
Summary: Currently we map function summaries to names (i.e. strings). We can associate more summaries with different signatures to one name, this way we support overloading. During a call event we check whether the signature of the summary matches the signature of the callee and we apply the summary only in that case. In this patch we change this mapping to associate a summary to a FunctionDecl. We do lookup operations when the summary map is initialized. We lookup the given name and we match the signature of the given summary against the lookup results. If the summary matches the FunctionDecl (got from the lookup result) then we add that to the summary map. During a call event we compare FunctionDecl pointers. Advantages of this new refactor: - Cleaner mapping and structure for the checker. - Possibly way more efficient handling of call events. - A summary is added only if that is relevant for the given TU. - We can get the concrete FunctionDecl by the time when we create the summary, this opens up possibilities of further sanity checks regarding the summary cases and argument constraints. - Opens up to future work when we'd like to store summaries from IR to a FunctionDecl (or from the Attributor results of the given FunctionDecl). Note, we cannot support old C functions without prototypes. Reviewers: NoQ, Szelethus, balazske, jdoerfert, sstefan1, uenoku Subscribers: whisperity, xazax.hun, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp, gamesh411, Charusso, steakhal, uenoku, ASDenysPetrov, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D77641
960 lines
40 KiB
C++
960 lines
40 KiB
C++
//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This checker improves modeling of a few simple library functions.
|
|
//
|
|
// This checker provides a specification format - `Summary' - and
|
|
// contains descriptions of some library functions in this format. Each
|
|
// specification contains a list of branches for splitting the program state
|
|
// upon call, and range constraints on argument and return-value symbols that
|
|
// are satisfied on each branch. This spec can be expanded to include more
|
|
// items, like external effects of the function.
|
|
//
|
|
// The main difference between this approach and the body farms technique is
|
|
// in more explicit control over how many branches are produced. For example,
|
|
// consider standard C function `ispunct(int x)', which returns a non-zero value
|
|
// iff `x' is a punctuation character, that is, when `x' is in range
|
|
// ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~'].
|
|
// `Summary' provides only two branches for this function. However,
|
|
// any attempt to describe this range with if-statements in the body farm
|
|
// would result in many more branches. Because each branch needs to be analyzed
|
|
// independently, this significantly reduces performance. Additionally,
|
|
// once we consider a branch on which `x' is in range, say, ['!', '/'],
|
|
// we assume that such branch is an important separate path through the program,
|
|
// which may lead to false positives because considering this particular path
|
|
// was not consciously intended, and therefore it might have been unreachable.
|
|
//
|
|
// This checker uses eval::Call for modeling pure functions (functions without
|
|
// side effets), for which their `Summary' is a precise model. This avoids
|
|
// unnecessary invalidation passes. Conflicts with other checkers are unlikely
|
|
// because if the function has no other effects, other checkers would probably
|
|
// never want to improve upon the modeling done by this checker.
|
|
//
|
|
// Non-pure functions, for which only partial improvement over the default
|
|
// behavior is expected, are modeled via check::PostCall, non-intrusively.
|
|
//
|
|
// The following standard C functions are currently supported:
|
|
//
|
|
// fgetc getline isdigit isupper
|
|
// fread isalnum isgraph isxdigit
|
|
// fwrite isalpha islower read
|
|
// getc isascii isprint write
|
|
// getchar isblank ispunct
|
|
// getdelim iscntrl isspace
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::ento;
|
|
|
|
namespace {
|
|
class StdLibraryFunctionsChecker
|
|
: public Checker<check::PreCall, check::PostCall, eval::Call> {
|
|
/// Below is a series of typedefs necessary to define function specs.
|
|
/// We avoid nesting types here because each additional qualifier
|
|
/// would need to be repeated in every function spec.
|
|
struct Summary;
|
|
|
|
/// Specify how much the analyzer engine should entrust modeling this function
|
|
/// to us. If he doesn't, he performs additional invalidations.
|
|
enum InvalidationKind { NoEvalCall, EvalCallAsPure };
|
|
|
|
// The universal integral type to use in value range descriptions.
|
|
// Unsigned to make sure overflows are well-defined.
|
|
typedef uint64_t RangeInt;
|
|
|
|
/// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is
|
|
/// a non-negative integer, which less than 5 and not equal to 2. For
|
|
/// `ComparesToArgument', holds information about how exactly to compare to
|
|
/// the argument.
