llvm-project/llvm/lib/Transforms/Vectorize/VPlanTransforms.cpp
Shih-Po Hung 632c5d2991
[VPlan] Support VPReverseVectorPointer in DataWithEVL vectorization (#113667)
VPReverseVectorPointer relies on the runtime VF, but in DataWithEVL
tail-folding, EVL (which can be less than VF at runtime) should be used
instead.

This patch updates the logic to check the users of VF and replaces the
second operand if the user is VPReverseVectorPointer.
2024-11-22 17:18:39 +08:00

1803 lines
73 KiB
C++

//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a set of utility VPlan to VPlan transformations.
///
//===----------------------------------------------------------------------===//
#include "VPlanTransforms.h"
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "VPlanUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
void VPlanTransforms::VPInstructionsToVPRecipes(
VPlanPtr &Plan,
function_ref<const InductionDescriptor *(PHINode *)>
GetIntOrFpInductionDescriptor,
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan->getVectorLoopRegion());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
// Skip blocks outside region
if (!VPBB->getParent())
break;
VPRecipeBase *Term = VPBB->getTerminator();
auto EndIter = Term ? Term->getIterator() : VPBB->end();
// Introduce each ingredient into VPlan.
for (VPRecipeBase &Ingredient :
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
VPValue *VPV = Ingredient.getVPSingleValue();
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
VPRecipeBase *NewRecipe = nullptr;
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
const auto *II = GetIntOrFpInductionDescriptor(Phi);
if (!II)
continue;
VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
VPValue *Step =
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step,
&Plan->getVF(), *II);
} else {
assert(isa<VPInstruction>(&Ingredient) &&
"only VPInstructions expected here");
assert(!isa<PHINode>(Inst) && "phis should be handled above");
// Create VPWidenMemoryRecipe for loads and stores.
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
NewRecipe = new VPWidenLoadRecipe(
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
false /*Consecutive*/, false /*Reverse*/,
Ingredient.getDebugLoc());
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
NewRecipe = new VPWidenStoreRecipe(
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
Ingredient.getDebugLoc());
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
NewRecipe = new VPWidenIntrinsicRecipe(
*CI, getVectorIntrinsicIDForCall(CI, &TLI),
{Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
CI->getDebugLoc());
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
NewRecipe = new VPWidenCastRecipe(
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
} else {
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
}
}
NewRecipe->insertBefore(&Ingredient);
if (NewRecipe->getNumDefinedValues() == 1)
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
else
assert(NewRecipe->getNumDefinedValues() == 0 &&
"Only recpies with zero or one defined values expected");
Ingredient.eraseFromParent();
}
}
}
static bool sinkScalarOperands(VPlan &Plan) {
auto Iter = vp_depth_first_deep(Plan.getEntry());
bool Changed = false;
// First, collect the operands of all recipes in replicate blocks as seeds for
// sinking.
SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
continue;
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
continue;
for (auto &Recipe : *VPBB) {
for (VPValue *Op : Recipe.operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(VPBB, Def));
}
}
bool ScalarVFOnly = Plan.hasScalarVFOnly();
// Try to sink each replicate or scalar IV steps recipe in the worklist.
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPBasicBlock *SinkTo;
VPSingleDefRecipe *SinkCandidate;
std::tie(SinkTo, SinkCandidate) = WorkList[I];
if (SinkCandidate->getParent() == SinkTo ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadOrWriteMemory())
continue;
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
if (!ScalarVFOnly && RepR->isUniform())
continue;
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
continue;
bool NeedsDuplicating = false;
// All recipe users of the sink candidate must be in the same block SinkTo
// or all users outside of SinkTo must be uniform-after-vectorization (
// i.e., only first lane is used) . In the latter case, we need to duplicate
// SinkCandidate.
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
SinkCandidate](VPUser *U) {
auto *UI = cast<VPRecipeBase>(U);
if (UI->getParent() == SinkTo)
return true;
NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
// We only know how to duplicate VPRecipeRecipes for now.
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
};
if (!all_of(SinkCandidate->users(), CanSinkWithUser))
continue;
if (NeedsDuplicating) {
if (ScalarVFOnly)
continue;
Instruction *I = SinkCandidate->getUnderlyingInstr();
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
// TODO: add ".cloned" suffix to name of Clone's VPValue.
Clone->insertBefore(SinkCandidate);
SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
});
}
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
for (VPValue *Op : SinkCandidate->operands())
if (auto *Def =
dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
WorkList.insert(std::make_pair(SinkTo, Def));
Changed = true;
}
return Changed;
}
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
/// the mask.
VPValue *getPredicatedMask(VPRegionBlock *R) {
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
if (!EntryBB || EntryBB->size() != 1 ||
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
return nullptr;
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
}
/// If \p R is a triangle region, return the 'then' block of the triangle.
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
if (EntryBB->getNumSuccessors() != 2)
return nullptr;
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
if (!Succ0 || !Succ1)
return nullptr;
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
return nullptr;
if (Succ0->getSingleSuccessor() == Succ1)
return Succ0;
if (Succ1->getSingleSuccessor() == Succ0)
return Succ1;
return nullptr;
}
// Merge replicate regions in their successor region, if a replicate region
// is connected to a successor replicate region with the same predicate by a
// single, empty VPBasicBlock.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
SetVector<VPRegionBlock *> DeletedRegions;
// Collect replicate regions followed by an empty block, followed by another
// replicate region with matching masks to process front. This is to avoid
// iterator invalidation issues while merging regions.
SmallVector<VPRegionBlock *, 8> WorkList;
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
if (!Region1->isReplicator())
continue;
auto *MiddleBasicBlock =
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
continue;
auto *Region2 =
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
if (!Region2 || !Region2->isReplicator())
continue;
VPValue *Mask1 = getPredicatedMask(Region1);
VPValue *Mask2 = getPredicatedMask(Region2);
if (!Mask1 || Mask1 != Mask2)
continue;
assert(Mask1 && Mask2 && "both region must have conditions");
WorkList.push_back(Region1);
}
// Move recipes from Region1 to its successor region, if both are triangles.
for (VPRegionBlock *Region1 : WorkList) {
if (DeletedRegions.contains(Region1))
continue;
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
if (!Then1 || !Then2)
continue;
// Note: No fusion-preventing memory dependencies are expected in either
// region. Such dependencies should be rejected during earlier dependence
// checks, which guarantee accesses can be re-ordered for vectorization.
