
`compiler-rt/lib/builtins/divtc3.c` and `multc3.c` don't compile on Solaris/sparcv9 with `gcc -m32`: ``` FAILED: projects/compiler-rt/lib/builtins/CMakeFiles/clang_rt.builtins-sparc.dir/divtc3.c.o [...] compiler-rt/lib/builtins/divtc3.c: In function ‘__divtc3’: compiler-rt/lib/builtins/divtc3.c:22:18: error: implicit declaration of function ‘__compiler_rt_logbtf’ [-Wimplicit-function-declaration] 22 | fp_t __logbw = __compiler_rt_logbtf( | ^~~~~~~~~~~~~~~~~~~~ ``` and many more. It turns out that while the definition of `__divtc3` is guarded with `CRT_HAS_F128`, the `__compiler_rt_logbtf` and other declarations use `CRT_HAS_128BIT && CRT_HAS_F128` as guard. This only shows up with `gcc` since, as documented in Issue #41838, `clang` violates the SPARC psABI in not using 128-bit `long double`, so this code path isn't used. Fixed by changing the guards to match. Tested on `sparcv9-sun-solaris2.11`.
71 lines
2.1 KiB
C
71 lines
2.1 KiB
C
//===-- multc3.c - Implement __multc3 -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements __multc3 for the compiler_rt library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define QUAD_PRECISION
|
|
#include "fp_lib.h"
|
|
#include "int_lib.h"
|
|
#include "int_math.h"
|
|
|
|
#if defined(CRT_HAS_128BIT) && defined(CRT_HAS_F128)
|
|
|
|
// Returns: the product of a + ib and c + id
|
|
|
|
COMPILER_RT_ABI Qcomplex __multc3(fp_t a, fp_t b, fp_t c, fp_t d) {
|
|
fp_t ac = a * c;
|
|
fp_t bd = b * d;
|
|
fp_t ad = a * d;
|
|
fp_t bc = b * c;
|
|
Qcomplex z;
|
|
COMPLEXTF_REAL(z) = ac - bd;
|
|
COMPLEXTF_IMAGINARY(z) = ad + bc;
|
|
if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) {
|
|
int recalc = 0;
|
|
if (crt_isinf(a) || crt_isinf(b)) {
|
|
a = crt_copysigntf(crt_isinf(a) ? 1 : 0, a);
|
|
b = crt_copysigntf(crt_isinf(b) ? 1 : 0, b);
|
|
if (crt_isnan(c))
|
|
c = crt_copysigntf(0, c);
|
|
if (crt_isnan(d))
|
|
d = crt_copysigntf(0, d);
|
|
recalc = 1;
|
|
}
|
|
if (crt_isinf(c) || crt_isinf(d)) {
|
|
c = crt_copysigntf(crt_isinf(c) ? 1 : 0, c);
|
|
d = crt_copysigntf(crt_isinf(d) ? 1 : 0, d);
|
|
if (crt_isnan(a))
|
|
a = crt_copysigntf(0, a);
|
|
if (crt_isnan(b))
|
|
b = crt_copysigntf(0, b);
|
|
recalc = 1;
|
|
}
|
|
if (!recalc &&
|
|
(crt_isinf(ac) || crt_isinf(bd) || crt_isinf(ad) || crt_isinf(bc))) {
|
|
if (crt_isnan(a))
|
|
a = crt_copysigntf(0, a);
|
|
if (crt_isnan(b))
|
|
b = crt_copysigntf(0, b);
|
|
if (crt_isnan(c))
|
|
c = crt_copysigntf(0, c);
|
|
if (crt_isnan(d))
|
|
d = crt_copysigntf(0, d);
|
|
recalc = 1;
|
|
}
|
|
if (recalc) {
|
|
COMPLEXTF_REAL(z) = CRT_INFINITY * (a * c - b * d);
|
|
COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (a * d + b * c);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#endif
|