|
|
typedef std::vector<std::pair<RangeInt, RangeInt>> IntRangeVector;
|
|
|
|
/// A reference to an argument or return value by its number.
|
|
/// ArgNo in CallExpr and CallEvent is defined as Unsigned, but
|
|
/// obviously uint32_t should be enough for all practical purposes.
|
|
typedef uint32_t ArgNo;
|
|
static const ArgNo Ret;
|
|
|
|
class ValueConstraint;
|
|
|
|
// Pointer to the ValueConstraint. We need a copyable, polymorphic and
|
|
// default initialize able type (vector needs that). A raw pointer was good,
|
|
// however, we cannot default initialize that. unique_ptr makes the Summary
|
|
// class non-copyable, therefore not an option. Releasing the copyability
|
|
// requirement would render the initialization of the Summary map infeasible.
|
|
using ValueConstraintPtr = std::shared_ptr<ValueConstraint>;
|
|
|
|
/// Polymorphic base class that represents a constraint on a given argument
|
|
/// (or return value) of a function. Derived classes implement different kind
|
|
/// of constraints, e.g range constraints or correlation between two
|
|
/// arguments.
|
|
class ValueConstraint {
|
|
public:
|
|
ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {}
|
|
virtual ~ValueConstraint() {}
|
|
/// Apply the effects of the constraint on the given program state. If null
|
|
/// is returned then the constraint is not feasible.
|
|
virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const = 0;
|
|
virtual ValueConstraintPtr negate() const {
|
|
llvm_unreachable("Not implemented");
|
|
};
|
|
ArgNo getArgNo() const { return ArgN; }
|
|
|
|
protected:
|
|
ArgNo ArgN; // Argument to which we apply the constraint.
|
|
};
|
|
|
|
/// Given a range, should the argument stay inside or outside this range?
|
|
enum RangeKind { OutOfRange, WithinRange };
|
|
|
|
/// Encapsulates a single range on a single symbol within a branch.
|
|
class RangeConstraint : public ValueConstraint {
|
|
RangeKind Kind; // Kind of range definition.
|
|
IntRangeVector Args; // Polymorphic arguments.
|
|
|
|
public:
|
|
RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Args)
|
|
: ValueConstraint(ArgN), Kind(Kind), Args(Args) {}
|
|
|
|
const IntRangeVector &getRanges() const {
|
|
return Args;
|
|
}
|
|
|
|
private:
|
|
ProgramStateRef applyAsOutOfRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
ProgramStateRef applyAsWithinRange(ProgramStateRef State,
|
|
const CallEvent &Call,
|
|
const Summary &Summary) const;
|
|
public:
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const override {
|
|
switch (Kind) {
|
|
case OutOfRange:
|
|
return applyAsOutOfRange(State, Call, Summary);
|
|
case WithinRange:
|
|
return applyAsWithinRange(State, Call, Summary);
|
|
}
|
|
llvm_unreachable("Unknown range kind!");
|
|
}
|
|
|
|
ValueConstraintPtr negate() const override {
|
|
RangeConstraint Tmp(*this);
|
|
switch (Kind) {
|
|
case OutOfRange:
|
|
Tmp.Kind = WithinRange;
|
|
break;
|
|
case WithinRange:
|
|
Tmp.Kind = OutOfRange;
|
|
break;
|
|
}
|
|
return std::make_shared<RangeConstraint>(Tmp);
|
|
}
|
|
};
|
|
|
|
class ComparisonConstraint : public ValueConstraint {
|
|
BinaryOperator::Opcode Opcode;
|
|
ArgNo OtherArgN;
|
|
|
|
public:
|
|
ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode,
|
|
ArgNo OtherArgN)
|
|
: ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {}
|
|
ArgNo getOtherArgNo() const { return OtherArgN; }
|
|
BinaryOperator::Opcode getOpcode() const { return Opcode; }
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const override;
|
|
};
|
|
|
|
class NotNullConstraint : public ValueConstraint {
|
|
using ValueConstraint::ValueConstraint;
|
|
// This variable has a role when we negate the constraint.
