Ted Kremenek 632e3b7ee2 [analyzer] Make the entries in 'Environment' context-sensitive by making entries map from
(Stmt*,LocationContext*) pairs to SVals instead of Stmt* to SVals.

This is needed to support basic IPA via inlining.  Without this, we cannot tell
if a Stmt* binding is part of the current analysis scope (StackFrameContext) or
part of a parent context.

This change introduces an uglification of the use of getSVal(), and thus takes
two steps forward and one step back.  There are also potential performance implications
of enlarging the Environment.  Both can be addressed going forward by refactoring the
APIs and optimizing the internal representation of Environment.  This patch
mainly introduces the functionality upon when we want to build upon (and clean up).

llvm-svn: 147688
2012-01-06 22:09:28 +00:00

669 lines
22 KiB
C++

//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements ProgramState and ProgramStateManager.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/CFG.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
// Give the vtable for ConstraintManager somewhere to live.
// FIXME: Move this elsewhere.
ConstraintManager::~ConstraintManager() {}
ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm)
: stateMgr(mgr),
Env(env),
store(st.getStore()),
GDM(gdm),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::ProgramState(const ProgramState &RHS)
: llvm::FoldingSetNode(),
stateMgr(RHS.stateMgr),
Env(RHS.Env),
store(RHS.store),
GDM(RHS.GDM),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::~ProgramState() {
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
}
ProgramStateManager::~ProgramStateManager() {
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
I!=E; ++I)
I->second.second(I->second.first);
}
const ProgramState*
ProgramStateManager::removeDeadBindings(const ProgramState *state,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
ProgramState NewState = *state;
NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
// Clean up the store.
StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
SymReaper);
NewState.setStore(newStore);
SymReaper.setReapedStore(newStore);
return getPersistentState(NewState);
}
const ProgramState *ProgramStateManager::MarshalState(const ProgramState *state,
const StackFrameContext *InitLoc) {
// make up an empty state for now.
ProgramState State(this,
EnvMgr.getInitialEnvironment(),
StoreMgr->getInitialStore(InitLoc),
GDMFactory.getEmptyMap());
return getPersistentState(State);
}
const ProgramState *ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
const LocationContext *LC,
SVal V) const {
const StoreRef &newStore =
getStateManager().StoreMgr->BindCompoundLiteral(getStore(), CL, LC, V);
return makeWithStore(newStore);
}
const ProgramState *ProgramState::bindDecl(const VarRegion* VR, SVal IVal) const {
const StoreRef &newStore =
getStateManager().StoreMgr->BindDecl(getStore(), VR, IVal);
return makeWithStore(newStore);
}
const ProgramState *ProgramState::bindDeclWithNoInit(const VarRegion* VR) const {
const StoreRef &newStore =
getStateManager().StoreMgr->BindDeclWithNoInit(getStore(), VR);
return makeWithStore(newStore);
}
const ProgramState *ProgramState::bindLoc(Loc LV, SVal V) const {
ProgramStateManager &Mgr = getStateManager();
const ProgramState *newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
LV, V));
const MemRegion *MR = LV.getAsRegion();
if (MR && Mgr.getOwningEngine())
return Mgr.getOwningEngine()->processRegionChange(newState, MR);
return newState;
}
const ProgramState *ProgramState::bindDefault(SVal loc, SVal V) const {
ProgramStateManager &Mgr = getStateManager();
const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
const ProgramState *new_state = makeWithStore(newStore);
return Mgr.getOwningEngine() ?
