llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp
Stephen Tozer 6481dc5761
[IR][NFC] Update IRBuilder to use InsertPosition (#96497)
Uses the new InsertPosition class (added in #94226) to simplify some of
the IRBuilder interface, and removes the need to pass a BasicBlock
alongside a BasicBlock::iterator, using the fact that we can now get the
parent basic block from the iterator even if it points to the sentinel.
This patch removes the BasicBlock argument from each constructor or call
to setInsertPoint.

This has no functional effect, but later on as we look to remove the
`Instruction *InsertBefore` argument from instruction-creation
(discussed
[here](https://discourse.llvm.org/t/psa-instruction-constructors-changing-to-iterator-only-insertion/77845)),
this will simplify the process by allowing us to deprecate the
InsertPosition constructor directly and catch all the cases where we use
instructions rather than iterators.
2024-06-24 17:27:43 +01:00

2405 lines
91 KiB
C++

//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
#define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
#else
#define SCEV_DEBUG_WITH_TYPE(TYPE, X)
#endif
using namespace llvm;
cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
"scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
cl::desc("When performing SCEV expansion only if it is cheap to do, this "
"controls the budget that is considered cheap (default = 4)"));
using namespace PatternMatch;
PoisonFlags::PoisonFlags(const Instruction *I) {
NUW = false;
NSW = false;
Exact = false;
Disjoint = false;
NNeg = false;
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
NUW = OBO->hasNoUnsignedWrap();
NSW = OBO->hasNoSignedWrap();
}
if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
Exact = PEO->isExact();
if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
Disjoint = PDI->isDisjoint();
if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
NNeg = PNI->hasNonNeg();
if (auto *TI = dyn_cast<TruncInst>(I)) {
NUW = TI->hasNoUnsignedWrap();
NSW = TI->hasNoSignedWrap();
}
}
void PoisonFlags::apply(Instruction *I) {
if (isa<OverflowingBinaryOperator>(I)) {
I->setHasNoUnsignedWrap(NUW);
I->setHasNoSignedWrap(NSW);
}
if (isa<PossiblyExactOperator>(I))
I->setIsExact(Exact);
if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
PDI->setIsDisjoint(Disjoint);
if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
PNI->setNonNeg(NNeg);
if (isa<TruncInst>(I)) {
I->setHasNoUnsignedWrap(NUW);
I->setHasNoSignedWrap(NSW);
}
}
/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one (= dominating IP) exists, or
/// creating a new one.
Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
Instruction::CastOps Op,
BasicBlock::iterator IP) {
// This function must be called with the builder having a valid insertion
// point. It doesn't need to be the actual IP where the uses of the returned
// cast will be added, but it must dominate such IP.
// We use this precondition to produce a cast that will dominate all its
// uses. In particular, this is crucial for the case where the builder's
// insertion point *is* the point where we were asked to put the cast.
// Since we don't know the builder's insertion point is actually
// where the uses will be added (only that it dominates it), we are
// not allowed to move it.
BasicBlock::iterator BIP = Builder.GetInsertPoint();
Value *Ret = nullptr;
// Check to see if there is already a cast!
for (User *U : V->users()) {
if (U->getType() != Ty)
continue;
CastInst *CI = dyn_cast<CastInst>(U);
if (!CI || CI->getOpcode() != Op)
continue;
// Found a suitable cast that is at IP or comes before IP. Use it. Note that
// the cast must also properly dominate the Builder's insertion point.
if (IP->getParent() == CI->getParent() && &*BIP != CI &&
(&*IP == CI || CI->comesBefore(&*IP))) {
Ret = CI;
break;
}
}
// Create a new cast.
if (!Ret) {
SCEVInsertPointGuard Guard(Builder, this);
Builder.SetInsertPoint(&*IP);
Ret = Builder.CreateCast(Op, V, Ty, V->getName());
}
// We assert at the end of the function since IP might point to an
// instruction with different dominance properties than a cast
// (an invoke for example) and not dominate BIP (but the cast does).
assert(!isa<Instruction>(Ret) ||
SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
return Ret;
}
BasicBlock::iterator
SCEVExpander::findInsertPointAfter(Instruction *I,
Instruction *MustDominate) const {
BasicBlock::iterator IP = ++I->getIterator();
if (auto *II = dyn_cast<InvokeInst>(I))
IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP))
++IP;
if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
++IP;
} else if (isa<CatchSwitchInst>(IP)) {
IP = MustDominate->getParent()->getFirstInsertionPt();
} else {
assert(!IP->isEHPad() && "unexpected eh pad!");
}
// Adjust insert point to be after instructions inserted by the expander, so
// we can re-use already inserted instructions. Avoid skipping past the
// original \p MustDominate, in case it is an inserted instruction.
while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
++IP;
return IP;
}
BasicBlock::iterator
SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
// Cast the argument at the beginning of the entry block, after
// any bitcasts of other arguments.
if (Argument *A = dyn_cast<Argument>(V)) {
BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
while ((isa<BitCastInst>(IP) &&
isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
cast<BitCastInst>(IP)->getOperand(0) != A) ||
isa<DbgInfoIntrinsic>(IP))
++IP;
return IP;
}
// Cast the instruction immediately after the instruction.
