
This revision removes the createIndexConstant method, which implicitly creates constants of the getIndexType type and updates all uses to the more explicit createIndexAttrConstant which requires an explicit Type parameter. This is an NFC step towards entangling index type conversion in LLVM lowering. The selection of which index type to use requires finer granularity than the existing implementations which all rely on pass level flags and end up in mismatches, especially on GPUs with multiple address spaces of different capacities. This revision also includes an NFC fix to MemRefToLLVM.cpp that prevents a crash in cases where an integer memory space cannot be derived for a MemRef. Differential Revision: https://reviews.llvm.org/D156854
376 lines
15 KiB
C++
376 lines
15 KiB
C++
//===- Pattern.cpp - Conversion pattern to the LLVM dialect ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
|
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConvertToLLVMPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConvertToLLVMPattern::ConvertToLLVMPattern(StringRef rootOpName,
|
|
MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter,
|
|
PatternBenefit benefit)
|
|
: ConversionPattern(typeConverter, rootOpName, benefit, context) {}
|
|
|
|
LLVMTypeConverter *ConvertToLLVMPattern::getTypeConverter() const {
|
|
return static_cast<LLVMTypeConverter *>(
|
|
ConversionPattern::getTypeConverter());
|
|
}
|
|
|
|
LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const {
|
|
return *getTypeConverter()->getDialect();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getIndexType() const {
|
|
return getTypeConverter()->getIndexType();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getIntPtrType(unsigned addressSpace) const {
|
|
return IntegerType::get(&getTypeConverter()->getContext(),
|
|
getTypeConverter()->getPointerBitwidth(addressSpace));
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getVoidType() const {
|
|
return LLVM::LLVMVoidType::get(&getTypeConverter()->getContext());
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getVoidPtrType() const {
|
|
return getTypeConverter()->getPointerType(
|
|
IntegerType::get(&getTypeConverter()->getContext(), 8));
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::createIndexAttrConstant(OpBuilder &builder,
|
|
Location loc,
|
|
Type resultType,
|
|
int64_t value) {
|
|
return builder.create<LLVM::ConstantOp>(loc, resultType,
|
|
builder.getIndexAttr(value));
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getStridedElementPtr(
|
|
Location loc, MemRefType type, Value memRefDesc, ValueRange indices,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
|
|
auto [strides, offset] = getStridesAndOffset(type);
|
|
|
|
MemRefDescriptor memRefDescriptor(memRefDesc);
|
|
// Use a canonical representation of the start address so that later
|
|
// optimizations have a longer sequence of instructions to CSE.
|
|
// If we don't do that we would sprinkle the memref.offset in various
|
|
// position of the different address computations.
|
|
Value base =
|
|
memRefDescriptor.bufferPtr(rewriter, loc, *getTypeConverter(), type);
|
|
|
|
Type indexType = getIndexType();
|
|
Value index;
|
|
for (int i = 0, e = indices.size(); i < e; ++i) {
|
|
Value increment = indices[i];
|
|
if (strides[i] != 1) { // Skip if stride is 1.
|
|
Value stride =
|
|
ShapedType::isDynamic(strides[i])
|
|
? memRefDescriptor.stride(rewriter, loc, i)
|
|
: createIndexAttrConstant(rewriter, loc, indexType, strides[i]);
|
|
increment = rewriter.create<LLVM::MulOp>(loc, increment, stride);
|
|
}
|
|
index =
|
|
index ? rewriter.create<LLVM::AddOp>(loc, index, increment) : increment;
|
|
}
|
|
|
|
Type elementPtrType = memRefDescriptor.getElementPtrType();
|
|
return index ? rewriter.create<LLVM::GEPOp>(
|
|
loc, elementPtrType,
|
|
getTypeConverter()->convertType(type.getElementType()),
|
|
base, index)
|
|
: base;
|
|
}
|
|
|
|
// Check if the MemRefType `type` is supported by the lowering. We currently
|
|
// only support memrefs with identity maps.
