llvm-project/llvm/lib/Target/DirectX/DXILPrepare.cpp
Deric C. 8f9ed78874
Revert "[DirectX] Legalize lifetime intrinsics for DXIL" (#149883)
Reverts llvm/llvm-project#148003 to fix a DirectX backend build breakage
due to #149310
2025-07-21 12:34:50 -07:00

325 lines
12 KiB
C++

//===- DXILPrepare.cpp - Prepare LLVM Module for DXIL encoding ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file This file contains pases and utilities to convert a modern LLVM
/// module into a module compatible with the LLVM 3.7-based DirectX Intermediate
/// Language (DXIL).
//===----------------------------------------------------------------------===//
#include "DXILRootSignature.h"
#include "DXILShaderFlags.h"
#include "DirectX.h"
#include "DirectXIRPasses/PointerTypeAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Analysis/DXILMetadataAnalysis.h"
#include "llvm/Analysis/DXILResource.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/VersionTuple.h"
#define DEBUG_TYPE "dxil-prepare"
using namespace llvm;
using namespace llvm::dxil;
namespace {
constexpr bool isValidForDXIL(Attribute::AttrKind Attr) {
return is_contained({Attribute::Alignment,
Attribute::AlwaysInline,
Attribute::Builtin,
Attribute::ByVal,
Attribute::InAlloca,
Attribute::Cold,
Attribute::Convergent,
Attribute::InlineHint,
Attribute::InReg,
Attribute::JumpTable,
Attribute::MinSize,
Attribute::Naked,
Attribute::Nest,
Attribute::NoAlias,
Attribute::NoBuiltin,
Attribute::NoDuplicate,
Attribute::NoImplicitFloat,
Attribute::NoInline,
Attribute::NonLazyBind,
Attribute::NonNull,
Attribute::Dereferenceable,
Attribute::DereferenceableOrNull,
Attribute::Memory,
Attribute::NoRedZone,
Attribute::NoReturn,
Attribute::NoUnwind,
Attribute::OptimizeForSize,
Attribute::OptimizeNone,
Attribute::ReadNone,
Attribute::ReadOnly,
Attribute::Returned,
Attribute::ReturnsTwice,
Attribute::SExt,
Attribute::StackAlignment,
Attribute::StackProtect,
Attribute::StackProtectReq,
Attribute::StackProtectStrong,
Attribute::SafeStack,
Attribute::StructRet,
Attribute::SanitizeAddress,
Attribute::SanitizeThread,
Attribute::SanitizeMemory,
Attribute::UWTable,
Attribute::ZExt},
Attr);
}
static void collectDeadStringAttrs(AttributeMask &DeadAttrs, AttributeSet &&AS,
const StringSet<> &LiveKeys,
bool AllowExperimental) {
for (auto &Attr : AS) {
if (!Attr.isStringAttribute())
continue;
StringRef Key = Attr.getKindAsString();
if (LiveKeys.contains(Key))
continue;
if (AllowExperimental && Key.starts_with("exp-"))
continue;
DeadAttrs.addAttribute(Key);
}
}
static void removeStringFunctionAttributes(Function &F,
bool AllowExperimental) {
AttributeList Attrs = F.getAttributes();
const StringSet<> LiveKeys = {"waveops-include-helper-lanes",
"fp32-denorm-mode"};
// Collect DeadKeys in FnAttrs.