|
|
bool CannotBeNull = true;
|
|
|
|
public:
|
|
ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const override {
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
if (V.isUndef())
|
|
return State;
|
|
|
|
DefinedOrUnknownSVal L = V.castAs<DefinedOrUnknownSVal>();
|
|
if (!L.getAs<Loc>())
|
|
return State;
|
|
|
|
return State->assume(L, CannotBeNull);
|
|
}
|
|
|
|
ValueConstraintPtr negate() const override {
|
|
NotNullConstraint Tmp(*this);
|
|
Tmp.CannotBeNull = !this->CannotBeNull;
|
|
return std::make_shared<NotNullConstraint>(Tmp);
|
|
}
|
|
};
|
|
|
|
/// The complete list of constraints that defines a single branch.
|
|
typedef std::vector<ValueConstraintPtr> ConstraintSet;
|
|
|
|
using ArgTypes = std::vector<QualType>;
|
|
using Cases = std::vector<ConstraintSet>;
|
|
|
|
/// Includes information about
|
|
/// * function prototype (which is necessary to
|
|
/// ensure we're modeling the right function and casting values properly),
|
|
/// * approach to invalidation,
|
|
/// * a list of branches - a list of list of ranges -
|
|
/// A branch represents a path in the exploded graph of a function (which
|
|
/// is a tree). So, a branch is a series of assumptions. In other words,
|
|
/// branches represent split states and additional assumptions on top of
|
|
/// the splitting assumption.
|
|
/// For example, consider the branches in `isalpha(x)`
|
|
/// Branch 1)
|
|
/// x is in range ['A', 'Z'] or in ['a', 'z']
|
|
/// then the return value is not 0. (I.e. out-of-range [0, 0])
|
|
/// Branch 2)
|
|
/// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z']
|
|
/// then the return value is 0.
|
|
/// * a list of argument constraints, that must be true on every branch.
|
|
/// If these constraints are not satisfied that means a fatal error
|
|
/// usually resulting in undefined behaviour.
|
|
struct Summary {
|
|
const ArgTypes ArgTys;
|
|
const QualType RetTy;
|
|
const InvalidationKind InvalidationKd;
|
|
Cases CaseConstraints;
|
|
ConstraintSet ArgConstraints;
|
|
|
|
Summary(ArgTypes ArgTys, QualType RetTy, InvalidationKind InvalidationKd)
|
|
: ArgTys(ArgTys), RetTy(RetTy), InvalidationKd(InvalidationKd) {}
|
|
|
|
Summary &Case(ConstraintSet&& CS) {
|
|
CaseConstraints.push_back(std::move(CS));
|
|
return *this;
|
|
}
|
|
Summary &ArgConstraint(ValueConstraintPtr VC) {
|
|
ArgConstraints.push_back(VC);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
static void assertTypeSuitableForSummary(QualType T) {
|
|
assert(!T->isVoidType() &&
|
|
"We should have had no significant void types in the spec");
|
|
assert(T.isCanonical() &&
|
|
"We should only have canonical types in the spec");
|
|
}
|
|
|
|
public:
|
|
QualType getArgType(ArgNo ArgN) const {
|
|
QualType T = (ArgN == Ret) ? RetTy : ArgTys[ArgN];
|
|
assertTypeSuitableForSummary(T);
|
|
return T;
|
|
}
|
|
|
|
/// Try our best to figure out if the summary's signature matches
|
|
/// *the* library function to which this specification applies.
|
|
bool matchesSignature(const FunctionDecl *FD) const;
|
|
};
|
|
|
|
// The map of all functions supported by the checker. It is initialized
|
|
// lazily, and it doesn't change after initialization.
|
|
using FunctionSummaryMapType = llvm::DenseMap<const FunctionDecl *, Summary>;
|
|
mutable FunctionSummaryMapType FunctionSummaryMap;
|
|
|
|
mutable std::unique_ptr<BugType> BT_InvalidArg;
|
|
|
|
// Auxiliary functions to support ArgNo within all structures
|
|
// in a unified manner.