|
|
bool ConvertToLLVMPattern::isConvertibleAndHasIdentityMaps(
|
|
MemRefType type) const {
|
|
if (!typeConverter->convertType(type.getElementType()))
|
|
return false;
|
|
return type.getLayout().isIdentity();
|
|
}
|
|
|
|
Type ConvertToLLVMPattern::getElementPtrType(MemRefType type) const {
|
|
auto elementType = type.getElementType();
|
|
auto structElementType = typeConverter->convertType(elementType);
|
|
auto addressSpace = getTypeConverter()->getMemRefAddressSpace(type);
|
|
if (failed(addressSpace))
|
|
return {};
|
|
return getTypeConverter()->getPointerType(structElementType, *addressSpace);
|
|
}
|
|
|
|
void ConvertToLLVMPattern::getMemRefDescriptorSizes(
|
|
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
|
|
ConversionPatternRewriter &rewriter, SmallVectorImpl<Value> &sizes,
|
|
SmallVectorImpl<Value> &strides, Value &size, bool sizeInBytes) const {
|
|
assert(isConvertibleAndHasIdentityMaps(memRefType) &&
|
|
"layout maps must have been normalized away");
|
|
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
|
|
static_cast<ssize_t>(dynamicSizes.size()) &&
|
|
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
|
|
|
|
sizes.reserve(memRefType.getRank());
|
|
unsigned dynamicIndex = 0;
|
|
Type indexType = getIndexType();
|
|
for (int64_t size : memRefType.getShape()) {
|
|
sizes.push_back(
|
|
size == ShapedType::kDynamic
|
|
? dynamicSizes[dynamicIndex++]
|
|
: createIndexAttrConstant(rewriter, loc, indexType, size));
|
|
}
|
|
|
|
// Strides: iterate sizes in reverse order and multiply.
|
|
int64_t stride = 1;
|
|
Value runningStride = createIndexAttrConstant(rewriter, loc, indexType, 1);
|
|
strides.resize(memRefType.getRank());
|
|
for (auto i = memRefType.getRank(); i-- > 0;) {
|
|
strides[i] = runningStride;
|
|
|
|
int64_t staticSize = memRefType.getShape()[i];
|
|
if (staticSize == 0)
|
|
continue;
|
|
bool useSizeAsStride = stride == 1;
|
|
if (staticSize == ShapedType::kDynamic)
|
|
stride = ShapedType::kDynamic;
|
|
if (stride != ShapedType::kDynamic)
|
|
stride *= staticSize;
|
|
|
|
if (useSizeAsStride)
|
|
runningStride = sizes[i];
|
|
else if (stride == ShapedType::kDynamic)
|
|
runningStride =
|
|
rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[i]);
|
|
else
|
|
runningStride = createIndexAttrConstant(rewriter, loc, indexType, stride);
|
|
}
|
|
if (sizeInBytes) {
|
|
// Buffer size in bytes.
|
|
Type elementType = typeConverter->convertType(memRefType.getElementType());
|
|
Type elementPtrType = getTypeConverter()->getPointerType(elementType);
|
|
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
|
|
Value gepPtr = rewriter.create<LLVM::GEPOp>(
|
|
loc, elementPtrType, elementType, nullPtr, runningStride);
|
|
size = rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
|
|
} else {
|
|
size = runningStride;
|
|
}
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getSizeInBytes(
|
|
Location loc, Type type, ConversionPatternRewriter &rewriter) const {
|
|
// Compute the size of an individual element. This emits the MLIR equivalent
|
|
// of the following sizeof(...) implementation in LLVM IR:
|
|
// %0 = getelementptr %elementType* null, %indexType 1
|
|
// %1 = ptrtoint %elementType* %0 to %indexType
|
|
// which is a common pattern of getting the size of a type in bytes.