if (Instruction *I = dyn_cast<Instruction>(V))
return findInsertPointAfter(I, &*Builder.GetInsertPoint());
// Otherwise, this must be some kind of a constant,
// so let's plop this cast into the function's entry block.
assert(isa<Constant>(V) &&
"Expected the cast argument to be a global/constant");
return Builder.GetInsertBlock()
->getParent()
->getEntryBlock()
.getFirstInsertionPt();
}
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
assert((Op == Instruction::BitCast ||
Op == Instruction::PtrToInt ||
Op == Instruction::IntToPtr) &&
"InsertNoopCastOfTo cannot perform non-noop casts!");
assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
"InsertNoopCastOfTo cannot change sizes!");
// inttoptr only works for integral pointers. For non-integral pointers, we
// can create a GEP on null with the integral value as index. Note that
// it is safe to use GEP of null instead of inttoptr here, because only
// expressions already based on a GEP of null should be converted to pointers
// during expansion.
if (Op == Instruction::IntToPtr) {
auto *PtrTy = cast<PointerType>(Ty);
if (DL.isNonIntegralPointerType(PtrTy))
return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
}
// Short-circuit unnecessary bitcasts.
if (Op == Instruction::BitCast) {
if (V->getType() == Ty)
return V;
if (CastInst *CI = dyn_cast<CastInst>(V)) {
if (CI->getOperand(0)->getType() == Ty)
return CI->getOperand(0);
}
}
// Short-circuit unnecessary inttoptr<->ptrtoint casts.
if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
if (CastInst *CI = dyn_cast<CastInst>(V))
if ((CI->getOpcode() == Instruction::PtrToInt ||
CI->getOpcode() == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(CI->getType()) ==
SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
return CI->getOperand(0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if ((CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::IntToPtr) &&
SE.getTypeSizeInBits(CE->getType()) ==
SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
return CE->getOperand(0);
}
// Fold a cast of a constant.
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getCast(Op, C, Ty);
// Try to reuse existing cast, or insert one.
return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
}
/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation, and hoisting
/// to an outer loop when the opportunity is there and it is safe.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
Value *LHS, Value *RHS,
SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
// Fold a binop with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
return Res;
// Do a quick scan to see if we have this binop nearby. If so, reuse it.
unsigned ScanLimit = 6;
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
// Scanning starts from the last instruction before the insertion point.
BasicBlock::iterator IP = Builder.GetInsertPoint();
if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
// Don't count dbg.value against the ScanLimit, to avoid perturbing the
// generated code.
if (isa<DbgInfoIntrinsic>(IP))
ScanLimit++;
auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
// Ensure that no-wrap flags match.
if (isa<OverflowingBinaryOperator>(I)) {
if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
return true;
if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
return true;
}
// Conservatively, do not use any instruction which has any of exact
// flags installed.
if (isa<PossiblyExactOperator>(I) && I->isExact())
return true;
return false;
};
if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
return &*IP;
if (IP == BlockBegin) break;
}
}
// Save the original insertion point so we can restore it when we're done.
DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
SCEVInsertPointGuard Guard(Builder, this);
if (IsSafeToHoist) {
// Move the insertion point out of as many loops as we can.
while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) break;
// Ok, move up a level.
Builder.SetInsertPoint(Preheader->getTerminator());
}
}
// If we haven't found this binop, insert it.
// TODO: Use the Builder, which will make CreateBinOp below fold with
// InstSimplifyFolder.
Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
BO->setDebugLoc(Loc);
if (Flags & SCEV::FlagNUW)
BO->setHasNoUnsignedWrap();
if (Flags & SCEV::FlagNSW)
BO->setHasNoSignedWrap();
return BO;
}
/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
///
/// Design note: The correctness of using getelementptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
assert(!isa<Instruction>(V) ||
SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
Value *Idx = expand(Offset);
// Fold a GEP with constant operands.
if (Constant *CLHS = dyn_cast<Constant>(V))
if (Constant *CRHS = dyn_cast<Constant>(Idx))
return Builder.CreatePtrAdd(CLHS, CRHS);
// Do a quick scan to see if we have this GEP nearby. If so, reuse it.
unsigned ScanLimit = 6;
BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
// Scanning starts from the last instruction before the insertion point.
BasicBlock::iterator IP = Builder.GetInsertPoint();
if (IP != BlockBegin) {
--IP;
for (; ScanLimit; --IP, --ScanLimit) {
// Don't count dbg.value against the ScanLimit, to avoid perturbing the
// generated code.
if (isa<DbgInfoIntrinsic>(IP))
ScanLimit++;
if (IP->getOpcode() == Instruction::GetElementPtr &&
IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
cast<GEPOperator>(&*IP)->getSourceElementType() ==
Builder.getInt8Ty())
return &*IP;
if (IP == BlockBegin) break;
}
}
// Save the original insertion point so we can restore it when we're done.
SCEVInsertPointGuard Guard(Builder, this);
// Move the insertion point out of as many loops as we can.
while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) break;
// Ok, move up a level.