|
|
static QualType getArgType(const Summary &Summary, ArgNo ArgN) {
|
|
return Summary.getArgType(ArgN);
|
|
}
|
|
static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) {
|
|
return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN);
|
|
}
|
|
|
|
public:
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
|
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
|
|
|
|
enum CheckKind {
|
|
CK_StdCLibraryFunctionArgsChecker,
|
|
CK_StdCLibraryFunctionsTesterChecker,
|
|
CK_NumCheckKinds
|
|
};
|
|
DefaultBool ChecksEnabled[CK_NumCheckKinds];
|
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
|
|
|
private:
|
|
Optional<Summary> findFunctionSummary(const FunctionDecl *FD,
|
|
CheckerContext &C) const;
|
|
Optional<Summary> findFunctionSummary(const CallEvent &Call,
|
|
CheckerContext &C) const;
|
|
|
|
void initFunctionSummaries(CheckerContext &C) const;
|
|
|
|
void reportBug(const CallEvent &Call, ExplodedNode *N,
|
|
CheckerContext &C) const {
|
|
if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker])
|
|
return;
|
|
// TODO Add detailed diagnostic.
|
|
StringRef Msg = "Function argument constraint is not satisfied";
|
|
if (!BT_InvalidArg)
|
|
BT_InvalidArg = std::make_unique<BugType>(
|
|
CheckNames[CK_StdCLibraryFunctionArgsChecker],
|
|
"Unsatisfied argument constraints", categories::LogicError);
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_InvalidArg, Msg, N);
|
|
bugreporter::trackExpressionValue(N, Call.getArgExpr(0), *R);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
};
|
|
|
|
const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret =
|
|
std::numeric_limits<ArgNo>::max();
|
|
|
|
} // end of anonymous namespace
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
for (size_t I = 0; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I].first, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].second, T);
|
|
assert(Min <= Max);
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
ConstraintManager &CM = Mgr.getConstraintManager();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
// "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R".
|
|
// We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary,
|
|
// and then cut away all holes in R one by one.
|
|
//
|
|
// E.g. consider a range list R as [A, B] and [C, D]
|
|
// -------+--------+------------------+------------+----------->
|
|
// A B C D
|
|
// Then we assume that the value is not in [-inf, A - 1],
|
|
// then not in [D + 1, +inf], then not in [B + 1, C - 1]
|
|
if (auto N = V.getAs<NonLoc>()) {
|
|
const IntRangeVector &R = getRanges();
|
|
size_t E = R.size();
|
|
|
|
const llvm::APSInt &MinusInf = BVF.getMinValue(T);
|
|
const llvm::APSInt &PlusInf = BVF.getMaxValue(T);
|
|
|
|
const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T);
|
|
if (Left != PlusInf) {
|
|
assert(MinusInf <= Left);
|
|
State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T);
|
|
if (Right != MinusInf) {
|
|
assert(Right <= PlusInf);
|
|
State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
|
|
for (size_t I = 1; I != E; ++I) {
|
|
const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T);
|
|
const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T);
|
|
if (Min <= Max) {
|
|
State = CM.assumeInclusiveRange(State, *N, Min, Max, false);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply(
|
|
ProgramStateRef State, const CallEvent &Call,
|
|
const Summary &Summary) const {
|
|
|
|
ProgramStateManager &Mgr = State->getStateManager();
|
|
SValBuilder &SVB = Mgr.getSValBuilder();
|
|
QualType CondT = SVB.getConditionType();
|
|
QualType T = getArgType(Summary, getArgNo());
|
|
SVal V = getArgSVal(Call, getArgNo());
|
|
|
|
BinaryOperator::Opcode Op = getOpcode();
|
|
ArgNo OtherArg = getOtherArgNo();
|
|
SVal OtherV = getArgSVal(Call, OtherArg);
|
|
QualType OtherT = getArgType(Summary, OtherArg);
|
|
// Note: we avoid integral promotion for comparison.
|
|
OtherV = SVB.evalCast(OtherV, T, OtherT);
|
|
if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT)
|
|
.getAs<DefinedOrUnknownSVal>())
|
|
State = State->assume(*CompV, true);
|
|
return State;
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return;
|
|
|
|
const Summary &Summary = *FoundSummary;
|
|
ProgramStateRef State = C.getState();
|
|
|
|
ProgramStateRef NewState = State;
|
|
for (const ValueConstraintPtr& VC : Summary.ArgConstraints) {
|
|
ProgramStateRef SuccessSt = VC->apply(NewState, Call, Summary);
|
|
ProgramStateRef FailureSt = VC->negate()->apply(NewState, Call, Summary);
|
|
// The argument constraint is not satisfied.