//
// Move recipes to the successor region.
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
// Move VPPredInstPHIRecipes from the merge block to the successor region's
// merge block. Update all users inside the successor region to use the
// original values.
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
VPValue *PredInst1 =
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
return cast<VPRecipeBase>(&U)->getParent() == Then2;
});
// Remove phi recipes that are unused after merging the regions.
if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
Phi1ToMove.eraseFromParent();
continue;
}
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
}
// Finally, remove the first region.
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
VPBlockUtils::disconnectBlocks(Pred, Region1);
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
}
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
DeletedRegions.insert(Region1);
}
for (VPRegionBlock *ToDelete : DeletedRegions)
delete ToDelete;
return !DeletedRegions.empty();
}
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
VPlan &Plan) {
Instruction *Instr = PredRecipe->getUnderlyingInstr();
// Build the triangular if-then region.
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
assert(Instr->getParent() && "Predicated instruction not in any basic block");
auto *BlockInMask = PredRecipe->getMask();
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
// Replace predicated replicate recipe with a replicate recipe without a
// mask but in the replicate region.
auto *RecipeWithoutMask = new VPReplicateRecipe(
PredRecipe->getUnderlyingInstr(),
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
PredRecipe->isUniform());
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
VPPredInstPHIRecipe *PHIRecipe = nullptr;
if (PredRecipe->getNumUsers() != 0) {
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
PredRecipe->replaceAllUsesWith(PHIRecipe);
PHIRecipe->setOperand(0, RecipeWithoutMask);
}
PredRecipe->eraseFromParent();
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
// Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
VPBlockUtils::connectBlocks(Pred, Exiting);
return Region;
}
static void addReplicateRegions(VPlan &Plan) {
SmallVector<VPReplicateRecipe *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
for (VPRecipeBase &R : *VPBB)
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
if (RepR->isPredicated())
WorkList.push_back(RepR);
}
}
unsigned BBNum = 0;
for (VPReplicateRecipe *RepR : WorkList) {
VPBasicBlock *CurrentBlock = RepR->getParent();
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
SplitBlock->setName(
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
// Record predicated instructions for above packing optimizations.
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
Region->setParent(CurrentBlock->getParent());
VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region);
}
}
/// Remove redundant VPBasicBlocks by merging them into their predecessor if
/// the predecessor has a single successor.
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
SmallVector<VPBasicBlock *> WorkList;
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getEntry()))) {
// Don't fold the blocks in the skeleton of the Plan into their single
// predecessors for now.
// TODO: Remove restriction once more of the skeleton is modeled in VPlan.
if (!VPBB->getParent())
continue;
auto *PredVPBB =
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
if (!PredVPBB || PredVPBB->getNumSuccessors() != 1)
continue;
WorkList.push_back(VPBB);
}
for (VPBasicBlock *VPBB : WorkList) {
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
R.moveBefore(*PredVPBB, PredVPBB->end());
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
if (ParentRegion && ParentRegion->getExiting() == VPBB)
ParentRegion->setExiting(PredVPBB);
for (auto *Succ : to_vector(VPBB->successors())) {
VPBlockUtils::disconnectBlocks(VPBB, Succ);
VPBlockUtils::connectBlocks(PredVPBB, Succ);
}
delete VPBB;
}
return !WorkList.empty();
}
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
// Convert masked VPReplicateRecipes to if-then region blocks.
addReplicateRegions(Plan);
bool ShouldSimplify = true;
while (ShouldSimplify) {
ShouldSimplify = sinkScalarOperands(Plan);
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
}
}
/// Remove redundant casts of inductions.
///
/// Such redundant casts are casts of induction variables that can be ignored,
/// because we already proved that the casted phi is equal to the uncasted phi
/// in the vectorized loop. There is no need to vectorize the cast - the same
/// value can be used for both the phi and casts in the vector loop.
static void removeRedundantInductionCasts(VPlan &Plan) {
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!IV || IV->getTruncInst())
continue;
// A sequence of IR Casts has potentially been recorded for IV, which
// *must be bypassed* when the IV is vectorized, because the vectorized IV
// will produce the desired casted value. This sequence forms a def-use
// chain and is provided in reverse order, ending with the cast that uses
// the IV phi. Search for the recipe of the last cast in the chain and
// replace it with the original IV. Note that only the final cast is
// expected to have users outside the cast-chain and the dead casts left
// over will be cleaned up later.
auto &Casts = IV->getInductionDescriptor().getCastInsts();
VPValue *FindMyCast = IV;
for (Instruction *IRCast : reverse(Casts)) {
VPSingleDefRecipe *FoundUserCast = nullptr;
for (auto *U : FindMyCast->users()) {
auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
FoundUserCast = UserCast;
break;
}
}
FindMyCast = FoundUserCast;
}
FindMyCast->replaceAllUsesWith(IV);
}
}
/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
/// recipe, if it exists.
static void removeRedundantCanonicalIVs(VPlan &Plan) {
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
for (VPUser *U : CanonicalIV->users()) {
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
if (WidenNewIV)
break;
}
if (!WidenNewIV)
return;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
continue;
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
// everything WidenNewIV's users need. That is, WidenOriginalIV will
// generate a vector phi or all users of WidenNewIV demand the first lane
// only.
if (any_of(WidenOriginalIV->users(),
[WidenOriginalIV](VPUser *U) {
return !U->usesScalars(WidenOriginalIV);
}) ||
vputils::onlyFirstLaneUsed(WidenNewIV)) {
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
WidenNewIV->eraseFromParent();
return;
}
}
}
/// Returns true if \p R is dead and can be removed.
static bool isDeadRecipe(VPRecipeBase &R) {
using namespace llvm::PatternMatch;
// Do remove conditional assume instructions as their conditions may be
// flattened.
