llvm-project/llvm/lib/Target/DirectX/DXILCBufferAccess.cpp
Deric C. 12409a18f6
[DirectX] Implement memcpy in DXIL CBuffer Access pass (#144436)
Fixes #141840

This PR implements support for the `memcpy` intrinsic in the DXIL
CBuffer Access pass with the following restrictions:

- The CBuffer Access must be the `src` operand of `memcpy` and must be
direct (i.e., not a GEP)
- The type of the CBuffer Access must be of an Array Type

These restrictions greatly simplify the implementation of `memcpy` yet
still covers the known uses in DML shaders.

Furthermore, to prevent errors like #141840 from occurring silently
again, this PR adds error reporting for unsupported users of globals in
the DXIL CBuffer Access pass.
2025-06-30 16:32:43 -07:00

347 lines
12 KiB
C++

//===- DXILCBufferAccess.cpp - Translate CBuffer Loads --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "DXILCBufferAccess.h"
#include "DirectX.h"
#include "llvm/Frontend/HLSL/CBuffer.h"
#include "llvm/Frontend/HLSL/HLSLResource.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsDirectX.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "dxil-cbuffer-access"
using namespace llvm;
namespace {
/// Helper for building a `load.cbufferrow` intrinsic given a simple type.
struct CBufferRowIntrin {
Intrinsic::ID IID;
Type *RetTy;
unsigned int EltSize;
unsigned int NumElts;
CBufferRowIntrin(const DataLayout &DL, Type *Ty) {
assert(Ty == Ty->getScalarType() && "Expected scalar type");
switch (DL.getTypeSizeInBits(Ty)) {
case 16:
IID = Intrinsic::dx_resource_load_cbufferrow_8;
RetTy = StructType::get(Ty, Ty, Ty, Ty, Ty, Ty, Ty, Ty);
EltSize = 2;
NumElts = 8;
break;
case 32:
IID = Intrinsic::dx_resource_load_cbufferrow_4;
RetTy = StructType::get(Ty, Ty, Ty, Ty);
EltSize = 4;
NumElts = 4;
break;
case 64:
IID = Intrinsic::dx_resource_load_cbufferrow_2;
RetTy = StructType::get(Ty, Ty);
EltSize = 8;
NumElts = 2;
break;
default:
llvm_unreachable("Only 16, 32, and 64 bit types supported");
}
}
};
// Helper for creating CBuffer handles and loading data from them
struct CBufferResource {
GlobalVariable *GVHandle;
GlobalVariable *Member;
size_t MemberOffset;
LoadInst *Handle;
CBufferResource(GlobalVariable *GVHandle, GlobalVariable *Member,
size_t MemberOffset)
: GVHandle(GVHandle), Member(Member), MemberOffset(MemberOffset) {}
const DataLayout &getDataLayout() { return GVHandle->getDataLayout(); }
Type *getValueType() { return Member->getValueType(); }
iterator_range<ConstantDataSequential::user_iterator> users() {
return Member->users();
}
/// Get the byte offset of a Pointer-typed Value * `Val` relative to Member.
/// `Val` can either be Member itself, or a GEP of a constant offset from
/// Member
size_t getOffsetForCBufferGEP(Value *Val) {
assert(isa<PointerType>(Val->getType()) &&
"Expected a pointer-typed value");
if (Val == Member)
return 0;
if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
// Since we should always have a constant offset, we should only ever have
// a single GEP of indirection from the Global.
assert(GEP->getPointerOperand() == Member &&
"Indirect access to resource handle");
const DataLayout &DL = getDataLayout();
APInt ConstantOffset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
bool Success = GEP->accumulateConstantOffset(DL, ConstantOffset);
(void)Success;
assert(Success && "Offsets into cbuffer globals must be constant");
if (auto *ATy = dyn_cast<ArrayType>(Member->getValueType()))
ConstantOffset =
hlsl::translateCBufArrayOffset(DL, ConstantOffset, ATy);
return ConstantOffset.getZExtValue();
}
llvm_unreachable("Expected Val to be a GlobalVariable or GEP");
}
/// Create a handle for this cbuffer resource using the IRBuilder `Builder`
/// and sets the handle as the current one to use for subsequent calls to