|
|
if (FailureSt && !SuccessSt) {
|
|
if (ExplodedNode *N = C.generateErrorNode(NewState))
|
|
reportBug(Call, N, C);
|
|
break;
|
|
} else {
|
|
// We will apply the constraint even if we cannot reason about the
|
|
// argument. This means both SuccessSt and FailureSt can be true. If we
|
|
// weren't applying the constraint that would mean that symbolic
|
|
// execution continues on a code whose behaviour is undefined.
|
|
assert(SuccessSt);
|
|
NewState = SuccessSt;
|
|
}
|
|
}
|
|
if (NewState && NewState != State)
|
|
C.addTransition(NewState);
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return;
|
|
|
|
// Now apply the constraints.
|
|
const Summary &Summary = *FoundSummary;
|
|
ProgramStateRef State = C.getState();
|
|
|
|
// Apply case/branch specifications.
|
|
for (const auto &VRS : Summary.CaseConstraints) {
|
|
ProgramStateRef NewState = State;
|
|
for (const auto &VR: VRS) {
|
|
NewState = VR->apply(NewState, Call, Summary);
|
|
if (!NewState)
|
|
break;
|
|
}
|
|
|
|
if (NewState && NewState != State)
|
|
C.addTransition(NewState);
|
|
}
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
Optional<Summary> FoundSummary = findFunctionSummary(Call, C);
|
|
if (!FoundSummary)
|
|
return false;
|
|
|
|
const Summary &Summary = *FoundSummary;
|
|
switch (Summary.InvalidationKd) {
|
|
case EvalCallAsPure: {
|
|
ProgramStateRef State = C.getState();
|
|
const LocationContext *LC = C.getLocationContext();
|
|
const auto *CE = cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
SVal V = C.getSValBuilder().conjureSymbolVal(
|
|
CE, LC, CE->getType().getCanonicalType(), C.blockCount());
|
|
State = State->BindExpr(CE, LC, V);
|
|
C.addTransition(State);
|
|
return true;
|
|
}
|
|
case NoEvalCall:
|
|
// Summary tells us to avoid performing eval::Call. The function is possibly
|
|
// evaluated by another checker, or evaluated conservatively.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown invalidation kind!");
|
|
}
|
|
|
|
bool StdLibraryFunctionsChecker::Summary::matchesSignature(
|
|
const FunctionDecl *FD) const {
|
|
// Check number of arguments:
|
|
if (FD->param_size() != ArgTys.size())
|
|
return false;
|
|
|
|
// Check return type if relevant:
|
|
if (!RetTy.isNull() && RetTy != FD->getReturnType().getCanonicalType())
|
|
return false;
|
|
|
|
// Check argument types when relevant:
|
|
for (size_t I = 0, E = ArgTys.size(); I != E; ++I) {
|
|
QualType FormalT = ArgTys[I];
|
|
// Null type marks irrelevant arguments.
|
|
if (FormalT.isNull())
|
|
continue;
|
|
|
|
assertTypeSuitableForSummary(FormalT);
|
|
|
|
QualType ActualT = FD->getParamDecl(I)->getType().getCanonicalType();
|
|
if (ActualT != FormalT)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<StdLibraryFunctionsChecker::Summary>
|
|
StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD,
|
|
CheckerContext &C) const {
|
|
if (!FD)
|
|
return None;
|
|
|
|
initFunctionSummaries(C);
|
|
|
|
auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl());
|
|
if (FSMI == FunctionSummaryMap.end())
|
|
return None;
|
|
return FSMI->second;
|
|
}
|
|
|
|
Optional<StdLibraryFunctionsChecker::Summary>
|
|
StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
|
|
if (!FD)
|
|
return None;
|
|
return findFunctionSummary(FD, C);
|
|
}
|
|
|
|
llvm::Optional<const FunctionDecl *>
|
|
lookupGlobalCFunction(StringRef Name, const ASTContext &ACtx) {
|
|
IdentifierInfo &II = ACtx.Idents.get(Name);
|
|
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
|
|
if (LookupRes.size() == 0)
|
|
return None;
|
|
|
|
assert(LookupRes.size() == 1 && "In C, identifiers should be unique");
|
|
Decl *D = LookupRes.front()->getCanonicalDecl();
|
|
auto *FD = dyn_cast<FunctionDecl>(D);
|
|
if (!FD)
|
|
return None;
|
|
return FD->getCanonicalDecl();
|
|
}
|
|
|
|
void StdLibraryFunctionsChecker::initFunctionSummaries(
|
|
CheckerContext &C) const {
|
|
if (!FunctionSummaryMap.empty())
|
|
return;
|
|
|
|
SValBuilder &SVB = C.getSValBuilder();
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
const ASTContext &ACtx = BVF.getContext();
|
|
|
|
// These types are useful for writing specifications quickly,
|
|
// New specifications should probably introduce more types.