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
bool IsConditionalAssume =
RepR && RepR->isPredicated() &&
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
if (IsConditionalAssume)
return true;
if (R.mayHaveSideEffects())
return false;
// Recipe is dead if no user keeps the recipe alive.
return all_of(R.definedValues(),
[](VPValue *V) { return V->getNumUsers() == 0; });
}
void VPlanTransforms::removeDeadRecipes(VPlan &Plan) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
// The recipes in the block are processed in reverse order, to catch chains
// of dead recipes.
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
if (isDeadRecipe(R))
R.eraseFromParent();
}
}
}
static VPScalarIVStepsRecipe *
createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind,
Instruction::BinaryOps InductionOpcode,
FPMathOperator *FPBinOp, Instruction *TruncI,
VPValue *StartV, VPValue *Step, VPBuilder &Builder) {
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
VPSingleDefRecipe *BaseIV = CanonicalIV;
if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
BaseIV = Builder.createDerivedIV(Kind, FPBinOp, StartV, CanonicalIV, Step);
}
// Truncate base induction if needed.
Type *CanonicalIVType = CanonicalIV->getScalarType();
VPTypeAnalysis TypeInfo(CanonicalIVType);
Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
if (TruncI) {
Type *TruncTy = TruncI->getType();
assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
"Not truncating.");
assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy);
ResultTy = TruncTy;
}
// Truncate step if needed.
Type *StepTy = TypeInfo.inferScalarType(Step);
if (ResultTy != StepTy) {
assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
"Not truncating.");
assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
auto *VecPreheader =
cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
VPBuilder::InsertPointGuard Guard(Builder);
Builder.setInsertPoint(VecPreheader);
Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy);
}
return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step);
}
/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
/// VPWidenPointerInductionRecipe will generate vectors only. If some users
/// require vectors while other require scalars, the scalar uses need to extract
/// the scalars from the generated vectors (Note that this is different to how
/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
/// if any of its users needs scalar values, by providing them scalar steps
/// built on the canonical scalar IV and update the original IV's users. This is
/// an optional optimization to reduce the needs of vector extracts.
static void legalizeAndOptimizeInductions(VPlan &Plan) {
SmallVector<VPRecipeBase *> ToRemove;
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
// Replace wide pointer inductions which have only their scalars used by
// PtrAdd(IndStart, ScalarIVSteps (0, Step)).
if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
continue;
const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
VPValue *StartV =
Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
VPValue *StepV = PtrIV->getOperand(1);
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
nullptr, StartV, StepV, Builder);
VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
PtrIV->getDebugLoc(), "next.gep");
PtrIV->replaceAllUsesWith(PtrAdd);
continue;
}
// Replace widened induction with scalar steps for users that only use
// scalars.
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (!WideIV)
continue;
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
return U->usesScalars(WideIV);
}))
continue;
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
Plan, ID.getKind(), ID.getInductionOpcode(),
dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
Builder);
// Update scalar users of IV to use Step instead.
if (!HasOnlyVectorVFs)
WideIV->replaceAllUsesWith(Steps);
else
WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
return U.usesScalars(WideIV);
});
}
}
/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
/// them with already existing recipes expanding the same SCEV expression.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
for (VPRecipeBase &R :
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
if (!ExpR)
continue;
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
if (I.second)
continue;
ExpR->replaceAllUsesWith(I.first->second);
ExpR->eraseFromParent();
}
}
static void recursivelyDeleteDeadRecipes(VPValue *V) {
SmallVector<VPValue *> WorkList;
SmallPtrSet<VPValue *, 8> Seen;
WorkList.push_back(V);
while (!WorkList.empty()) {
VPValue *Cur = WorkList.pop_back_val();
if (!Seen.insert(Cur).second)
continue;
VPRecipeBase *R = Cur->getDefiningRecipe();
if (!R)
continue;
if (!isDeadRecipe(*R))
continue;
WorkList.append(R->op_begin(), R->op_end());
R->eraseFromParent();
}
}
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
unsigned BestUF,
PredicatedScalarEvolution &PSE) {
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
VPBasicBlock *ExitingVPBB =
Plan.getVectorLoopRegion()->getExitingBasicBlock();
auto *Term = &ExitingVPBB->back();
// Try to simplify the branch condition if TC <= VF * UF when preparing to
// execute the plan for the main vector loop. We only do this if the
// terminator is:
// 1. BranchOnCount, or
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
using namespace llvm::VPlanPatternMatch;
if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
!match(Term,
m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
return;
ScalarEvolution &SE = *PSE.getSE();
const SCEV *TripCount =
vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
assert(!isa<SCEVCouldNotCompute>(TripCount) &&
"Trip count SCEV must be computable");
ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
if (TripCount->isZero() ||
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
return;
LLVMContext &Ctx = SE.getContext();
auto *BOC = new VPInstruction(
VPInstruction::BranchOnCond,
{Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc());
SmallVector<VPValue *> PossiblyDead(Term->operands());
Term->eraseFromParent();
for (VPValue *Op : PossiblyDead)
recursivelyDeleteDeadRecipes(Op);
ExitingVPBB->appendRecipe(BOC);
Plan.setVF(BestVF);
Plan.setUF(BestUF);
// TODO: Further simplifications are possible
// 1. Replace inductions with constants.
// 2. Replace vector loop region with VPBasicBlock.
}
/// Sink users of \p FOR after the recipe defining the previous value \p
/// Previous of the recurrence. \returns true if all users of \p FOR could be
/// re-arranged as needed or false if it is not possible.
static bool
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
VPRecipeBase *Previous,
VPDominatorTree &VPDT) {
// Collect recipes that need sinking.
SmallVector<VPRecipeBase *> WorkList;
SmallPtrSet<VPRecipeBase *, 8> Seen;
Seen.insert(Previous);
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
// The previous value must not depend on the users of the recurrence phi. In
// that case, FOR is not a fixed order recurrence.
if (SinkCandidate == Previous)
return false;
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
!Seen.insert(SinkCandidate).second ||
VPDT.properlyDominates(Previous, SinkCandidate))
return true;
if (SinkCandidate->mayHaveSideEffects())
return false;
WorkList.push_back(SinkCandidate);
return true;
};
// Recursively sink users of FOR after Previous.