/// `loadValue`
void createAndSetCurrentHandle(IRBuilder<> &Builder) {
Handle = Builder.CreateLoad(GVHandle->getValueType(), GVHandle,
GVHandle->getName());
}
/// Load a value of type `Ty` at offset `Offset` using the handle from the
/// last call to `createAndSetCurrentHandle`
Value *loadValue(IRBuilder<> &Builder, Type *Ty, size_t Offset,
const Twine &Name = "") {
assert(Handle &&
"Expected a handle for this cbuffer global resource to be created "
"before loading a value from it");
const DataLayout &DL = getDataLayout();
size_t TargetOffset = MemberOffset + Offset;
CBufferRowIntrin Intrin(DL, Ty->getScalarType());
// The cbuffer consists of some number of 16-byte rows.
unsigned int CurrentRow = TargetOffset / hlsl::CBufferRowSizeInBytes;
unsigned int CurrentIndex =
(TargetOffset % hlsl::CBufferRowSizeInBytes) / Intrin.EltSize;
auto *CBufLoad = Builder.CreateIntrinsic(
Intrin.RetTy, Intrin.IID,
{Handle, ConstantInt::get(Builder.getInt32Ty(), CurrentRow)}, nullptr,
Name + ".load");
auto *Elt = Builder.CreateExtractValue(CBufLoad, {CurrentIndex++},
Name + ".extract");
Value *Result = nullptr;
unsigned int Remaining =
((DL.getTypeSizeInBits(Ty) / 8) / Intrin.EltSize) - 1;
if (Remaining == 0) {
// We only have a single element, so we're done.
Result = Elt;
// However, if we loaded a <1 x T>, then we need to adjust the type here.
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
assert(VT->getNumElements() == 1 &&
"Can't have multiple elements here");
Result = Builder.CreateInsertElement(PoisonValue::get(VT), Result,
Builder.getInt32(0), Name);
}
return Result;
}
// Walk each element and extract it, wrapping to new rows as needed.
SmallVector<Value *> Extracts{Elt};
while (Remaining--) {
CurrentIndex %= Intrin.NumElts;
if (CurrentIndex == 0)
CBufLoad = Builder.CreateIntrinsic(
Intrin.RetTy, Intrin.IID,
{Handle, ConstantInt::get(Builder.getInt32Ty(), ++CurrentRow)},
nullptr, Name + ".load");
Extracts.push_back(Builder.CreateExtractValue(CBufLoad, {CurrentIndex++},
Name + ".extract"));
}
// Finally, we build up the original loaded value.
Result = PoisonValue::get(Ty);
for (int I = 0, E = Extracts.size(); I < E; ++I)
Result =
Builder.CreateInsertElement(Result, Extracts[I], Builder.getInt32(I),
Name + formatv(".upto{}", I));
return Result;
}
};
} // namespace
/// Replace load via cbuffer global with a load from the cbuffer handle itself.
static void replaceLoad(LoadInst *LI, CBufferResource &CBR,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
size_t Offset = CBR.getOffsetForCBufferGEP(LI->getPointerOperand());
IRBuilder<> Builder(LI);
CBR.createAndSetCurrentHandle(Builder);
Value *Result = CBR.loadValue(Builder, LI->getType(), Offset, LI->getName());
LI->replaceAllUsesWith(Result);
DeadInsts.push_back(LI);
}
/// This function recursively copies N array elements from the cbuffer resource
/// CBR to the MemCpy Destination. Recursion is used to unravel multidimensional
/// arrays into a sequence of scalar/vector extracts and stores.
static void copyArrayElemsForMemCpy(IRBuilder<> &Builder, MemCpyInst *MCI,
CBufferResource &CBR, ArrayType *ArrTy,
size_t ArrOffset, size_t N,
const Twine &Name = "") {
const DataLayout &DL = MCI->getDataLayout();
Type *ElemTy = ArrTy->getElementType();
size_t ElemTySize = DL.getTypeAllocSize(ElemTy);
for (unsigned I = 0; I < N; ++I) {
size_t Offset = ArrOffset + I * ElemTySize;
// Recursively copy nested arrays
if (ArrayType *ElemArrTy = dyn_cast<ArrayType>(ElemTy)) {
copyArrayElemsForMemCpy(Builder, MCI, CBR, ElemArrTy, Offset,
ElemArrTy->getNumElements(), Name);
continue;
}
// Load CBuffer value and store it in Dest
APInt CBufArrayOffset(
DL.getIndexTypeSizeInBits(MCI->getSource()->getType()), Offset);
CBufArrayOffset =
hlsl::translateCBufArrayOffset(DL, CBufArrayOffset, ArrTy);