|
|
Type llvmType = typeConverter->convertType(type);
|
|
auto convertedPtrType = getTypeConverter()->getPointerType(llvmType);
|
|
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
|
|
auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType, llvmType,
|
|
nullPtr, ArrayRef<LLVM::GEPArg>{1});
|
|
return rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
|
|
}
|
|
|
|
Value ConvertToLLVMPattern::getNumElements(
|
|
Location loc, MemRefType memRefType, ValueRange dynamicSizes,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
assert(count(memRefType.getShape(), ShapedType::kDynamic) ==
|
|
static_cast<ssize_t>(dynamicSizes.size()) &&
|
|
"dynamicSizes size doesn't match dynamic sizes count in memref shape");
|
|
|
|
Type indexType = getIndexType();
|
|
Value numElements = memRefType.getRank() == 0
|
|
? createIndexAttrConstant(rewriter, loc, indexType, 1)
|
|
: nullptr;
|
|
unsigned dynamicIndex = 0;
|
|
|
|
// Compute the total number of memref elements.
|
|
for (int64_t staticSize : memRefType.getShape()) {
|
|
if (numElements) {
|
|
Value size =
|
|
staticSize == ShapedType::kDynamic
|
|
? dynamicSizes[dynamicIndex++]
|
|
: createIndexAttrConstant(rewriter, loc, indexType, staticSize);
|
|
numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size);
|
|
} else {
|
|
numElements =
|
|
staticSize == ShapedType::kDynamic
|
|
? dynamicSizes[dynamicIndex++]
|
|
: createIndexAttrConstant(rewriter, loc, indexType, staticSize);
|
|
}
|
|
}
|
|
return numElements;
|
|
}
|
|
|
|
/// Creates and populates the memref descriptor struct given all its fields.
|
|
MemRefDescriptor ConvertToLLVMPattern::createMemRefDescriptor(
|
|
Location loc, MemRefType memRefType, Value allocatedPtr, Value alignedPtr,
|
|
ArrayRef<Value> sizes, ArrayRef<Value> strides,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto structType = typeConverter->convertType(memRefType);
|
|
auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);
|
|
|
|
// Field 1: Allocated pointer, used for malloc/free.
|
|
memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedPtr);
|
|
|
|
// Field 2: Actual aligned pointer to payload.
|
|
memRefDescriptor.setAlignedPtr(rewriter, loc, alignedPtr);
|
|
|
|
// Field 3: Offset in aligned pointer.
|
|
Type indexType = getIndexType();
|
|
memRefDescriptor.setOffset(
|
|
rewriter, loc, createIndexAttrConstant(rewriter, loc, indexType, 0));
|
|
|
|
// Fields 4: Sizes.
|
|
for (const auto &en : llvm::enumerate(sizes))
|
|
memRefDescriptor.setSize(rewriter, loc, en.index(), en.value());
|
|
|
|
// Field 5: Strides.
|
|
for (const auto &en : llvm::enumerate(strides))
|
|
memRefDescriptor.setStride(rewriter, loc, en.index(), en.value());
|
|
|
|
return memRefDescriptor;
|
|
}
|
|
|
|
LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
|
|
OpBuilder &builder, Location loc, TypeRange origTypes,
|
|
SmallVectorImpl<Value> &operands, bool toDynamic) const {
|
|
assert(origTypes.size() == operands.size() &&
|
|
"expected as may original types as operands");
|
|
|
|
// Find operands of unranked memref type and store them.
|
|
SmallVector<UnrankedMemRefDescriptor> unrankedMemrefs;
|
|
SmallVector<unsigned> unrankedAddressSpaces;
|
|
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
|
|
if (auto memRefType = dyn_cast<UnrankedMemRefType>(origTypes[i])) {
|
|
unrankedMemrefs.emplace_back(operands[i]);
|
|
FailureOr<unsigned> addressSpace =
|
|
getTypeConverter()->getMemRefAddressSpace(memRefType);
|
|
if (failed(addressSpace))
|
|
return failure();
|
|
unrankedAddressSpaces.emplace_back(*addressSpace);
|
|
}
|
|
}
|
|
|
|
if (unrankedMemrefs.empty())
|
|
return success();
|
|
|
|
// Compute allocation sizes.
|
|
SmallVector<Value> sizes;
|
|
UnrankedMemRefDescriptor::computeSizes(builder, loc, *getTypeConverter(),
|
|
unrankedMemrefs, unrankedAddressSpaces,
|
|
sizes);
|
|
|
|
// Get frequently used types.
|
|
Type indexType = getTypeConverter()->getIndexType();
|
|
|
|
// Find the malloc and free, or declare them if necessary.