|
|
// Some types are hard to obtain from the AST, eg. "ssize_t".
|
|
// In such cases it should be possible to provide multiple variants
|
|
// of function summary for common cases (eg. ssize_t could be int or long
|
|
// or long long, so three summary variants would be enough).
|
|
// Of course, function variants are also useful for C++ overloads.
|
|
const QualType
|
|
Irrelevant{}; // A placeholder, whenever we do not care about the type.
|
|
const QualType IntTy = ACtx.IntTy;
|
|
const QualType LongTy = ACtx.LongTy;
|
|
const QualType LongLongTy = ACtx.LongLongTy;
|
|
const QualType SizeTy = ACtx.getSizeType();
|
|
const QualType VoidPtrTy = ACtx.VoidPtrTy; // void *
|
|
const QualType VoidPtrRestrictTy =
|
|
ACtx.getRestrictType(VoidPtrTy); // void *restrict
|
|
const QualType ConstVoidPtrTy =
|
|
ACtx.getPointerType(ACtx.VoidTy.withConst()); // const void *
|
|
const QualType ConstCharPtrTy =
|
|
ACtx.getPointerType(ACtx.CharTy.withConst()); // const char *
|
|
const QualType ConstVoidPtrRestrictTy =
|
|
ACtx.getRestrictType(ConstVoidPtrTy); // const void *restrict
|
|
|
|
const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue();
|
|
const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue();
|
|
const RangeInt LongLongMax = BVF.getMaxValue(LongLongTy).getLimitedValue();
|
|
|
|
// Set UCharRangeMax to min of int or uchar maximum value.
|
|
// The C standard states that the arguments of functions like isalpha must
|
|
// be representable as an unsigned char. Their type is 'int', so the max
|
|
// value of the argument should be min(UCharMax, IntMax). This just happen
|
|
// to be true for commonly used and well tested instruction set
|
|
// architectures, but not for others.
|
|
const RangeInt UCharRangeMax =
|
|
std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax);
|
|
|
|
// The platform dependent value of EOF.
|
|
// Try our best to parse this from the Preprocessor, otherwise fallback to -1.
|
|
const auto EOFv = [&C]() -> RangeInt {
|
|
if (const llvm::Optional<int> OptInt =
|
|
tryExpandAsInteger("EOF", C.getPreprocessor()))
|
|
return *OptInt;
|
|
return -1;
|
|
}();
|
|
|
|
// Auxiliary class to aid adding summaries to the summary map.
|
|
struct AddToFunctionSummaryMap {
|
|
const ASTContext &ACtx;
|
|
FunctionSummaryMapType ⤅
|
|
AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM)
|
|
: ACtx(ACtx), Map(FSM) {}
|
|
// Add a summary to a FunctionDecl found by lookup. The lookup is performed
|
|
// by the given Name, and in the global scope. The summary will be attached
|
|
// to the found FunctionDecl only if the signatures match.
|
|
void operator()(StringRef Name, const Summary &S) {
|
|
IdentifierInfo &II = ACtx.Idents.get(Name);
|
|
auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II);
|
|
if (LookupRes.size() == 0)
|
|
return;
|
|
for (Decl *D : LookupRes) {
|
|
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (S.matchesSignature(FD)) {
|
|
auto Res = Map.insert({FD->getCanonicalDecl(), S});
|
|
assert(Res.second && "Function already has a summary set!");
|
|
(void)Res;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Add several summaries for the given name.
|
|
void operator()(StringRef Name, const std::vector<Summary> &Summaries) {
|
|
for (const Summary &S : Summaries)
|
|
operator()(Name, S);
|
|
}
|
|
} addToFunctionSummaryMap(ACtx, FunctionSummaryMap);
|
|
|
|
// We are finally ready to define specifications for all supported functions.