WorkList.push_back(FOR);
for (unsigned I = 0; I != WorkList.size(); ++I) {
VPRecipeBase *Current = WorkList[I];
assert(Current->getNumDefinedValues() == 1 &&
"only recipes with a single defined value expected");
for (VPUser *User : Current->getVPSingleValue()->users()) {
if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
return false;
}
}
// Keep recipes to sink ordered by dominance so earlier instructions are
// processed first.
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
return VPDT.properlyDominates(A, B);
});
for (VPRecipeBase *SinkCandidate : WorkList) {
if (SinkCandidate == FOR)
continue;
SinkCandidate->moveAfter(Previous);
Previous = SinkCandidate;
}
return true;
}
/// Try to hoist \p Previous and its operands before all users of \p FOR.
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR,
VPRecipeBase *Previous,
VPDominatorTree &VPDT) {
if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
return false;
// Collect recipes that need hoisting.
SmallVector<VPRecipeBase *> HoistCandidates;
SmallPtrSet<VPRecipeBase *, 8> Visited;
VPRecipeBase *HoistPoint = nullptr;
// Find the closest hoist point by looking at all users of FOR and selecting
// the recipe dominating all other users.
for (VPUser *U : FOR->users()) {
auto *R = cast<VPRecipeBase>(U);
if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
HoistPoint = R;
}
assert(all_of(FOR->users(),
[&VPDT, HoistPoint](VPUser *U) {
auto *R = cast<VPRecipeBase>(U);
return HoistPoint == R ||
VPDT.properlyDominates(HoistPoint, R);
}) &&
"HoistPoint must dominate all users of FOR");
auto NeedsHoisting = [HoistPoint, &VPDT,
&Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
if (!HoistCandidate)
return nullptr;
VPRegionBlock *EnclosingLoopRegion =
HoistCandidate->getParent()->getEnclosingLoopRegion();
assert((!HoistCandidate->getParent()->getParent() ||
HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
"CFG in VPlan should still be flat, without replicate regions");
// Hoist candidate was already visited, no need to hoist.
if (!Visited.insert(HoistCandidate).second)
return nullptr;
// Candidate is outside loop region or a header phi, dominates FOR users w/o
// hoisting.
if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
return nullptr;
// If we reached a recipe that dominates HoistPoint, we don't need to
// hoist the recipe.
if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
return nullptr;
return HoistCandidate;
};
auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
// Avoid hoisting candidates with side-effects, as we do not yet analyze
// associated dependencies.
return !HoistCandidate->mayHaveSideEffects();
};
if (!NeedsHoisting(Previous->getVPSingleValue()))
return true;
// Recursively try to hoist Previous and its operands before all users of FOR.
HoistCandidates.push_back(Previous);
for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
VPRecipeBase *Current = HoistCandidates[I];
assert(Current->getNumDefinedValues() == 1 &&
"only recipes with a single defined value expected");
if (!CanHoist(Current))
return false;
for (VPValue *Op : Current->operands()) {
// If we reach FOR, it means the original Previous depends on some other
// recurrence that in turn depends on FOR. If that is the case, we would
// also need to hoist recipes involving the other FOR, which may break
// dependencies.
if (Op == FOR)
return false;
if (auto *R = NeedsHoisting(Op))
HoistCandidates.push_back(R);
}
}
// Order recipes to hoist by dominance so earlier instructions are processed
// first.
sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
return VPDT.properlyDominates(A, B);
});
for (VPRecipeBase *HoistCandidate : HoistCandidates) {
HoistCandidate->moveBefore(*HoistPoint->getParent(),
HoistPoint->getIterator());
}
return true;
}
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
VPBuilder &LoopBuilder) {
VPDominatorTree VPDT;
VPDT.recalculate(Plan);
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
RecurrencePhis.push_back(FOR);
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
// to terminate.
while (auto *PrevPhi =
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
assert(PrevPhi->getParent() == FOR->getParent());
assert(SeenPhis.insert(PrevPhi).second);
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
}
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
!hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
return false;
// Introduce a recipe to combine the incoming and previous values of a
// fixed-order recurrence.
VPBasicBlock *InsertBlock = Previous->getParent();
if (isa<VPHeaderPHIRecipe>(Previous))
LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
else
LoopBuilder.setInsertPoint(InsertBlock,
std::next(Previous->getIterator()));
auto *RecurSplice = cast<VPInstruction>(
LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
{FOR, FOR->getBackedgeValue()}));
FOR->replaceAllUsesWith(RecurSplice);
// Set the first operand of RecurSplice to FOR again, after replacing
// all users.
RecurSplice->setOperand(0, FOR);
}
return true;
}
static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) {
SetVector<VPUser *> Users(V->user_begin(), V->user_end());
for (unsigned I = 0; I != Users.size(); ++I) {
VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]);
if (isa<VPHeaderPHIRecipe>(Cur))
continue;
for (VPValue *V : Cur->definedValues())
Users.insert(V->user_begin(), V->user_end());
}
return Users.takeVector();
}
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
for (VPRecipeBase &R :
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
if (!PhiR)
continue;
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
if (RK != RecurKind::Add && RK != RecurKind::Mul)
continue;
for (VPUser *U : collectUsersRecursively(PhiR))
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
RecWithFlags->dropPoisonGeneratingFlags();
}
}
}
/// Try to simplify recipe \p R.
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
using namespace llvm::VPlanPatternMatch;
if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
// Try to remove redundant blend recipes.
SmallPtrSet<VPValue *, 4> UniqueValues;
if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
UniqueValues.insert(Blend->getIncomingValue(0));
for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
if (!match(Blend->getMask(I), m_False()))
UniqueValues.insert(Blend->getIncomingValue(I));
if (UniqueValues.size() == 1) {
Blend->replaceAllUsesWith(*UniqueValues.begin());
Blend->eraseFromParent();
return;
}
if (Blend->isNormalized())
return;
// Normalize the blend so its first incoming value is used as the initial
// value with the others blended into it.
unsigned StartIndex = 0;
for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
// If a value's mask is used only by the blend then is can be deadcoded.
// TODO: Find the most expensive mask that can be deadcoded, or a mask
// that's used by multiple blends where it can be removed from them all.