AttributeMask DeadAttrs;
collectDeadStringAttrs(DeadAttrs, Attrs.getFnAttrs(), LiveKeys,
AllowExperimental);
collectDeadStringAttrs(DeadAttrs, Attrs.getRetAttrs(), LiveKeys,
AllowExperimental);
F.removeFnAttrs(DeadAttrs);
F.removeRetAttrs(DeadAttrs);
}
static void cleanModuleFlags(Module &M) {
NamedMDNode *MDFlags = M.getModuleFlagsMetadata();
if (!MDFlags)
return;
SmallVector<llvm::Module::ModuleFlagEntry> FlagEntries;
M.getModuleFlagsMetadata(FlagEntries);
bool Updated = false;
for (auto &Flag : FlagEntries) {
// llvm 3.7 only supports behavior up to AppendUnique.
if (Flag.Behavior <= Module::ModFlagBehavior::AppendUnique)
continue;
Flag.Behavior = Module::ModFlagBehavior::Warning;
Updated = true;
}
if (!Updated)
return;
MDFlags->eraseFromParent();
for (auto &Flag : FlagEntries)
M.addModuleFlag(Flag.Behavior, Flag.Key->getString(), Flag.Val);
}
class DXILPrepareModule : public ModulePass {
static Value *maybeGenerateBitcast(IRBuilder<> &Builder,
PointerTypeMap &PointerTypes,
Instruction &Inst, Value *Operand,
Type *Ty) {
// Omit bitcasts if the incoming value matches the instruction type.
auto It = PointerTypes.find(Operand);
if (It != PointerTypes.end()) {
auto *OpTy = cast<TypedPointerType>(It->second)->getElementType();
if (OpTy == Ty)
return nullptr;
}
Type *ValTy = Operand->getType();
// Also omit the bitcast for matching global array types
if (auto *GlobalVar = dyn_cast<GlobalVariable>(Operand))
ValTy = GlobalVar->getValueType();
if (auto *AI = dyn_cast<AllocaInst>(Operand))
ValTy = AI->getAllocatedType();
if (auto *ArrTy = dyn_cast<ArrayType>(ValTy)) {
Type *ElTy = ArrTy->getElementType();
if (ElTy == Ty)
return nullptr;
}
// finally, drill down GEP instructions until we get the array
// that is being accessed, and compare element types
if (ConstantExpr *GEPInstr = dyn_cast<ConstantExpr>(Operand)) {
while (GEPInstr->getOpcode() == Instruction::GetElementPtr) {
Value *OpArg = GEPInstr->getOperand(0);
if (ConstantExpr *NewGEPInstr = dyn_cast<ConstantExpr>(OpArg)) {
GEPInstr = NewGEPInstr;
continue;
}
if (auto *GlobalVar = dyn_cast<GlobalVariable>(OpArg))
ValTy = GlobalVar->getValueType();
if (auto *AI = dyn_cast<AllocaInst>(Operand))
ValTy = AI->getAllocatedType();
if (auto *ArrTy = dyn_cast<ArrayType>(ValTy)) {
Type *ElTy = ArrTy->getElementType();
if (ElTy == Ty)
return nullptr;
}
break;
}
}
// Insert bitcasts where we are removing the instruction.
Builder.SetInsertPoint(&Inst);
// This code only gets hit in opaque-pointer mode, so the type of the
// pointer doesn't matter.
PointerType *PtrTy = cast<PointerType>(Operand->getType());
return Builder.Insert(
CastInst::Create(Instruction::BitCast, Operand,
Builder.getPtrTy(PtrTy->getAddressSpace())));
}
static std::array<unsigned, 6> getCompatibleInstructionMDs(llvm::Module &M) {
return {M.getMDKindID("dx.nonuniform"),
M.getMDKindID("dx.controlflow.hints"),
M.getMDKindID("dx.precise"),
llvm::LLVMContext::MD_range,
llvm::LLVMContext::MD_alias_scope,
llvm::LLVMContext::MD_noalias};
}
public:
bool runOnModule(Module &M) override {
PointerTypeMap PointerTypes = PointerTypeAnalysis::run(M);
AttributeMask AttrMask;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (!isValidForDXIL(I))
AttrMask.addAttribute(I);
}
const dxil::ModuleMetadataInfo MetadataInfo =
getAnalysis<DXILMetadataAnalysisWrapperPass>().getModuleMetadata();
VersionTuple ValVer = MetadataInfo.ValidatorVersion;
bool SkipValidation = ValVer.getMajor() == 0 && ValVer.getMinor() == 0;
// construct allowlist of valid metadata node kinds
std::array<unsigned, 6> DXILCompatibleMDs = getCompatibleInstructionMDs(M);
for (auto &F : M.functions()) {
F.removeFnAttrs(AttrMask);
F.removeRetAttrs(AttrMask);
// Only remove string attributes if we are not skipping validation.
