS << T.getAsString();
}
LLVM_ATTRIBUTE_UNUSED std::ostream &operator<<(std::ostream &OS,
const CanQualType &T) {
return OS << QualType{T};
}
namespace ento {
namespace {
//===----------------------------------------------------------------------===//
// Testing framework implementation
//===----------------------------------------------------------------------===//
/// A simple map from variable names to symbolic values used to init them.
using SVals = llvm::StringMap<SVal>;
/// SValCollector is the barebone of all tests.
///
/// It is implemented as a checker and reacts to binds, so we find
/// symbolic values of interest, and to end analysis, where we actually
/// can test whatever we gathered.
class SValCollector : public Checker<check::Bind, check::EndAnalysis> {
public:
void checkBind(SVal Loc, SVal Val, const Stmt *S, bool AtDeclInit,
CheckerContext &C) const {
// Skip instantly if we finished testing.
// Also, we care only for binds happening in variable initializations.
if (Tested || !isa<DeclStmt>(S))
return;
if (const auto *VR = llvm::dyn_cast_or_null<VarRegion>(Loc.getAsRegion())) {
CollectedSVals[VR->getDescriptiveName(false)] = Val;
}
}
void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,
ExprEngine &Engine) const {
if (!Tested) {
test(Engine, Engine.getContext());
Tested = true;
CollectedSVals.clear();
}
}
/// Helper function for tests to access bound symbolic values.
SVal getByName(StringRef Name) const { return CollectedSVals[Name]; }
private:
/// Entry point for tests.
virtual void test(ExprEngine &Engine, const ASTContext &Context) const = 0;
mutable bool Tested = false;
mutable SVals CollectedSVals;
};
static void expectSameSignAndBitWidth(QualType ExpectedTy, QualType ActualTy,
const ASTContext &Context) {
EXPECT_EQ(ExpectedTy->isUnsignedIntegerType(),
ActualTy->isUnsignedIntegerType());
EXPECT_EQ(Context.getTypeSize(ExpectedTy), Context.getTypeSize(ActualTy));
}
// Fixture class for parameterized SValTest
class SValTest : public testing::TestWithParam<TestClangConfig> {};
// SVAL_TEST is a combined way of providing a short code snippet and
// to test some programmatic predicates on symbolic values produced by the
// engine for the actual code.
//
// Each test has a NAME. One can think of it as a name for normal gtests.
//
// Each test should provide a CODE snippet. Code snippets might contain any
// valid C/C++, but have ONLY ONE defined function. There are no requirements
// about function's name or parameters. It can even be a class method. The
// body of the function must contain a set of variable declarations. Each
// variable declaration gets bound to a symbolic value, so for the following
// example:
//
// int x = <expr>;
//
// `x` will be bound to whatever symbolic value the engine produced for <expr>.
// LIVENESS and REASSIGNMENTS don't affect this binding.
//
// During the test the actual values can be accessed via `getByName` function,
// and, for the `x`-bound value, one must use "x" as its name.
//
// Example:
// SVAL_TEST(SimpleSValTest, R"(
// void foo() {
// int x = 42;
// })") {
// SVal X = getByName("x");
// EXPECT_TRUE(X.isConstant(42));
// }
#define SVAL_TEST(NAME, CODE) \
class NAME##SValCollector final : public SValCollector { \
public: \
void test(ExprEngine &Engine, const ASTContext &Context) const override; \
}; \
\
void add##NAME##SValCollector(AnalysisASTConsumer &AnalysisConsumer, \
AnalyzerOptions &AnOpts) { \
AnOpts.CheckersAndPackages = {{"test." #NAME "SValColl", true}}; \
AnalysisConsumer.AddCheckerRegistrationFn([](CheckerRegistry &Registry) { \