VPValue *Mask = Blend->getMask(I);
if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
StartIndex = I;
break;
}
}
SmallVector<VPValue *, 4> OperandsWithMask;
OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
if (I == StartIndex)
continue;
OperandsWithMask.push_back(Blend->getIncomingValue(I));
OperandsWithMask.push_back(Blend->getMask(I));
}
auto *NewBlend = new VPBlendRecipe(
cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask);
NewBlend->insertBefore(&R);
VPValue *DeadMask = Blend->getMask(StartIndex);
Blend->replaceAllUsesWith(NewBlend);
Blend->eraseFromParent();
recursivelyDeleteDeadRecipes(DeadMask);
return;
}
VPValue *A;
if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
VPValue *Trunc = R.getVPSingleValue();
Type *TruncTy = TypeInfo.inferScalarType(Trunc);
Type *ATy = TypeInfo.inferScalarType(A);
if (TruncTy == ATy) {
Trunc->replaceAllUsesWith(A);
} else {
// Don't replace a scalarizing recipe with a widened cast.
if (isa<VPReplicateRecipe>(&R))
return;
if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
? Instruction::SExt
: Instruction::ZExt;
auto *VPC =
new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
// UnderlyingExt has distinct return type, used to retain legacy cost.
VPC->setUnderlyingValue(UnderlyingExt);
}
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
} else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
VPC->insertBefore(&R);
Trunc->replaceAllUsesWith(VPC);
}
}
#ifndef NDEBUG
// Verify that the cached type info is for both A and its users is still
// accurate by comparing it to freshly computed types.
VPTypeAnalysis TypeInfo2(
R.getParent()->getPlan()->getCanonicalIV()->getScalarType());
assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
for (VPUser *U : A->users()) {
auto *R = cast<VPRecipeBase>(U);
for (VPValue *VPV : R->definedValues())
assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
}
#endif
}
// Simplify (X && Y) || (X && !Y) -> X.
// TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
// && (Y || Z) and (X || !X) into true. This requires queuing newly created
// recipes to be visited during simplification.
VPValue *X, *Y, *X1, *Y1;
if (match(&R,
m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
X == X1 && Y == Y1) {
R.getVPSingleValue()->replaceAllUsesWith(X);
R.eraseFromParent();
return;
}
if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
return R.getVPSingleValue()->replaceAllUsesWith(A);
}
/// Move loop-invariant recipes out of the vector loop region in \p Plan.
static void licm(VPlan &Plan) {
VPBasicBlock *Preheader = Plan.getVectorPreheader();
// Return true if we do not know how to (mechanically) hoist a given recipe
// out of a loop region. Does not address legality concerns such as aliasing
// or speculation safety.
auto CannotHoistRecipe = [](VPRecipeBase &R) {
// Allocas cannot be hoisted.
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
return RepR && RepR->getOpcode() == Instruction::Alloca;
};
// Hoist any loop invariant recipes from the vector loop region to the
// preheader. Preform a shallow traversal of the vector loop region, to
// exclude recipes in replicate regions.
VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_shallow(LoopRegion->getEntry()))) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (CannotHoistRecipe(R))
continue;
// TODO: Relax checks in the future, e.g. we could also hoist reads, if
// their memory location is not modified in the vector loop.
if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
any_of(R.operands(), [](VPValue *Op) {
return !Op->isDefinedOutsideLoopRegions();
}))
continue;
R.moveBefore(*Preheader, Preheader->end());
}
}
}
/// Try to simplify the recipes in \p Plan.
static void simplifyRecipes(VPlan &Plan) {
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
VPTypeAnalysis TypeInfo(CanonicalIVType);
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
simplifyRecipe(R, TypeInfo);
}
}
}
void VPlanTransforms::truncateToMinimalBitwidths(
VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
#ifndef NDEBUG
// Count the processed recipes and cross check the count later with MinBWs
// size, to make sure all entries in MinBWs have been handled.
unsigned NumProcessedRecipes = 0;
#endif
// Keep track of created truncates, so they can be re-used. Note that we
// cannot use RAUW after creating a new truncate, as this would could make
// other uses have different types for their operands, making them invalidly
// typed.
DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
VPTypeAnalysis TypeInfo(CanonicalIVType);
VPBasicBlock *PH = Plan.getVectorPreheader();
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
VPWidenSelectRecipe, VPWidenLoadRecipe>(&R))
continue;
VPValue *ResultVPV = R.getVPSingleValue();
auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
unsigned NewResSizeInBits = MinBWs.lookup(UI);
if (!NewResSizeInBits)
continue;
#ifndef NDEBUG
NumProcessedRecipes++;
#endif
// If the value wasn't vectorized, we must maintain the original scalar
// type. Skip those here, after incrementing NumProcessedRecipes. Also
// skip casts which do not need to be handled explicitly here, as
// redundant casts will be removed during recipe simplification.
if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
#ifndef NDEBUG
// If any of the operands is a live-in and not used by VPWidenRecipe or
// VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
// processed as well. When MinBWs is currently constructed, there is no
// information about whether recipes are widened or replicated and in
// case they are reciplicated the operands are not truncated. Counting
// them them here ensures we do not miss any recipes in MinBWs.
// TODO: Remove once the analysis is done on VPlan.
for (VPValue *Op : R.operands()) {
if (!Op->isLiveIn())
continue;
auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
all_of(Op->users(), [](VPUser *U) {
return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
})) {
// Add an entry to ProcessedTruncs to avoid counting the same
// operand multiple times.