// This will reserve the experimental attributes when validation version
// is 0.0 for experiment mode.
removeStringFunctionAttributes(F, SkipValidation);
for (size_t Idx = 0, End = F.arg_size(); Idx < End; ++Idx)
F.removeParamAttrs(Idx, AttrMask);
for (auto &BB : F) {
IRBuilder<> Builder(&BB);
for (auto &I : make_early_inc_range(BB)) {
I.dropUnknownNonDebugMetadata(DXILCompatibleMDs);
// Emtting NoOp bitcast instructions allows the ValueEnumerator to be
// unmodified as it reserves instruction IDs during contruction.
if (auto LI = dyn_cast<LoadInst>(&I)) {
if (Value *NoOpBitcast = maybeGenerateBitcast(
Builder, PointerTypes, I, LI->getPointerOperand(),
LI->getType())) {
LI->replaceAllUsesWith(
Builder.CreateLoad(LI->getType(), NoOpBitcast));
LI->eraseFromParent();
}
continue;
}
if (auto SI = dyn_cast<StoreInst>(&I)) {
if (Value *NoOpBitcast = maybeGenerateBitcast(
Builder, PointerTypes, I, SI->getPointerOperand(),
SI->getValueOperand()->getType())) {
SI->replaceAllUsesWith(
Builder.CreateStore(SI->getValueOperand(), NoOpBitcast));
SI->eraseFromParent();
}
continue;
}
if (auto GEP = dyn_cast<GetElementPtrInst>(&I)) {
if (Value *NoOpBitcast = maybeGenerateBitcast(
Builder, PointerTypes, I, GEP->getPointerOperand(),
GEP->getSourceElementType()))
GEP->setOperand(0, NoOpBitcast);
continue;
}
if (auto *CB = dyn_cast<CallBase>(&I)) {
CB->removeFnAttrs(AttrMask);
CB->removeRetAttrs(AttrMask);
for (size_t Idx = 0, End = CB->arg_size(); Idx < End; ++Idx)
CB->removeParamAttrs(Idx, AttrMask);
continue;
}
}
}
}
// Remove flags not for DXIL.
cleanModuleFlags(M);
// dx.rootsignatures will have been parsed from its metadata form as its
// binary form as part of the RootSignatureAnalysisWrapper, so safely
// remove it as it is not recognized in DXIL
if (NamedMDNode *RootSignature = M.getNamedMetadata("dx.rootsignatures"))
RootSignature->eraseFromParent();
return true;
}
DXILPrepareModule() : ModulePass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DXILMetadataAnalysisWrapperPass>();
AU.addRequired<RootSignatureAnalysisWrapper>();
AU.addPreserved<RootSignatureAnalysisWrapper>();
AU.addPreserved<ShaderFlagsAnalysisWrapper>();
AU.addPreserved<DXILMetadataAnalysisWrapperPass>();
AU.addPreserved<DXILResourceWrapperPass>();
}
static char ID; // Pass identification.
};
char DXILPrepareModule::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(DXILPrepareModule, DEBUG_TYPE, "DXIL Prepare Module",
false, false)
INITIALIZE_PASS_DEPENDENCY(DXILMetadataAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(RootSignatureAnalysisWrapper)
INITIALIZE_PASS_END(DXILPrepareModule, DEBUG_TYPE, "DXIL Prepare Module", false,
false)
ModulePass *llvm::createDXILPrepareModulePass() {
return new DXILPrepareModule();
}