|
|
//
|
|
// The signature needs to have the correct number of arguments.
|
|
// However, we insert `Irrelevant' when the type is insignificant.
|
|
//
|
|
// Argument ranges should always cover all variants. If return value
|
|
// is completely unknown, omit it from the respective range set.
|
|
//
|
|
// All types in the spec need to be canonical.
|
|
//
|
|
// Every item in the list of range sets represents a particular
|
|
// execution path the analyzer would need to explore once
|
|
// the call is modeled - a new program state is constructed
|
|
// for every range set, and each range line in the range set
|
|
// corresponds to a specific constraint within this state.
|
|
//
|
|
// Upon comparing to another argument, the other argument is casted
|
|
// to the current argument's type. This avoids proper promotion but
|
|
// seems useful. For example, read() receives size_t argument,
|
|
// and its return value, which is of type ssize_t, cannot be greater
|
|
// than this argument. If we made a promotion, and the size argument
|
|
// is equal to, say, 10, then we'd impose a range of [0, 10] on the
|
|
// return value, however the correct range is [-1, 10].
|
|
//
|
|
// Please update the list of functions in the header after editing!
|
|
|
|
// Below are helpers functions to create the summaries.
|
|
auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind,
|
|
IntRangeVector Ranges) {
|
|
return std::make_shared<RangeConstraint>(ArgN, Kind, Ranges);
|
|
};
|
|
struct {
|
|
auto operator()(RangeKind Kind, IntRangeVector Ranges) {
|
|
return std::make_shared<RangeConstraint>(Ret, Kind, Ranges);
|
|
}
|
|
auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) {
|
|
return std::make_shared<ComparisonConstraint>(Ret, Op, OtherArgN);
|
|
}
|
|
} ReturnValueCondition;
|
|
auto Range = [](RangeInt b, RangeInt e) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{b, e}};
|
|
};
|
|
auto SingleValue = [](RangeInt v) {
|
|
return IntRangeVector{std::pair<RangeInt, RangeInt>{v, v}};
|
|
};
|
|
auto LessThanOrEq = BO_LE;
|
|
auto NotNull = [&](ArgNo ArgN) {
|
|
return std::make_shared<NotNullConstraint>(ArgN);
|
|
};
|
|
|
|
using RetType = QualType;
|
|
// Templates for summaries that are reused by many functions.
|
|
auto Getc = [&]() {
|
|
return Summary(ArgTypes{Irrelevant}, RetType{IntTy}, NoEvalCall)
|
|
.Case({ReturnValueCondition(WithinRange,
|
|
{{EOFv, EOFv}, {0, UCharRangeMax}})});
|
|
};
|
|
auto Read = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, SizeTy}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
ReturnValueCondition(WithinRange, Range(-1, Max))});
|
|
};
|
|
auto Fread = [&]() {
|
|
return Summary(ArgTypes{VoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
|
|
RetType{SizeTy}, NoEvalCall)
|
|
.Case({
|
|
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
})
|
|
.ArgConstraint(NotNull(ArgNo(0)));
|
|
};
|
|
auto Fwrite = [&]() {
|
|
return Summary(
|
|
ArgTypes{ConstVoidPtrRestrictTy, Irrelevant, SizeTy, Irrelevant},
|
|
RetType{SizeTy}, NoEvalCall)
|
|
.Case({
|
|
ReturnValueCondition(LessThanOrEq, ArgNo(2)),
|
|
})
|
|
.ArgConstraint(NotNull(ArgNo(0)));
|
|
};
|
|
auto Getline = [&](RetType R, RangeInt Max) {
|
|
return Summary(ArgTypes{Irrelevant, Irrelevant, Irrelevant}, RetType{R},
|
|
NoEvalCall)
|
|
.Case({ReturnValueCondition(WithinRange, {{-1, -1}, {1, Max}})});
|
|
};
|
|
|
|
// The isascii() family of functions.
|
|
// The behavior is undefined if the value of the argument is not
|
|
// representable as unsigned char or is not equal to EOF. See e.g. C99
|
|
// 7.4.1.2 The isalpha function (p: 181-182).
|
|
addToFunctionSummaryMap(
|
|
"isalnum",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Boils down to isupper() or islower() or isdigit().