Builder.SetInsertPoint(Preheader->getTerminator());
}
// Emit a GEP.
return Builder.CreatePtrAdd(V, Idx, "scevgep");
}
/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
/// SCEV expansion. If they are nested, this is the most nested. If they are
/// neighboring, pick the later.
static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
DominatorTree &DT) {
if (!A) return B;
if (!B) return A;
if (A->contains(B)) return B;
if (B->contains(A)) return A;
if (DT.dominates(A->getHeader(), B->getHeader())) return B;
if (DT.dominates(B->getHeader(), A->getHeader())) return A;
return A; // Arbitrarily break the tie.
}
/// getRelevantLoop - Get the most relevant loop associated with the given
/// expression, according to PickMostRelevantLoop.
const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
// Test whether we've already computed the most relevant loop for this SCEV.
auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
if (!Pair.second)
return Pair.first->second;
switch (S->getSCEVType()) {
case scConstant:
case scVScale:
return nullptr; // A constant has no relevant loops.
case scTruncate:
case scZeroExtend:
case scSignExtend:
case scPtrToInt:
case scAddExpr:
case scMulExpr:
case scUDivExpr:
case scAddRecExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr:
case scSequentialUMinExpr: {
const Loop *L = nullptr;
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
L = AR->getLoop();
for (const SCEV *Op : S->operands())
L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
return RelevantLoops[S] = L;
}
case scUnknown: {
const SCEVUnknown *U = cast<SCEVUnknown>(S);
if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
return Pair.first->second = SE.LI.getLoopFor(I->getParent());
// A non-instruction has no relevant loops.
return nullptr;
}
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
}
llvm_unreachable("Unexpected SCEV type!");
}
namespace {
/// LoopCompare - Compare loops by PickMostRelevantLoop.
class LoopCompare {
DominatorTree &DT;
public:
explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
bool operator()(std::pair<const Loop *, const SCEV *> LHS,
std::pair<const Loop *, const SCEV *> RHS) const {
// Keep pointer operands sorted at the end.
if (LHS.second->getType()->isPointerTy() !=
RHS.second->getType()->isPointerTy())
return LHS.second->getType()->isPointerTy();
// Compare loops with PickMostRelevantLoop.
if (LHS.first != RHS.first)
return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
// If one operand is a non-constant negative and the other is not,
// put the non-constant negative on the right so that a sub can
// be used instead of a negate and add.
if (LHS.second->isNonConstantNegative()) {
if (!RHS.second->isNonConstantNegative())
return false;
} else if (RHS.second->isNonConstantNegative())
return true;
// Otherwise they are equivalent according to this comparison.
return false;
}
};
}
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
// Recognize the canonical representation of an unsimplifed urem.
const SCEV *URemLHS = nullptr;
const SCEV *URemRHS = nullptr;
if (SE.matchURem(S, URemLHS, URemRHS)) {
Value *LHS = expand(URemLHS);
Value *RHS = expand(URemRHS);
return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap,
/*IsSafeToHoist*/ false);
}
// Collect all the add operands in a loop, along with their associated loops.
// Iterate in reverse so that constants are emitted last, all else equal, and
// so that pointer operands are inserted first, which the code below relies on
// to form more involved GEPs.
SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
for (const SCEV *Op : reverse(S->operands()))
OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
// Sort by loop. Use a stable sort so that constants follow non-constants and
// pointer operands precede non-pointer operands.
llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
// Emit instructions to add all the operands. Hoist as much as possible
// out of loops, and form meaningful getelementptrs where possible.
Value *Sum = nullptr;
for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
const Loop *CurLoop = I->first;
const SCEV *Op = I->second;
if (!Sum) {
// This is the first operand. Just expand it.
Sum = expand(Op);
++I;
continue;
}
assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
if (isa<PointerType>(Sum->getType())) {
// The running sum expression is a pointer. Try to form a getelementptr
// at this level with that as the base.
SmallVector<const SCEV *, 4> NewOps;
for (; I != E && I->first == CurLoop; ++I) {
// If the operand is SCEVUnknown and not instructions, peek through
// it, to enable more of it to be folded into the GEP.
const SCEV *X = I->second;
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
if (!isa<Instruction>(U->getValue()))
X = SE.getSCEV(U->getValue());
NewOps.push_back(X);
}
Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
} else if (Op->isNonConstantNegative()) {
// Instead of doing a negate and add, just do a subtract.
Value *W = expand(SE.getNegativeSCEV(Op));
Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
/*IsSafeToHoist*/ true);
++I;
} else {
// A simple add.
Value *W = expand(Op);
// Canonicalize a constant to the RHS.
if (isa<Constant>(Sum))
std::swap(Sum, W);
Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
/*IsSafeToHoist*/ true);
++I;
}
}
return Sum;
}
Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
Type *Ty = S->getType();
// Collect all the mul operands in a loop, along with their associated loops.
// Iterate in reverse so that constants are emitted last, all else equal.
SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
for (const SCEV *Op : reverse(S->operands()))
OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
// Sort by loop. Use a stable sort so that constants follow non-constants.
llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
// Emit instructions to mul all the operands. Hoist as much as possible
// out of loops.