Mgr.getOwningEngine()->processRegionChange(new_state, R) :
new_state;
}
const ProgramState *
ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned Count,
StoreManager::InvalidatedSymbols *IS,
const CallOrObjCMessage *Call) const {
if (!IS) {
StoreManager::InvalidatedSymbols invalidated;
return invalidateRegionsImpl(Regions, E, Count,
invalidated, Call);
}
return invalidateRegionsImpl(Regions, E, Count, *IS, Call);
}
const ProgramState *
ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
const Expr *E, unsigned Count,
StoreManager::InvalidatedSymbols &IS,
const CallOrObjCMessage *Call) const {
ProgramStateManager &Mgr = getStateManager();
SubEngine* Eng = Mgr.getOwningEngine();
if (Eng && Eng->wantsRegionChangeUpdate(this)) {
StoreManager::InvalidatedRegions Invalidated;
const StoreRef &newStore
= Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS,
Call, &Invalidated);
const ProgramState *newState = makeWithStore(newStore);
return Eng->processRegionChanges(newState, &IS, Regions, Invalidated);
}
const StoreRef &newStore =
Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, IS,
Call, NULL);
return makeWithStore(newStore);
}
const ProgramState *ProgramState::unbindLoc(Loc LV) const {
assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
Store OldStore = getStore();
const StoreRef &newStore = getStateManager().StoreMgr->Remove(OldStore, LV);
if (newStore.getStore() == OldStore)
return this;
return makeWithStore(newStore);
}
const ProgramState *ProgramState::enterStackFrame(const StackFrameContext *frame) const {
const StoreRef &new_store =
getStateManager().StoreMgr->enterStackFrame(this, frame);
return makeWithStore(new_store);
}
SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
// We only want to do fetches from regions that we can actually bind
// values. For example, SymbolicRegions of type 'id<...>' cannot
// have direct bindings (but their can be bindings on their subregions).
if (!R->isBoundable())
return UnknownVal();
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
QualType T = TR->getValueType();
if (Loc::isLocType(T) || T->isIntegerType())
return getSVal(R);
}
return UnknownVal();
}
SVal ProgramState::getSVal(Loc location, QualType T) const {
SVal V = getRawSVal(cast<Loc>(location), T);
// If 'V' is a symbolic value that is *perfectly* constrained to
// be a constant value, use that value instead to lessen the burden
// on later analysis stages (so we have less symbolic values to reason
// about).
if (!T.isNull()) {
if (SymbolRef sym = V.getAsSymbol()) {
if (const llvm::APSInt *Int = getSymVal(sym)) {
// FIXME: Because we don't correctly model (yet) sign-extension
// and truncation of symbolic values, we need to convert
// the integer value to the correct signedness and bitwidth.
//
// This shows up in the following:
//
// char foo();
// unsigned x = foo();
// if (x == 54)
// ...
//
// The symbolic value stored to 'x' is actually the conjured
// symbol for the call to foo(); the type of that symbol is 'char',
// not unsigned.
const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
if (isa<Loc>(V))
return loc::ConcreteInt(NewV);
else
return nonloc::ConcreteInt(NewV);
}
}
}
return V;
}
const ProgramState *ProgramState::BindExpr(const Stmt *S,
const LocationContext *LCtx,
SVal V, bool Invalidate) const{
Environment NewEnv =
getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
Invalidate);
if (NewEnv == Env)
return this;
ProgramState NewSt = *this;
NewSt.Env = NewEnv;
return getStateManager().getPersistentState(NewSt);
}
const ProgramState *
ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx,
SVal location,
SVal V) const {
Environment NewEnv =
getStateManager().EnvMgr.bindExprAndLocation(Env,
EnvironmentEntry(S, LCtx),
location, V);
if (NewEnv == Env)
return this;
ProgramState NewSt = *this;
NewSt.Env = NewEnv;
return getStateManager().getPersistentState(NewSt);
}
const ProgramState *ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
DefinedOrUnknownSVal UpperBound,
bool Assumption) const {
if (Idx.isUnknown() || UpperBound.isUnknown())
return this;
// Build an expression for 0 <= Idx < UpperBound.
// This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
// FIXME: This should probably be part of SValBuilder.
ProgramStateManager &SM = getStateManager();
SValBuilder &svalBuilder = SM.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
// Get the offset: the minimum value of the array index type.
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
// FIXME: This should be using ValueManager::ArrayindexTy...somehow.
QualType indexTy = Ctx.IntTy;
nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
// Adjust the index.
SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
cast<NonLoc>(Idx), Min, indexTy);
if (newIdx.isUnknownOrUndef())
return this;
// Adjust the upper bound.