Registry.addChecker<NAME##SValCollector>("test." #NAME "SValColl", \
"MockDescription"); \
}); \
} \
\
TEST_P(SValTest, NAME) { \
EXPECT_TRUE(runCheckerOnCodeWithArgs<add##NAME##SValCollector>( \
CODE, GetParam().getCommandLineArgs())); \
} \
void NAME##SValCollector::test(ExprEngine &Engine, \
const ASTContext &Context) const
//===----------------------------------------------------------------------===//
// Actual tests
//===----------------------------------------------------------------------===//
SVAL_TEST(GetConstType, R"(
void foo() {
int x = 42;
int *y = nullptr;
bool z = true;
})") {
SVal X = getByName("x");
ASSERT_FALSE(X.getType(Context).isNull());
EXPECT_EQ(Context.IntTy, X.getType(Context));
SVal Y = getByName("y");
ASSERT_FALSE(Y.getType(Context).isNull());
expectSameSignAndBitWidth(Context.getUIntPtrType(), Y.getType(Context),
Context);
SVal Z = getByName("z");
ASSERT_FALSE(Z.getType(Context).isNull());
EXPECT_EQ(Context.BoolTy, Z.getType(Context));
}
SVAL_TEST(GetLocAsIntType, R"(
void foo(int *x) {
long int a = (long long int)x;
unsigned b = (long long unsigned)&a;
int c = (long long int)nullptr;
})") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
// TODO: Turn it into signed long
expectSameSignAndBitWidth(Context.UnsignedLongTy, A.getType(Context),
Context);
SVal B = getByName("b");
ASSERT_FALSE(B.getType(Context).isNull());
expectSameSignAndBitWidth(Context.UnsignedIntTy, B.getType(Context), Context);
SVal C = getByName("c");
ASSERT_FALSE(C.getType(Context).isNull());
expectSameSignAndBitWidth(Context.IntTy, C.getType(Context), Context);
}
SVAL_TEST(GetSymExprType, R"(
void foo(int a, int b) {
int x = a;
int y = a + b;
long z = a;
})") {
QualType Int = Context.IntTy;
SVal X = getByName("x");
ASSERT_FALSE(X.getType(Context).isNull());
EXPECT_EQ(Int, X.getType(Context));
SVal Y = getByName("y");
ASSERT_FALSE(Y.getType(Context).isNull());
EXPECT_EQ(Int, Y.getType(Context));
// TODO: Change to Long when we support symbolic casts
SVal Z = getByName("z");
ASSERT_FALSE(Z.getType(Context).isNull());
EXPECT_EQ(Int, Z.getType(Context));
}
SVAL_TEST(GetPointerType, R"(
int *bar();
int &foobar();
struct Z {
int a;
int *b;
};
void foo(int x, int *y, Z z) {
int &a = x;
int &b = *y;
int &c = *bar();
int &d = foobar();
int &e = z.a;
int &f = *z.b;
})") {
QualType Int = Context.IntTy;
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
const auto *APtrTy = dyn_cast<PointerType>(A.getType(Context));
ASSERT_NE(APtrTy, nullptr);
EXPECT_EQ(Int, APtrTy->getPointeeType());
SVal B = getByName("b");
ASSERT_FALSE(B.getType(Context).isNull());
const auto *BPtrTy = dyn_cast<PointerType>(B.getType(Context));
ASSERT_NE(BPtrTy, nullptr);
EXPECT_EQ(Int, BPtrTy->getPointeeType());
SVal C = getByName("c");
ASSERT_FALSE(C.getType(Context).isNull());
const auto *CPtrTy = dyn_cast<PointerType>(C.getType(Context));
ASSERT_NE(CPtrTy, nullptr);
EXPECT_EQ(Int, CPtrTy->getPointeeType());
SVal D = getByName("d");
ASSERT_FALSE(D.getType(Context).isNull());
const auto *DRefTy = dyn_cast<LValueReferenceType>(D.getType(Context));
ASSERT_NE(DRefTy, nullptr);
EXPECT_EQ(Int, DRefTy->getPointeeType());
SVal E = getByName("e");
ASSERT_FALSE(E.getType(Context).isNull());
const auto *EPtrTy = dyn_cast<PointerType>(E.getType(Context));
ASSERT_NE(EPtrTy, nullptr);
EXPECT_EQ(Int, EPtrTy->getPointeeType());
SVal F = getByName("f");
ASSERT_FALSE(F.getType(Context).isNull());
const auto *FPtrTy = dyn_cast<PointerType>(F.getType(Context));
ASSERT_NE(FPtrTy, nullptr);
EXPECT_EQ(Int, FPtrTy->getPointeeType());
}
SVAL_TEST(GetCompoundType, R"(
struct TestStruct {
int a, b;
};