Value *Prod = nullptr;
auto I = OpsAndLoops.begin();
// Expand the calculation of X pow N in the following manner:
// Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
// X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
auto E = I;
// Calculate how many times the same operand from the same loop is included
// into this power.
uint64_t Exponent = 0;
const uint64_t MaxExponent = UINT64_MAX >> 1;
// No one sane will ever try to calculate such huge exponents, but if we
// need this, we stop on UINT64_MAX / 2 because we need to exit the loop
// below when the power of 2 exceeds our Exponent, and we want it to be
// 1u << 31 at most to not deal with unsigned overflow.
while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
++Exponent;
++E;
}
assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
// Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
// that are needed into the result.
Value *P = expand(I->second);
Value *Result = nullptr;
if (Exponent & 1)
Result = P;
for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
/*IsSafeToHoist*/ true);
if (Exponent & BinExp)
Result = Result ? InsertBinop(Instruction::Mul, Result, P,
SCEV::FlagAnyWrap,
/*IsSafeToHoist*/ true)
: P;
}
I = E;
assert(Result && "Nothing was expanded?");
return Result;
};
while (I != OpsAndLoops.end()) {
if (!Prod) {
// This is the first operand. Just expand it.
Prod = ExpandOpBinPowN();
} else if (I->second->isAllOnesValue()) {
// Instead of doing a multiply by negative one, just do a negate.
Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
++I;
} else {
// A simple mul.
Value *W = ExpandOpBinPowN();
// Canonicalize a constant to the RHS.
if (isa<Constant>(Prod)) std::swap(Prod, W);
const APInt *RHS;
if (match(W, m_Power2(RHS))) {
// Canonicalize Prod*(1<<C) to Prod<<C.
assert(!Ty->isVectorTy() && "vector types are not SCEVable");
auto NWFlags = S->getNoWrapFlags();
// clear nsw flag if shl will produce poison value.
if (RHS->logBase2() == RHS->getBitWidth() - 1)
NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
Prod = InsertBinop(Instruction::Shl, Prod,
ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
/*IsSafeToHoist*/ true);
} else {
Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
/*IsSafeToHoist*/ true);
}
}
}
return Prod;
}
Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
Value *LHS = expand(S->getLHS());
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
const APInt &RHS = SC->getAPInt();
if (RHS.isPowerOf2())
return InsertBinop(Instruction::LShr, LHS,
ConstantInt::get(SC->getType(), RHS.logBase2()),
SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
}
Value *RHS = expand(S->getRHS());
return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
/*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
}
/// Determine if this is a well-behaved chain of instructions leading back to
/// the PHI. If so, it may be reused by expanded expressions.
bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
const Loop *L) {
if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
(isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
return false;
// If any of the operands don't dominate the insert position, bail.
// Addrec operands are always loop-invariant, so this can only happen
// if there are instructions which haven't been hoisted.
if (L == IVIncInsertLoop) {
for (Use &Op : llvm::drop_begin(IncV->operands()))
if (Instruction *OInst = dyn_cast<Instruction>(Op))
if (!SE.DT.dominates(OInst, IVIncInsertPos))
return false;
}
// Advance to the next instruction.
IncV = dyn_cast<Instruction>(IncV->getOperand(0));
if (!IncV)
return false;
if (IncV->mayHaveSideEffects())
return false;
if (IncV == PN)
return true;
return isNormalAddRecExprPHI(PN, IncV, L);
}
/// getIVIncOperand returns an induction variable increment's induction
/// variable operand.
///
/// If allowScale is set, any type of GEP is allowed as long as the nonIV
/// operands dominate InsertPos.
///
/// If allowScale is not set, ensure that a GEP increment conforms to one of the
/// simple patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
Instruction *InsertPos,
bool allowScale) {
if (IncV == InsertPos)
return nullptr;
switch (IncV->getOpcode()) {
default:
return nullptr;
// Check for a simple Add/Sub or GEP of a loop invariant step.
case Instruction::Add:
case Instruction::Sub: {
Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
if (!OInst || SE.DT.dominates(OInst, InsertPos))
return dyn_cast<Instruction>(IncV->getOperand(0));
return nullptr;
}
case Instruction::BitCast:
return dyn_cast<Instruction>(IncV->getOperand(0));
case Instruction::GetElementPtr:
for (Use &U : llvm::drop_begin(IncV->operands())) {
if (isa<Constant>(U))
continue;
if (Instruction *OInst = dyn_cast<Instruction>(U)) {
if (!SE.DT.dominates(OInst, InsertPos))
return nullptr;
}
if (allowScale) {
// allow any kind of GEP as long as it can be hoisted.
continue;
}
// GEPs produced by SCEVExpander use i8 element type.
if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
return nullptr;
break;
}
return dyn_cast<Instruction>(IncV->getOperand(0));
}
}
/// If the insert point of the current builder or any of the builders on the
/// stack of saved builders has 'I' as its insert point, update it to point to
/// the instruction after 'I'. This is intended to be used when the instruction
/// 'I' is being moved. If this fixup is not done and 'I' is moved to a
/// different block, the inconsistent insert point (with a mismatched
/// Instruction and Block) can lead to an instruction being inserted in a block
/// other than its parent.