SVal newBound =
svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
Min, indexTy);
if (newBound.isUnknownOrUndef())
return this;
// Build the actual comparison.
SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
Ctx.IntTy);
if (inBound.isUnknownOrUndef())
return this;
// Finally, let the constraint manager take care of it.
ConstraintManager &CM = SM.getConstraintManager();
return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
}
const ProgramState *ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
ProgramState State(this,
EnvMgr.getInitialEnvironment(),
StoreMgr->getInitialStore(InitLoc),
GDMFactory.getEmptyMap());
return getPersistentState(State);
}
void ProgramStateManager::recycleUnusedStates() {
for (std::vector<ProgramState*>::iterator i = recentlyAllocatedStates.begin(),
e = recentlyAllocatedStates.end(); i != e; ++i) {
ProgramState *state = *i;
if (state->referencedByExplodedNode())
continue;
StateSet.RemoveNode(state);
freeStates.push_back(state);
state->~ProgramState();
}
recentlyAllocatedStates.clear();
}
const ProgramState *ProgramStateManager::getPersistentStateWithGDM(
const ProgramState *FromState,
const ProgramState *GDMState) {
ProgramState NewState = *FromState;
NewState.GDM = GDMState->GDM;
return getPersistentState(NewState);
}
const ProgramState *ProgramStateManager::getPersistentState(ProgramState &State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void *InsertPos;
if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ProgramState *newState = 0;
if (!freeStates.empty()) {
newState = freeStates.back();
freeStates.pop_back();
}
else {
newState = (ProgramState*) Alloc.Allocate<ProgramState>();
}
new (newState) ProgramState(State);
StateSet.InsertNode(newState, InsertPos);
recentlyAllocatedStates.push_back(newState);
return newState;
}
const ProgramState *ProgramState::makeWithStore(const StoreRef &store) const {
ProgramState NewSt = *this;
NewSt.setStore(store);
return getStateManager().getPersistentState(NewSt);
}
void ProgramState::setStore(const StoreRef &newStore) {
Store newStoreStore = newStore.getStore();
if (newStoreStore)
stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
store = newStoreStore;
}
//===----------------------------------------------------------------------===//
// State pretty-printing.
//===----------------------------------------------------------------------===//
void ProgramState::print(raw_ostream &Out,
const char *NL, const char *Sep) const {
// Print the store.
ProgramStateManager &Mgr = getStateManager();
Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
// Print out the environment.
Env.print(Out, NL, Sep);
// Print out the constraints.
Mgr.getConstraintManager().print(this, Out, NL, Sep);
// Print checker-specific data.
Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
}
void ProgramState::printDOT(raw_ostream &Out) const {
print(Out, "\\l", "\\|");
}
void ProgramState::dump() const {
print(llvm::errs());
}
//===----------------------------------------------------------------------===//
// Generic Data Map.
//===----------------------------------------------------------------------===//
void *const* ProgramState::FindGDM(void *K) const {
return GDM.lookup(K);
}
void*
ProgramStateManager::FindGDMContext(void *K,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*)) {
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
if (!p.first) {
p.first = CreateContext(Alloc);
p.second = DeleteContext;
}
return p.first;
}
const ProgramState *ProgramStateManager::addGDM(const ProgramState *St, void *Key, void *Data){
ProgramState::GenericDataMap M1 = St->getGDM();
ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
if (M1 == M2)
return St;
ProgramState NewSt = *St;
NewSt.GDM = M2;
return getPersistentState(NewSt);
}
const ProgramState *ProgramStateManager::removeGDM(const ProgramState *state, void *Key) {
ProgramState::GenericDataMap OldM = state->getGDM();
ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
if (NewM == OldM)
return state;
ProgramState NewState = *state;
NewState.GDM = NewM;
return getPersistentState(NewState);
}
void ScanReachableSymbols::anchor() { }
bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
if (!scan(*I))
return false;
return true;
}
bool ScanReachableSymbols::scan(const SymExpr *sym) {
unsigned &isVisited = visited[sym];
if (isVisited)
return true;
isVisited = 1;
if (!visitor.VisitSymbol(sym))
return false;
// TODO: should be rewritten using SymExpr::symbol_iterator.