union TestUnion {
int a;
float b;
TestStruct c;
};
void foo(int x) {
int a[] = {1, x, 2};
TestStruct b = {x, 42};
TestUnion c = {42};
TestUnion d = {.c=b};
}
)") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
const auto *AArrayType = dyn_cast<ArrayType>(A.getType(Context));
ASSERT_NE(AArrayType, nullptr);
EXPECT_EQ(Context.IntTy, AArrayType->getElementType());
SVal B = getByName("b");
ASSERT_FALSE(B.getType(Context).isNull());
const auto *BRecordType = dyn_cast<RecordType>(B.getType(Context));
ASSERT_NE(BRecordType, nullptr);
EXPECT_EQ("TestStruct", BRecordType->getOriginalDecl()->getName());
SVal C = getByName("c");
ASSERT_FALSE(C.getType(Context).isNull());
const auto *CRecordType = dyn_cast<RecordType>(C.getType(Context));
ASSERT_NE(CRecordType, nullptr);
EXPECT_EQ("TestUnion", CRecordType->getOriginalDecl()->getName());
auto D = getByName("d").getAs<nonloc::CompoundVal>();
ASSERT_TRUE(D.has_value());
auto Begin = D->begin();
ASSERT_NE(D->end(), Begin);
++Begin;
ASSERT_EQ(D->end(), Begin);
auto LD = D->begin()->getAs<nonloc::LazyCompoundVal>();
ASSERT_TRUE(LD.has_value());
auto LDT = LD->getType(Context);
ASSERT_FALSE(LDT.isNull());
const auto *DRecordType = dyn_cast<RecordType>(LDT);
ASSERT_NE(DRecordType, nullptr);
EXPECT_EQ("TestStruct", DRecordType->getOriginalDecl()->getName());
}
SVAL_TEST(GetStringType, R"(
void foo() {
const char *a = "Hello, world!";
}
)") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
const auto *APtrTy = dyn_cast<PointerType>(A.getType(Context));
ASSERT_NE(APtrTy, nullptr);
EXPECT_EQ(Context.CharTy, APtrTy->getPointeeType());
}
SVAL_TEST(GetThisType, R"(
class TestClass {
void foo();
};
void TestClass::foo() {
const auto *a = this;
}
)") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
const auto *APtrTy = dyn_cast<PointerType>(A.getType(Context));
ASSERT_NE(APtrTy, nullptr);
const auto *ARecordType = dyn_cast<RecordType>(APtrTy->getPointeeType());
ASSERT_NE(ARecordType, nullptr);
EXPECT_EQ("TestClass", ARecordType->getOriginalDecl()->getName());
}
SVAL_TEST(GetFunctionPtrType, R"(
void bar();
void foo() {
auto *a = &bar;
}
)") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
const auto *APtrTy = dyn_cast<PointerType>(A.getType(Context));
ASSERT_NE(APtrTy, nullptr);
ASSERT_TRUE(isa<FunctionProtoType>(APtrTy->getPointeeType()));
}
SVAL_TEST(GetLabelType, R"(
void foo() {
entry:
void *a = &&entry;
char *b = (char *)&&entry;
}
)") {
SVal A = getByName("a");
ASSERT_FALSE(A.getType(Context).isNull());
EXPECT_EQ(Context.VoidPtrTy, A.getType(Context));
SVal B = getByName("a");
ASSERT_FALSE(B.getType(Context).isNull());
// TODO: Change to CharTy when we support symbolic casts
EXPECT_EQ(Context.VoidPtrTy, B.getType(Context));
}
std::vector<TestClangConfig> allTestClangConfigs() {
std::vector<TestClangConfig> all_configs;
TestClangConfig config;
config.Language = Lang_CXX14;
for (std::string target :
{"i686-pc-windows-msvc", "i686-apple-darwin9",
"x86_64-apple-darwin9", "x86_64-scei-ps4",
"x86_64-windows-msvc", "x86_64-unknown-linux",
"x86_64-apple-macosx", "x86_64-apple-ios14.0",
"wasm32-unknown-unknown", "wasm64-unknown-unknown",
"thumb-pc-win32", "sparc64-none-openbsd",
"sparc-none-none", "riscv64-unknown-linux",
"ppc64-windows-msvc", "powerpc-ibm-aix",
"powerpc64-ibm-aix", "s390x-ibm-zos",
"armv7-pc-windows-msvc", "aarch64-pc-windows-msvc",
"xcore-xmos-elf"}) {
config.Target = target;
all_configs.push_back(config);
}
return all_configs;
}
INSTANTIATE_TEST_SUITE_P(SValTests, SValTest,
testing::ValuesIn(allTestClangConfigs()));
} // namespace
} // namespace ento
} // namespace clang