void SCEVExpander::fixupInsertPoints(Instruction *I) {
BasicBlock::iterator It(*I);
BasicBlock::iterator NewInsertPt = std::next(It);
if (Builder.GetInsertPoint() == It)
Builder.SetInsertPoint(&*NewInsertPt);
for (auto *InsertPtGuard : InsertPointGuards)
if (InsertPtGuard->GetInsertPoint() == It)
InsertPtGuard->SetInsertPoint(NewInsertPt);
}
/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
/// it available to other uses in this loop. Recursively hoist any operands,
/// until we reach a value that dominates InsertPos.
bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
bool RecomputePoisonFlags) {
auto FixupPoisonFlags = [this](Instruction *I) {
// Drop flags that are potentially inferred from old context and infer flags
// in new context.
rememberFlags(I);
I->dropPoisonGeneratingFlags();
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
auto *BO = cast<BinaryOperator>(I);
BO->setHasNoUnsignedWrap(
ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
BO->setHasNoSignedWrap(
ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
}
};
if (SE.DT.dominates(IncV, InsertPos)) {
if (RecomputePoisonFlags)
FixupPoisonFlags(IncV);
return true;
}
// InsertPos must itself dominate IncV so that IncV's new position satisfies
// its existing users.
if (isa<PHINode>(InsertPos) ||
!SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
return false;
if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
return false;
// Check that the chain of IV operands leading back to Phi can be hoisted.
SmallVector<Instruction*, 4> IVIncs;
for(;;) {
Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
if (!Oper)
return false;
// IncV is safe to hoist.
IVIncs.push_back(IncV);
IncV = Oper;
if (SE.DT.dominates(IncV, InsertPos))
break;
}
for (Instruction *I : llvm::reverse(IVIncs)) {
fixupInsertPoints(I);
I->moveBefore(InsertPos);
if (RecomputePoisonFlags)
FixupPoisonFlags(I);
}
return true;
}
bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi,
PHINode *WidePhi,
Instruction *OrigInc,
Instruction *WideInc) {
return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) &&
match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) &&
OrigInc->getOpcode() == WideInc->getOpcode();
}
/// Determine if this cyclic phi is in a form that would have been generated by
/// LSR. We don't care if the phi was actually expanded in this pass, as long
/// as it is in a low-cost form, for example, no implied multiplication. This
/// should match any patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP.
bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
const Loop *L) {
for(Instruction *IVOper = IncV;
(IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
/*allowScale=*/false));) {
if (IVOper == PN)
return true;
}
return false;
}
/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
/// need to materialize IV increments elsewhere to handle difficult situations.
Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
bool useSubtract) {
Value *IncV;
// If the PHI is a pointer, use a GEP, otherwise use an add or sub.
if (PN->getType()->isPointerTy()) {
// TODO: Change name to IVName.iv.next.
IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep");
} else {
IncV = useSubtract ?
Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
}
return IncV;
}
/// Check whether we can cheaply express the requested SCEV in terms of
/// the available PHI SCEV by truncation and/or inversion of the step.
static bool canBeCheaplyTransformed(ScalarEvolution &SE,
const SCEVAddRecExpr *Phi,
const SCEVAddRecExpr *Requested,
bool &InvertStep) {
// We can't transform to match a pointer PHI.
Type *PhiTy = Phi->getType();
Type *RequestedTy = Requested->getType();
if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
return false;
if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
return false;
// Try truncate it if necessary.
Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
if (!Phi)
return false;
// Check whether truncation will help.
if (Phi == Requested) {
InvertStep = false;
return true;
}
// Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
InvertStep = true;
return true;
}
return false;
}
static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
if (!isa<IntegerType>(AR->getType()))
return false;
unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
const SCEV *Step = AR->getStepRecurrence(SE);
const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
SE.getSignExtendExpr(AR, WideTy));
const SCEV *ExtendAfterOp =
SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
return ExtendAfterOp == OpAfterExtend;
}
static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
if (!isa<IntegerType>(AR->getType()))
return false;
unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
const SCEV *Step = AR->getStepRecurrence(SE);
const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
SE.getZeroExtendExpr(AR, WideTy));
const SCEV *ExtendAfterOp =
SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
return ExtendAfterOp == OpAfterExtend;
}
/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L, Type *&TruncTy,
bool &InvertStep) {
assert((!IVIncInsertLoop || IVIncInsertPos) &&
"Uninitialized insert position");
// Reuse a previously-inserted PHI, if present.
BasicBlock *LatchBlock = L->getLoopLatch();
if (LatchBlock) {
PHINode *AddRecPhiMatch = nullptr;
Instruction *IncV = nullptr;
TruncTy = nullptr;
InvertStep = false;
// Only try partially matching scevs that need truncation and/or
// step-inversion if we know this loop is outside the current loop.
bool TryNonMatchingSCEV =
IVIncInsertLoop &&
SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
for (PHINode &PN : L->getHeader()->phis()) {
if (!SE.isSCEVable(PN.getType()))
continue;
// We should not look for a incomplete PHI. Getting SCEV for a incomplete
// PHI has no meaning at all.
if (!PN.isComplete()) {
SCEV_DEBUG_WITH_TYPE(
DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
continue;
}
const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
if (!PhiSCEV)
continue;
bool IsMatchingSCEV = PhiSCEV == Normalized;
// We only handle truncation and inversion of phi recurrences for the
// expanded expression if the expanded expression's loop dominates the
// loop we insert to. Check now, so we can bail out early.
if (!IsMatchingSCEV && !TryNonMatchingSCEV)
continue;
// TODO: this possibly can be reworked to avoid this cast at all.