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
// No post-condition. We are completely unaware of
|
|
// locale-specific return values.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case(
|
|
{ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})
|
|
.ArgConstraint(ArgumentCondition(
|
|
0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})));
|
|
addToFunctionSummaryMap(
|
|
"isalpha",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isascii",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isblank",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"iscntrl",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isdigit",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('0', '9')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isgraph",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(33, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"islower",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// Is ascii but not lowercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(0, 127)),
|
|
ArgumentCondition(0U, OutOfRange, Range('a', 'z')),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
// Is not an unsigned char.
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isprint",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange, Range(32, 126)),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"ispunct",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(
|
|
0U, WithinRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(
|
|
0U, OutOfRange,
|
|
{{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isspace",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Space, '\f', '\n', '\r', '\t', '\v'.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{9, 13}, {' ', ' '}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isupper",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
// Is certainly uppercase.
|
|
.Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
// The locale-specific range.
|
|
.Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})})
|
|
// Other.
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'A', 'Z'}, {128, UCharRangeMax}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
addToFunctionSummaryMap(
|
|
"isxdigit",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.Case({ArgumentCondition(0U, WithinRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(OutOfRange, SingleValue(0))})
|
|
.Case({ArgumentCondition(0U, OutOfRange,
|
|
{{'0', '9'}, {'A', 'F'}, {'a', 'f'}}),
|
|
ReturnValueCondition(WithinRange, SingleValue(0))}));
|
|
|
|
// The getc() family of functions that returns either a char or an EOF.
|
|
addToFunctionSummaryMap("getc", Getc());
|
|
addToFunctionSummaryMap("fgetc", Getc());
|
|
addToFunctionSummaryMap(
|
|
"getchar", Summary(ArgTypes{}, RetType{IntTy}, NoEvalCall)
|
|
.Case({ReturnValueCondition(
|
|
WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})}));
|
|
|
|
// read()-like functions that never return more than buffer size.
|
|
// We are not sure how ssize_t is defined on every platform, so we
|
|
// provide three variants that should cover common cases.
|
|
addToFunctionSummaryMap("read", {Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)});
|
|
addToFunctionSummaryMap("write", {Read(IntTy, IntMax), Read(LongTy, LongMax),
|
|
Read(LongLongTy, LongLongMax)});
|
|
addToFunctionSummaryMap("fread", Fread());
|
|
addToFunctionSummaryMap("fwrite", Fwrite());
|
|
// getline()-like functions either fail or read at least the delimiter.
|
|
addToFunctionSummaryMap("getline",
|
|
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)});
|
|
addToFunctionSummaryMap("getdelim",
|
|
{Getline(IntTy, IntMax), Getline(LongTy, LongMax),
|
|
Getline(LongLongTy, LongLongMax)});
|
|
|
|
// Functions for testing.
|
|
if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) {
|
|
addToFunctionSummaryMap(
|
|
"__two_constrained_args",
|
|
Summary(ArgTypes{IntTy, IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))
|
|
.ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1))));
|
|
addToFunctionSummaryMap(
|
|
"__arg_constrained_twice",
|
|
Summary(ArgTypes{IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))
|
|
.ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2))));
|
|
addToFunctionSummaryMap(
|
|
"__defaultparam",
|
|
Summary(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0))));
|
|
addToFunctionSummaryMap("__variadic",
|
|
Summary(ArgTypes{VoidPtrTy, ConstCharPtrTy},
|
|
RetType{IntTy}, EvalCallAsPure)
|
|
.ArgConstraint(NotNull(ArgNo(0)))
|
|
.ArgConstraint(NotNull(ArgNo(1))));
|
|
}
|
|
}
|
|
|
|
void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) {
|
|
mgr.registerChecker<StdLibraryFunctionsChecker>();
|
|
}
|
|
|
|
bool ento::shouldRegisterStdCLibraryFunctionsChecker(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|
|
|
|
#define REGISTER_CHECKER(name) \
|
|
void ento::register##name(CheckerManager &mgr) { \
|
|
StdLibraryFunctionsChecker *checker = \
|
|
mgr.getChecker<StdLibraryFunctionsChecker>(); \
|
|
checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \
|
|
checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \
|
|
mgr.getCurrentCheckerName(); \
|
|
} \
|
|
\
|
|
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
|
|
|
|
REGISTER_CHECKER(StdCLibraryFunctionArgsChecker)
|
|
REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)
|