ProcessedTruncs[Op] = nullptr;
NumProcessedRecipes += 1;
}
}
#endif
continue;
}
Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
assert(OldResTy->isIntegerTy() && "only integer types supported");
(void)OldResSizeInBits;
LLVMContext &Ctx = CanonicalIVType->getContext();
auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to VPW.
if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
VPW->dropPoisonGeneratingFlags();
using namespace llvm::VPlanPatternMatch;
if (OldResSizeInBits != NewResSizeInBits &&
!match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
// Extend result to original width.
auto *Ext =
new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
Ext->insertAfter(&R);
ResultVPV->replaceAllUsesWith(Ext);
Ext->setOperand(0, ResultVPV);
assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
} else {
assert(
match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
"Only ICmps should not need extending the result.");
}
assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
if (isa<VPWidenLoadRecipe>(&R))
continue;
// Shrink operands by introducing truncates as needed.
unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
auto *Op = R.getOperand(Idx);
unsigned OpSizeInBits =
TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
if (OpSizeInBits == NewResSizeInBits)
continue;
assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
auto [ProcessedIter, IterIsEmpty] =
ProcessedTruncs.insert({Op, nullptr});
VPWidenCastRecipe *NewOp =
IterIsEmpty
? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
: ProcessedIter->second;
R.setOperand(Idx, NewOp);
if (!IterIsEmpty)
continue;
ProcessedIter->second = NewOp;
if (!Op->isLiveIn()) {
NewOp->insertBefore(&R);
} else {
PH->appendRecipe(NewOp);
#ifndef NDEBUG
auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
bool IsContained = MinBWs.contains(OpInst);
NumProcessedRecipes += IsContained;
#endif
}
}
}
}
assert(MinBWs.size() == NumProcessedRecipes &&
"some entries in MinBWs haven't been processed");
}
void VPlanTransforms::optimize(VPlan &Plan) {
removeRedundantCanonicalIVs(Plan);
removeRedundantInductionCasts(Plan);
simplifyRecipes(Plan);
legalizeAndOptimizeInductions(Plan);
removeDeadRecipes(Plan);
createAndOptimizeReplicateRegions(Plan);
removeRedundantExpandSCEVRecipes(Plan);
mergeBlocksIntoPredecessors(Plan);
licm(Plan);
}
// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
// the loop terminator with a branch-on-cond recipe with the negated
// active-lane-mask as operand. Note that this turns the loop into an
// uncountable one. Only the existing terminator is replaced, all other existing
// recipes/users remain unchanged, except for poison-generating flags being
// dropped from the canonical IV increment. Return the created
// VPActiveLaneMaskPHIRecipe.
//
// The function uses the following definitions:
//
// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
// calculate-trip-count-minus-VF (original TC) : original TC
// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
// CanonicalIVPhi : CanonicalIVIncrement
// %StartV is the canonical induction start value.
//
// The function adds the following recipes:
//
// vector.ph:
// %TripCount = calculate-trip-count-minus-VF (original TC)
// [if DataWithControlFlowWithoutRuntimeCheck]
// %EntryInc = canonical-iv-increment-for-part %StartV
// %EntryALM = active-lane-mask %EntryInc, %TripCount
//
// vector.body:
// ...
// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
// ...
// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
// %ALM = active-lane-mask %InLoopInc, TripCount
// %Negated = Not %ALM
// branch-on-cond %Negated
//
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
auto *CanonicalIVPHI = Plan.getCanonicalIV();
VPValue *StartV = CanonicalIVPHI->getStartValue();
auto *CanonicalIVIncrement =
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
// TODO: Check if dropping the flags is needed if
// !DataAndControlFlowWithoutRuntimeCheck.
CanonicalIVIncrement->dropPoisonGeneratingFlags();
DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
// we have to take unrolling into account. Each part needs to start at
// Part * VF
auto *VecPreheader = Plan.getVectorPreheader();
VPBuilder Builder(VecPreheader);
// Create the ActiveLaneMask instruction using the correct start values.
VPValue *TC = Plan.getTripCount();
VPValue *TripCount, *IncrementValue;
if (!DataAndControlFlowWithoutRuntimeCheck) {
// When the loop is guarded by a runtime overflow check for the loop
// induction variable increment by VF, we can increment the value before
// the get.active.lane mask and use the unmodified tripcount.
IncrementValue = CanonicalIVIncrement;
TripCount = TC;
} else {
// When avoiding a runtime check, the active.lane.mask inside the loop
// uses a modified trip count and the induction variable increment is
// done after the active.lane.mask intrinsic is called.
IncrementValue = CanonicalIVPHI;
TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
{TC}, DL);
}
auto *EntryIncrement = Builder.createOverflowingOp(
VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
"index.part.next");
// Create the active lane mask instruction in the VPlan preheader.
auto *EntryALM =
Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
DL, "active.lane.mask.entry");
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
// preheader ActiveLaneMask instruction.
auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
LaneMaskPhi->insertAfter(CanonicalIVPHI);
// Create the active lane mask for the next iteration of the loop before the
// original terminator.
VPRecipeBase *OriginalTerminator = EB->getTerminator();
Builder.setInsertPoint(OriginalTerminator);
auto *InLoopIncrement =
Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
{IncrementValue}, {false, false}, DL);
auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
{InLoopIncrement, TripCount}, DL,
"active.lane.mask.next");
LaneMaskPhi->addOperand(ALM);
// Replace the original terminator with BranchOnCond. We have to invert the
// mask here because a true condition means jumping to the exit block.
auto *NotMask = Builder.createNot(ALM, DL);
Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
OriginalTerminator->eraseFromParent();
return LaneMaskPhi;
}
/// Collect all VPValues representing a header mask through the (ICMP_ULE,
/// WideCanonicalIV, backedge-taken-count) pattern.
/// TODO: Introduce explicit recipe for header-mask instead of searching
/// for the header-mask pattern manually.
static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) {
SmallVector<VPValue *> WideCanonicalIVs;
auto *FoundWidenCanonicalIVUser =
find_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
assert(count_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
1 &&
"Must have at most one VPWideCanonicalIVRecipe");
if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
auto *WideCanonicalIV =
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
WideCanonicalIVs.push_back(WideCanonicalIV);
}
// Also include VPWidenIntOrFpInductionRecipes that represent a widened
// version of the canonical induction.