Instruction *TempIncV =
dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
if (!TempIncV)
continue;
// Check whether we can reuse this PHI node.
if (LSRMode) {
if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
continue;
} else {
if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
continue;
}
// Stop if we have found an exact match SCEV.
if (IsMatchingSCEV) {
IncV = TempIncV;
TruncTy = nullptr;
InvertStep = false;
AddRecPhiMatch = &PN;
break;
}
// Try whether the phi can be translated into the requested form
// (truncated and/or offset by a constant).
if ((!TruncTy || InvertStep) &&
canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
// Record the phi node. But don't stop we might find an exact match
// later.
AddRecPhiMatch = &PN;
IncV = TempIncV;
TruncTy = Normalized->getType();
}
}
if (AddRecPhiMatch) {
// Ok, the add recurrence looks usable.
// Remember this PHI, even in post-inc mode.
InsertedValues.insert(AddRecPhiMatch);
// Remember the increment.
rememberInstruction(IncV);
// Those values were not actually inserted but re-used.
ReusedValues.insert(AddRecPhiMatch);
ReusedValues.insert(IncV);
return AddRecPhiMatch;
}
}
// Save the original insertion point so we can restore it when we're done.
SCEVInsertPointGuard Guard(Builder, this);
// Another AddRec may need to be recursively expanded below. For example, if
// this AddRec is quadratic, the StepV may itself be an AddRec in this
// loop. Remove this loop from the PostIncLoops set before expanding such
// AddRecs. Otherwise, we cannot find a valid position for the step
// (i.e. StepV can never dominate its loop header). Ideally, we could do
// SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
// so it's not worth implementing SmallPtrSet::swap.
PostIncLoopSet SavedPostIncLoops = PostIncLoops;
PostIncLoops.clear();
// Expand code for the start value into the loop preheader.
assert(L->getLoopPreheader() &&
"Can't expand add recurrences without a loop preheader!");
Value *StartV =
expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
// StartV must have been be inserted into L's preheader to dominate the new
// phi.
assert(!isa<Instruction>(StartV) ||
SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
L->getHeader()));
// Expand code for the step value. Do this before creating the PHI so that PHI
// reuse code doesn't see an incomplete PHI.
const SCEV *Step = Normalized->getStepRecurrence(SE);
Type *ExpandTy = Normalized->getType();
// If the stride is negative, insert a sub instead of an add for the increment
// (unless it's a constant, because subtracts of constants are canonicalized
// to adds).
bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
if (useSubtract)
Step = SE.getNegativeSCEV(Step);
// Expand the step somewhere that dominates the loop header.
Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
// The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
// we actually do emit an addition. It does not apply if we emit a
// subtraction.
bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
// Create the PHI.
BasicBlock *Header = L->getHeader();
Builder.SetInsertPoint(Header->begin());
PHINode *PN =
Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv");
// Create the step instructions and populate the PHI.
for (BasicBlock *Pred : predecessors(Header)) {
// Add a start value.
if (!L->contains(Pred)) {
PN->addIncoming(StartV, Pred);
continue;
}
// Create a step value and add it to the PHI.
// If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
// instructions at IVIncInsertPos.
Instruction *InsertPos = L == IVIncInsertLoop ?
IVIncInsertPos : Pred->getTerminator();
Builder.SetInsertPoint(InsertPos);
Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
if (isa<OverflowingBinaryOperator>(IncV)) {
if (IncrementIsNUW)
cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
if (IncrementIsNSW)
cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
}
PN->addIncoming(IncV, Pred);
}
// After expanding subexpressions, restore the PostIncLoops set so the caller
// can ensure that IVIncrement dominates the current uses.
PostIncLoops = SavedPostIncLoops;
// Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
// effective when we are able to use an IV inserted here, so record it.
InsertedValues.insert(PN);
InsertedIVs.push_back(PN);
return PN;
}
Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
const Loop *L = S->getLoop();
// Determine a normalized form of this expression, which is the expression
// before any post-inc adjustment is made.
const SCEVAddRecExpr *Normalized = S;
if (PostIncLoops.count(L)) {
PostIncLoopSet Loops;
Loops.insert(L);
Normalized = cast<SCEVAddRecExpr>(
normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
}
[[maybe_unused]] const SCEV *Start = Normalized->getStart();
const SCEV *Step = Normalized->getStepRecurrence(SE);
assert(SE.properlyDominates(Start, L->getHeader()) &&
"Start does not properly dominate loop header");
assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
// In some cases, we decide to reuse an existing phi node but need to truncate
// it and/or invert the step.
Type *TruncTy = nullptr;
bool InvertStep = false;
PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
// Accommodate post-inc mode, if necessary.