switch (sym->getKind()) {
case SymExpr::RegionValueKind:
case SymExpr::ConjuredKind:
case SymExpr::DerivedKind:
case SymExpr::ExtentKind:
case SymExpr::MetadataKind:
break;
case SymExpr::CastSymbolKind:
return scan(cast<SymbolCast>(sym)->getOperand());
case SymExpr::SymIntKind:
return scan(cast<SymIntExpr>(sym)->getLHS());
case SymExpr::IntSymKind:
return scan(cast<IntSymExpr>(sym)->getRHS());
case SymExpr::SymSymKind: {
const SymSymExpr *x = cast<SymSymExpr>(sym);
return scan(x->getLHS()) && scan(x->getRHS());
}
}
return true;
}
bool ScanReachableSymbols::scan(SVal val) {
if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
return scan(X->getRegion());
if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
return scan(X->getLoc());
if (SymbolRef Sym = val.getAsSymbol())
return scan(Sym);
if (const SymExpr *Sym = val.getAsSymbolicExpression())
return scan(Sym);
if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
return scan(*X);
return true;
}
bool ScanReachableSymbols::scan(const MemRegion *R) {
if (isa<MemSpaceRegion>(R))
return true;
unsigned &isVisited = visited[R];
if (isVisited)
return true;
isVisited = 1;
// If this is a symbolic region, visit the symbol for the region.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
if (!visitor.VisitSymbol(SR->getSymbol()))
return false;
// If this is a subregion, also visit the parent regions.
if (const SubRegion *SR = dyn_cast<SubRegion>(R))
if (!scan(SR->getSuperRegion()))
return false;
// Now look at the binding to this region (if any).
if (!scan(state->getSValAsScalarOrLoc(R)))
return false;
// Now look at the subregions.
if (!SRM.get())
SRM.reset(state->getStateManager().getStoreManager().
getSubRegionMap(state->getStore()));
return SRM->iterSubRegions(R, *this);
}
bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
ScanReachableSymbols S(this, visitor);
return S.scan(val);
}
bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
const MemRegion * const *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
const ProgramState* ProgramState::addTaint(const Stmt *S,
const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
if (Sym)
return addTaint(Sym, Kind);
const MemRegion *R = getSVal(S, LCtx).getAsRegion();
addTaint(R, Kind);
// Cannot add taint, so just return the state.
return this;
}
const ProgramState* ProgramState::addTaint(const MemRegion *R,
TaintTagType Kind) const {
if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
return addTaint(SR->getSymbol(), Kind);
return this;
}
const ProgramState* ProgramState::addTaint(SymbolRef Sym,
TaintTagType Kind) const {
const ProgramState *NewState = set<TaintMap>(Sym, Kind);
assert(NewState);
return NewState;
}
bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
SVal val = getSVal(S, LCtx);
return isTainted(val, Kind);
}
bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
if (const SymExpr *Sym = V.getAsSymExpr())
return isTainted(Sym, Kind);
if (const MemRegion *Reg = V.getAsRegion())
return isTainted(Reg, Kind);
return false;
}
bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
if (!Reg)
return false;
// Element region (array element) is tainted if either the base or the offset
// are tainted.
if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
return isTainted(SR->getSymbol(), K);
if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
return isTainted(ER->getSuperRegion(), K);
return false;
}
bool ProgramState::isTainted(const SymExpr* Sym, TaintTagType Kind) const {
if (!Sym)
return false;
// Traverse all the symbols this symbol depends on to see if any are tainted.
bool Tainted = false;
for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
SI != SE; ++SI) {
assert(isa<SymbolData>(*SI));
const TaintTagType *Tag = get<TaintMap>(*SI);
Tainted = (Tag && *Tag == Kind);
// If this is a SymbolDerived with a tainted parent, it's also tainted.
if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
// If memory region is tainted, data is also tainted.
if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
if (Tainted)
return true;
}
return Tainted;
}