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
if (WidenOriginalIV && WidenOriginalIV->isCanonical())
WideCanonicalIVs.push_back(WidenOriginalIV);
}
// Walk users of wide canonical IVs and collect to all compares of the form
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
SmallVector<VPValue *> HeaderMasks;
for (auto *Wide : WideCanonicalIVs) {
for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
auto *HeaderMask = dyn_cast<VPInstruction>(U);
if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan))
continue;
assert(HeaderMask->getOperand(0) == Wide &&
"WidenCanonicalIV must be the first operand of the compare");
HeaderMasks.push_back(HeaderMask);
}
}
return HeaderMasks;
}
void VPlanTransforms::addActiveLaneMask(
VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
bool DataAndControlFlowWithoutRuntimeCheck) {
assert((!DataAndControlFlowWithoutRuntimeCheck ||
UseActiveLaneMaskForControlFlow) &&
"DataAndControlFlowWithoutRuntimeCheck implies "
"UseActiveLaneMaskForControlFlow");
auto *FoundWidenCanonicalIVUser =
find_if(Plan.getCanonicalIV()->users(),
[](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
assert(FoundWidenCanonicalIVUser &&
"Must have widened canonical IV when tail folding!");
auto *WideCanonicalIV =
cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
VPSingleDefRecipe *LaneMask;
if (UseActiveLaneMaskForControlFlow) {
LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
Plan, DataAndControlFlowWithoutRuntimeCheck);
} else {
VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
{WideCanonicalIV, Plan.getTripCount()}, nullptr,
"active.lane.mask");
}
// Walk users of WideCanonicalIV and replace all compares of the form
// (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
// active-lane-mask.
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
HeaderMask->replaceAllUsesWith(LaneMask);
}
/// Replace recipes with their EVL variants.
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) {
using namespace llvm::VPlanPatternMatch;
Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
VPTypeAnalysis TypeInfo(CanonicalIVType);
LLVMContext &Ctx = CanonicalIVType->getContext();
SmallVector<VPValue *> HeaderMasks = collectAllHeaderMasks(Plan);
for (VPUser *U : Plan.getVF().users()) {
if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U))
R->setOperand(1, &EVL);
}
for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
for (VPUser *U : collectUsersRecursively(HeaderMask)) {
auto *CurRecipe = cast<VPRecipeBase>(U);
auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
assert(OrigMask && "Unmasked recipe when folding tail");
return HeaderMask == OrigMask ? nullptr : OrigMask;
};
VPRecipeBase *NewRecipe =
TypeSwitch<VPRecipeBase *, VPRecipeBase *>(CurRecipe)
.Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) {
VPValue *NewMask = GetNewMask(L->getMask());
return new VPWidenLoadEVLRecipe(*L, EVL, NewMask);
})
.Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
VPValue *NewMask = GetNewMask(S->getMask());
return new VPWidenStoreEVLRecipe(*S, EVL, NewMask);
})
.Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * {
unsigned Opcode = W->getOpcode();
if (!Instruction::isBinaryOp(Opcode) &&
!Instruction::isUnaryOp(Opcode))
return nullptr;
return new VPWidenEVLRecipe(*W, EVL);
})
.Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
VPValue *NewMask = GetNewMask(Red->getCondOp());
return new VPReductionEVLRecipe(*Red, EVL, NewMask);
})
.Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) {
SmallVector<VPValue *> Ops(Sel->operands());
Ops.push_back(&EVL);
return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops,
TypeInfo.inferScalarType(Sel),
Sel->getDebugLoc());
})
.Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
VPValue *LHS, *RHS;
// Transform select with a header mask condition
// select(header_mask, LHS, RHS)
// into vector predication merge.
// vp.merge(all-true, LHS, RHS, EVL)
if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
m_VPValue(RHS))))
return nullptr;
// Use all true as the condition because this transformation is
// limited to selects whose condition is a header mask.
VPValue *AllTrue =
Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx));
return new VPWidenIntrinsicRecipe(
Intrinsic::vp_merge, {AllTrue, LHS, RHS, &EVL},
TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
})
.Default([&](VPRecipeBase *R) { return nullptr; });
if (!NewRecipe)
continue;
[[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues();
assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
"New recipe must define the same number of values as the "
"original.");
assert(
NumDefVal <= 1 &&
"Only supports recipes with a single definition or without users.");
NewRecipe->insertBefore(CurRecipe);
if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) {
VPValue *CurVPV = CurRecipe->getVPSingleValue();
CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
}
CurRecipe->eraseFromParent();
}
recursivelyDeleteDeadRecipes(HeaderMask);
}
}
/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
/// replaces all uses except the canonical IV increment of
/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
/// is used only for loop iterations counting after this transformation.
///
/// The function uses the following definitions:
/// %StartV is the canonical induction start value.
///
/// The function adds the following recipes:
///
/// vector.ph:
/// ...
///
/// vector.body:
/// ...
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
/// [ %NextEVLIV, %vector.body ]
/// %AVL = sub original TC, %EVLPhi
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
/// ...
/// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
/// ...
///
/// If MaxSafeElements is provided, the function adds the following recipes:
/// vector.ph:
/// ...
///
/// vector.body:
/// ...
/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
/// [ %NextEVLIV, %vector.body ]
/// %AVL = sub original TC, %EVLPhi
/// %cmp = cmp ult %AVL, MaxSafeElements
/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
/// ...
/// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi
/// ...
///
bool VPlanTransforms::tryAddExplicitVectorLength(
VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
// The transform updates all users of inductions to work based on EVL, instead
// of the VF directly. At the moment, widened inductions cannot be updated, so
// bail out if the plan contains any.
bool ContainsWidenInductions = any_of(Header->phis(), [](VPRecipeBase &Phi) {
return isa<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>(
&Phi);
});
if (ContainsWidenInductions)
return false;
auto *CanonicalIVPHI = Plan.getCanonicalIV();
VPValue *StartV = CanonicalIVPHI->getStartValue();
// Create the ExplicitVectorLengthPhi recipe in the main loop.
auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
EVLPhi->insertAfter(CanonicalIVPHI);
VPBuilder Builder(Header, Header->getFirstNonPhi());
// Compute original TC - IV as the AVL (application vector length).
VPValue *AVL = Builder.createNaryOp(
Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl");
if (MaxSafeElements) {
// Support for MaxSafeDist for correct loop emission.