Value *CBufferVal =
CBR.loadValue(Builder, ElemTy, CBufArrayOffset.getZExtValue(), Name);
Value *GEP =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), MCI->getDest(),
{Builder.getInt32(Offset)}, Name + ".dest");
Builder.CreateStore(CBufferVal, GEP, MCI->isVolatile());
}
}
/// Replace memcpy from a cbuffer global with a memcpy from the cbuffer handle
/// itself. Assumes the cbuffer global is an array, and the length of bytes to
/// copy is divisible by array element allocation size.
/// The memcpy source must also be a direct cbuffer global reference, not a GEP.
static void replaceMemCpy(MemCpyInst *MCI, CBufferResource &CBR) {
ArrayType *ArrTy = dyn_cast<ArrayType>(CBR.getValueType());
assert(ArrTy && "MemCpy lowering is only supported for array types");
// This assumption vastly simplifies the implementation
if (MCI->getSource() != CBR.Member)
reportFatalUsageError(
"Expected MemCpy source to be a cbuffer global variable");
ConstantInt *Length = dyn_cast<ConstantInt>(MCI->getLength());
uint64_t ByteLength = Length->getZExtValue();
// If length to copy is zero, no memcpy is needed
if (ByteLength == 0) {
MCI->eraseFromParent();
return;
}
const DataLayout &DL = CBR.getDataLayout();
Type *ElemTy = ArrTy->getElementType();
size_t ElemSize = DL.getTypeAllocSize(ElemTy);
assert(ByteLength % ElemSize == 0 &&
"Length of bytes to MemCpy must be divisible by allocation size of "
"source/destination array elements");
size_t ElemsToCpy = ByteLength / ElemSize;
IRBuilder<> Builder(MCI);
CBR.createAndSetCurrentHandle(Builder);
copyArrayElemsForMemCpy(Builder, MCI, CBR, ArrTy, 0, ElemsToCpy,
"memcpy." + MCI->getDest()->getName() + "." +
MCI->getSource()->getName());
MCI->eraseFromParent();
}
static void replaceAccessesWithHandle(CBufferResource &CBR) {
SmallVector<WeakTrackingVH> DeadInsts;
SmallVector<User *> ToProcess{CBR.users()};
while (!ToProcess.empty()) {
User *Cur = ToProcess.pop_back_val();
// If we have a load instruction, replace the access.
if (auto *LI = dyn_cast<LoadInst>(Cur)) {
replaceLoad(LI, CBR, DeadInsts);
continue;
}
// If we have a memcpy instruction, replace it with multiple accesses and
// subsequent stores to the destination
if (auto *MCI = dyn_cast<MemCpyInst>(Cur)) {
replaceMemCpy(MCI, CBR);
continue;
}
// Otherwise, walk users looking for a load...
if (isa<GetElementPtrInst>(Cur) || isa<GEPOperator>(Cur)) {
ToProcess.append(Cur->user_begin(), Cur->user_end());
continue;
}
llvm_unreachable("Unexpected user of Global");
}
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
}
static bool replaceCBufferAccesses(Module &M) {
std::optional<hlsl::CBufferMetadata> CBufMD = hlsl::CBufferMetadata::get(M);
if (!CBufMD)
return false;
for (const hlsl::CBufferMapping &Mapping : *CBufMD)
for (const hlsl::CBufferMember &Member : Mapping.Members) {
CBufferResource CBR(Mapping.Handle, Member.GV, Member.Offset);
replaceAccessesWithHandle(CBR);
Member.GV->removeFromParent();
}
CBufMD->eraseFromModule();
return true;
}
PreservedAnalyses DXILCBufferAccess::run(Module &M, ModuleAnalysisManager &AM) {
PreservedAnalyses PA;
bool Changed = replaceCBufferAccesses(M);
if (!Changed)
return PreservedAnalyses::all();
return PA;
}
namespace {
class DXILCBufferAccessLegacy : public ModulePass {
public:
bool runOnModule(Module &M) override { return replaceCBufferAccesses(M); }
StringRef getPassName() const override { return "DXIL CBuffer Access"; }
DXILCBufferAccessLegacy() : ModulePass(ID) {}
static char ID; // Pass identification.
};
char DXILCBufferAccessLegacy::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(DXILCBufferAccessLegacy, DEBUG_TYPE, "DXIL CBuffer Access",
false, false)
ModulePass *llvm::createDXILCBufferAccessLegacyPass() {
return new DXILCBufferAccessLegacy();
}