|
|
auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>();
|
|
LLVM::LLVMFuncOp freeFunc, mallocFunc;
|
|
if (toDynamic)
|
|
mallocFunc = LLVM::lookupOrCreateMallocFn(
|
|
module, indexType, getTypeConverter()->useOpaquePointers());
|
|
if (!toDynamic)
|
|
freeFunc = LLVM::lookupOrCreateFreeFn(
|
|
module, getTypeConverter()->useOpaquePointers());
|
|
|
|
unsigned unrankedMemrefPos = 0;
|
|
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
|
|
Type type = origTypes[i];
|
|
if (!isa<UnrankedMemRefType>(type))
|
|
continue;
|
|
Value allocationSize = sizes[unrankedMemrefPos++];
|
|
UnrankedMemRefDescriptor desc(operands[i]);
|
|
|
|
// Allocate memory, copy, and free the source if necessary.
|
|
Value memory =
|
|
toDynamic
|
|
? builder.create<LLVM::CallOp>(loc, mallocFunc, allocationSize)
|
|
.getResult()
|
|
: builder.create<LLVM::AllocaOp>(loc, getVoidPtrType(),
|
|
IntegerType::get(getContext(), 8),
|
|
allocationSize,
|
|
/*alignment=*/0);
|
|
Value source = desc.memRefDescPtr(builder, loc);
|
|
builder.create<LLVM::MemcpyOp>(loc, memory, source, allocationSize, false);
|
|
if (!toDynamic)
|
|
builder.create<LLVM::CallOp>(loc, freeFunc, source);
|
|
|
|
// Create a new descriptor. The same descriptor can be returned multiple
|
|
// times, attempting to modify its pointer can lead to memory leaks
|
|
// (allocated twice and overwritten) or double frees (the caller does not
|
|
// know if the descriptor points to the same memory).
|
|
Type descriptorType = getTypeConverter()->convertType(type);
|
|
if (!descriptorType)
|
|
return failure();
|
|
auto updatedDesc =
|
|
UnrankedMemRefDescriptor::undef(builder, loc, descriptorType);
|
|
Value rank = desc.rank(builder, loc);
|
|
updatedDesc.setRank(builder, loc, rank);
|
|
updatedDesc.setMemRefDescPtr(builder, loc, memory);
|
|
|
|
operands[i] = updatedDesc;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Detail methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Replaces the given operation "op" with a new operation of type "targetOp"
|
|
/// and given operands.
|
|
LogicalResult LLVM::detail::oneToOneRewrite(
|
|
Operation *op, StringRef targetOp, ValueRange operands,
|
|
ArrayRef<NamedAttribute> targetAttrs, LLVMTypeConverter &typeConverter,
|
|
ConversionPatternRewriter &rewriter) {
|
|
unsigned numResults = op->getNumResults();
|
|
|
|
SmallVector<Type> resultTypes;
|
|
if (numResults != 0) {
|
|
resultTypes.push_back(
|
|
typeConverter.packOperationResults(op->getResultTypes()));
|
|
if (!resultTypes.back())
|
|
return failure();
|
|
}
|
|
|
|
// Create the operation through state since we don't know its C++ type.
|
|
Operation *newOp =
|
|
rewriter.create(op->getLoc(), rewriter.getStringAttr(targetOp), operands,
|
|
resultTypes, targetAttrs);
|
|
|
|
// If the operation produced 0 or 1 result, return them immediately.
|
|
if (numResults == 0)
|
|
return rewriter.eraseOp(op), success();
|
|
if (numResults == 1)
|
|
return rewriter.replaceOp(op, newOp->getResult(0)), success();
|
|
|
|
// Otherwise, it had been converted to an operation producing a structure.
|
|
// Extract individual results from the structure and return them as list.
|
|
SmallVector<Value, 4> results;
|
|
results.reserve(numResults);
|
|
for (unsigned i = 0; i < numResults; ++i) {
|
|
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
|
|
op->getLoc(), newOp->getResult(0), i));
|
|
}
|
|
rewriter.replaceOp(op, results);
|
|
return success();
|
|
}
|