VPValue *AVLSafe = Plan.getOrAddLiveIn(
ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements));
VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl");
}
auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
DebugLoc());
auto *CanonicalIVIncrement =
cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
VPSingleDefRecipe *OpVPEVL = VPEVL;
if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
IVSize != 32) {
OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc
: Instruction::ZExt,
OpVPEVL, CanonicalIVPHI->getScalarType());
OpVPEVL->insertBefore(CanonicalIVIncrement);
}
auto *NextEVLIV =
new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
{CanonicalIVIncrement->hasNoUnsignedWrap(),
CanonicalIVIncrement->hasNoSignedWrap()},
CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
NextEVLIV->insertBefore(CanonicalIVIncrement);
EVLPhi->addOperand(NextEVLIV);
transformRecipestoEVLRecipes(Plan, *VPEVL);
// Replace all uses of VPCanonicalIVPHIRecipe by
// VPEVLBasedIVPHIRecipe except for the canonical IV increment.
CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
// TODO: support unroll factor > 1.
Plan.setUF(1);
return true;
}
void VPlanTransforms::dropPoisonGeneratingRecipes(
VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
// Collect recipes in the backward slice of `Root` that may generate a poison
// value that is used after vectorization.
SmallPtrSet<VPRecipeBase *, 16> Visited;
auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
SmallVector<VPRecipeBase *, 16> Worklist;
Worklist.push_back(Root);
// Traverse the backward slice of Root through its use-def chain.
while (!Worklist.empty()) {
VPRecipeBase *CurRec = Worklist.pop_back_val();
if (!Visited.insert(CurRec).second)
continue;
// Prune search if we find another recipe generating a widen memory
// instruction. Widen memory instructions involved in address computation
// will lead to gather/scatter instructions, which don't need to be
// handled.
if (isa<VPWidenMemoryRecipe>(CurRec) || isa<VPInterleaveRecipe>(CurRec) ||
isa<VPScalarIVStepsRecipe>(CurRec) || isa<VPHeaderPHIRecipe>(CurRec))
continue;
// This recipe contributes to the address computation of a widen
// load/store. If the underlying instruction has poison-generating flags,
// drop them directly.
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
VPValue *A, *B;
using namespace llvm::VPlanPatternMatch;
// Dropping disjoint from an OR may yield incorrect results, as some
// analysis may have converted it to an Add implicitly (e.g. SCEV used
// for dependence analysis). Instead, replace it with an equivalent Add.
// This is possible as all users of the disjoint OR only access lanes
// where the operands are disjoint or poison otherwise.
if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
RecWithFlags->isDisjoint()) {
VPBuilder Builder(RecWithFlags);
VPInstruction *New = Builder.createOverflowingOp(
Instruction::Add, {A, B}, {false, false},
RecWithFlags->getDebugLoc());
New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
RecWithFlags->replaceAllUsesWith(New);
RecWithFlags->eraseFromParent();
CurRec = New;
} else
RecWithFlags->dropPoisonGeneratingFlags();
} else {
Instruction *Instr = dyn_cast_or_null<Instruction>(
CurRec->getVPSingleValue()->getUnderlyingValue());
(void)Instr;
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
"found instruction with poison generating flags not covered by "
"VPRecipeWithIRFlags");
}
// Add new definitions to the worklist.
for (VPValue *Operand : CurRec->operands())
if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
Worklist.push_back(OpDef);
}
});
// Traverse all the recipes in the VPlan and collect the poison-generating
// recipes in the backward slice starting at the address of a VPWidenRecipe or
// VPInterleaveRecipe.
auto Iter = vp_depth_first_deep(Plan.getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &Recipe : *VPBB) {
if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
Instruction &UnderlyingInstr = WidenRec->getIngredient();
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
if (AddrDef && WidenRec->isConsecutive() &&
BlockNeedsPredication(UnderlyingInstr.getParent()))
CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
if (AddrDef) {
// Check if any member of the interleave group needs predication.
const InterleaveGroup<Instruction> *InterGroup =
InterleaveRec->getInterleaveGroup();
bool NeedPredication = false;
for (int I = 0, NumMembers = InterGroup->getNumMembers();
I < NumMembers; ++I) {
Instruction *Member = InterGroup->getMember(I);
if (Member)
NeedPredication |= BlockNeedsPredication(Member->getParent());
}
if (NeedPredication)
CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
}
}
}
}
}
void VPlanTransforms::createInterleaveGroups(
VPlan &Plan,
const SmallPtrSetImpl<const InterleaveGroup<Instruction> *>
&InterleaveGroups,
VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) {
if (InterleaveGroups.empty())
return;
// Interleave memory: for each Interleave Group we marked earlier as relevant
// for this VPlan, replace the Recipes widening its memory instructions with a
// single VPInterleaveRecipe at its insertion point.
VPDominatorTree VPDT;
VPDT.recalculate(Plan);
for (const auto *IG : InterleaveGroups) {
SmallVector<VPValue *, 4> StoredValues;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI));
StoredValues.push_back(StoreR->getStoredValue());
}
bool NeedsMaskForGaps =
IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed;
Instruction *IRInsertPos = IG->getInsertPos();
auto *InsertPos =
cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
// Get or create the start address for the interleave group.
auto *Start =
cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
VPValue *Addr = Start->getAddr();
VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
// TODO: Hoist Addr's defining recipe (and any operands as needed) to
// InsertPos or sink loads above zero members to join it.
bool InBounds = false;
if (auto *Gep = dyn_cast<GetElementPtrInst>(
getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
InBounds = Gep->isInBounds();
// We cannot re-use the address of member zero because it does not
// dominate the insert position. Instead, use the address of the insert
// position and create a PtrAdd adjusting it to the address of member
// zero.
assert(IG->getIndex(IRInsertPos) != 0 &&
"index of insert position shouldn't be zero");
auto &DL = IRInsertPos->getDataLayout();
APInt Offset(32,
DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
IG->getIndex(IRInsertPos),
/*IsSigned=*/true);
VPValue *OffsetVPV = Plan.getOrAddLiveIn(
ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset));
VPBuilder B(InsertPos);
Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV)
: B.createPtrAdd(InsertPos->getAddr(), OffsetVPV);
}
auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
InsertPos->getMask(), NeedsMaskForGaps);
VPIG->insertBefore(InsertPos);
unsigned J = 0;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *Member = IG->getMember(i)) {
VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
if (!Member->getType()->isVoidTy()) {
VPValue *OriginalV = MemberR->getVPSingleValue();
OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
J++;
}
MemberR->eraseFromParent();
}
}
}