Value *Result;
if (!PostIncLoops.count(L))
Result = PN;
else {
// In PostInc mode, use the post-incremented value.
BasicBlock *LatchBlock = L->getLoopLatch();
assert(LatchBlock && "PostInc mode requires a unique loop latch!");
Result = PN->getIncomingValueForBlock(LatchBlock);
// We might be introducing a new use of the post-inc IV that is not poison
// safe, in which case we should drop poison generating flags. Only keep
// those flags for which SCEV has proven that they always hold.
if (isa<OverflowingBinaryOperator>(Result)) {
auto *I = cast<Instruction>(Result);
if (!S->hasNoUnsignedWrap())
I->setHasNoUnsignedWrap(false);
if (!S->hasNoSignedWrap())
I->setHasNoSignedWrap(false);
}
// For an expansion to use the postinc form, the client must call
// expandCodeFor with an InsertPoint that is either outside the PostIncLoop
// or dominated by IVIncInsertPos.
if (isa<Instruction>(Result) &&
!SE.DT.dominates(cast<Instruction>(Result),
&*Builder.GetInsertPoint())) {
// The induction variable's postinc expansion does not dominate this use.
// IVUsers tries to prevent this case, so it is rare. However, it can
// happen when an IVUser outside the loop is not dominated by the latch
// block. Adjusting IVIncInsertPos before expansion begins cannot handle
// all cases. Consider a phi outside whose operand is replaced during
// expansion with the value of the postinc user. Without fundamentally
// changing the way postinc users are tracked, the only remedy is
// inserting an extra IV increment. StepV might fold into PostLoopOffset,
// but hopefully expandCodeFor handles that.
bool useSubtract =
!S->getType()->isPointerTy() && Step->isNonConstantNegative();
if (useSubtract)
Step = SE.getNegativeSCEV(Step);
Value *StepV;
{
// Expand the step somewhere that dominates the loop header.
SCEVInsertPointGuard Guard(Builder, this);
StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
}
Result = expandIVInc(PN, StepV, L, useSubtract);
}
}
// We have decided to reuse an induction variable of a dominating loop. Apply
// truncation and/or inversion of the step.
if (TruncTy) {
// Truncate the result.
if (TruncTy != Result->getType())
Result = Builder.CreateTrunc(Result, TruncTy);
// Invert the result.
if (InvertStep)
Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
}
return Result;
}
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
// In canonical mode we compute the addrec as an expression of a canonical IV
// using evaluateAtIteration and expand the resulting SCEV expression. This
// way we avoid introducing new IVs to carry on the computation of the addrec
// throughout the loop.
//
// For nested addrecs evaluateAtIteration might need a canonical IV of a
// type wider than the addrec itself. Emitting a canonical IV of the
// proper type might produce non-legal types, for example expanding an i64
// {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
// back to non-canonical mode for nested addrecs.
if (!CanonicalMode || (S->getNumOperands() > 2))
return expandAddRecExprLiterally(S);
Type *Ty = SE.getEffectiveSCEVType(S->getType());
const Loop *L = S->getLoop();
// First check for an existing canonical IV in a suitable type.
PHINode *CanonicalIV = nullptr;
if (PHINode *PN = L->getCanonicalInductionVariable())
if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
CanonicalIV = PN;
// Rewrite an AddRec in terms of the canonical induction variable, if
// its type is more narrow.
if (CanonicalIV &&
SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
!S->getType()->isPointerTy()) {
SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
S->getNoWrapFlags(SCEV::FlagNW)));
BasicBlock::iterator NewInsertPt =
findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
return V;
}
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
if (isa<PointerType>(S->getType())) {
Value *StartV = expand(SE.getPointerBase(S));
return expandAddToGEP(SE.removePointerBase(S), StartV);
}
SmallVector<const SCEV *, 4> NewOps(S->operands());
NewOps[0] = SE.getConstant(Ty, 0);
const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
S->getNoWrapFlags(SCEV::FlagNW));
// Just do a normal add. Pre-expand the operands to suppress folding.
//
// The LHS and RHS values are factored out of the expand call to make the
// output independent of the argument evaluation order.
const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
}
// If we don't yet have a canonical IV, create one.
if (!CanonicalIV) {
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
CanonicalIV->insertBefore(Header->begin());
rememberInstruction(CanonicalIV);
SmallSet<BasicBlock *, 4> PredSeen;
Constant *One = ConstantInt::get(Ty, 1);
for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
BasicBlock *HP = *HPI;
if (!PredSeen.insert(HP).second) {
// There must be an incoming value for each predecessor, even the
// duplicates!
CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
continue;
}
if (L->contains(HP)) {
// Insert a unit add instruction right before the terminator
// corresponding to the back-edge.
Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
"indvar.next",
HP->getTerminator()->getIterator());
Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
rememberInstruction(Add);
CanonicalIV->addIncoming(Add, HP);
} else {
CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
}
}
}
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->isAffine() && S->getOperand(1)->isOne()) {
assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
"IVs with types different from the canonical IV should "
"already have been handled!");
return CanonicalIV;
}
// {0,+,F} --> {0,+,1} * F
// If this is a simple linear addrec, emit it now as a special case.
if (S->isAffine()) // {0,+,F} --> i*F
return
expand(SE.getTruncateOrNoop(
SE.getMulExpr(SE.getUnknown(CanonicalIV),
SE.getNoopOrAnyExtend(S->getOperand(1),
CanonicalIV->getType())),
Ty));
// If this is a chain of recurrences, turn it into a closed form, using the
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
// Promote S up to the canonical IV type, if the cast is foldable.
const SCEV *NewS = S;
const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
if (isa<SCEVAddRecExpr>(Ext))
NewS = Ext;
const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
// Truncate the result down to the original type, if needed.
const SCEV *T = SE.getTruncateOrNoop(V, Ty);
return expand(T);
}
Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
Value *V = expand(S->getOperand());
return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
GetOptimalInsertionPointForCastOf(V));
}
Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
Value *V = expand(S->getOperand());
return Builder.CreateTrunc(V, S->getType());
}
Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
Value *V = expand(S->getOperand());
return Builder.CreateZExt(V, S->getType(), "",
SE.isKnownNonNegative(S->getOperand()));
}
Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
Value *V = expand(S->getOperand());
return Builder.CreateSExt(V, S->getType());
}
Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
Intrinsic::ID IntrinID, Twine Name,
bool IsSequential) {
Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
Type *Ty = LHS->getType();
if (IsSequential)
LHS = Builder.CreateFreeze(LHS);
for (int i = S->getNumOperands() - 2; i >= 0; --i) {
Value *RHS = expand(S->getOperand(i));
if (IsSequential && i != 0)
RHS = Builder.CreateFreeze(RHS);
Value *Sel;
if (Ty->isIntegerTy())
Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
/*FMFSource=*/nullptr, Name);
else {
Value *ICmp =
Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
}
LHS = Sel;
}
return LHS;
}
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
return expandMinMaxExpr(S, Intrinsic::smax, "smax");
}
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
return expandMinMaxExpr(S, Intrinsic::umax, "umax");
}
Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
return expandMinMaxExpr(S, Intrinsic::smin, "smin");
}
Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
return expandMinMaxExpr(S, Intrinsic::umin, "umin");
}
Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
}
Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
}
Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
BasicBlock::iterator IP) {
setInsertPoint(IP);
Value *V = expandCodeFor(SH, Ty);
return V;
}
Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
// Expand the code for this SCEV.
Value *V = expand(SH);
if (Ty) {
assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
"non-trivial casts should be done with the SCEVs directly!");
V = InsertNoopCastOfTo(V, Ty);
}
return V;
}
Value *SCEVExpander::FindValueInExprValueMap(
const SCEV *S, const Instruction *InsertPt,
SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
// If the expansion is not in CanonicalMode, and the SCEV contains any
// sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
if (!CanonicalMode && SE.containsAddRecurrence(S))
return nullptr;
// If S is a constant, it may be worse to reuse an existing Value.
if (isa<SCEVConstant>(S))
return nullptr;
for (Value *V : SE.getSCEVValues(S)) {
Instruction *EntInst = dyn_cast<Instruction>(V);
if (!EntInst)
continue;
// Choose a Value from the set which dominates the InsertPt.
// InsertPt should be inside the Value's parent loop so as not to break
// the LCSSA form.
assert(EntInst->getFunction() == InsertPt->getFunction());
if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
!(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
continue;
// Make sure reusing the instruction is poison-safe.
if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
return V;
DropPoisonGeneratingInsts.clear();
}
return nullptr;
}
// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
// the expansion will try to reuse Value from ExprValueMap, and only when it
// fails, expand the SCEV literally.
Value *SCEVExpander::expand(const SCEV *S) {
// Compute an insertion point for this SCEV object. Hoist the instructions
// as far out in the loop nest as possible.
BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
// We can move insertion point only if there is no div or rem operations
// otherwise we are risky to move it over the check for zero denominator.
auto SafeToHoist = [](const SCEV *S) {
return !SCEVExprContains(S, [](const SCEV *S) {
if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
// Division by non-zero constants can be hoisted.
return SC->getValue()->isZero();
// All other divisions should not be moved as they may be
// divisions by zero and should be kept within the
// conditions of the surrounding loops that guard their
// execution (see PR35406).
return true;
}
return false;
});
};
if (SafeToHoist(S)) {
for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
L = L->getParentLoop()) {
if (SE.isLoopInvariant(S, L)) {
if (!L) break;
if (BasicBlock *Preheader = L->getLoopPreheader()) {
InsertPt = Preheader->getTerminator()->getIterator();
} else {
// LSR sets the insertion point for AddRec start/step values to the
// block start to simplify value reuse, even though it's an invalid
// position. SCEVExpander must correct for this in all cases.
InsertPt = L->getHeader()->getFirstInsertionPt();
}
} else {
// If the SCEV is computable at this level, insert it into the header
// after the PHIs (and after any other instructions that we've inserted
// there) so that it is guaranteed to dominate any user inside the loop.
if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
InsertPt = L->getHeader()->getFirstInsertionPt();
while (InsertPt != Builder.GetInsertPoint() &&
(isInsertedInstruction(&*InsertPt) ||
isa<DbgInfoIntrinsic>(&*InsertPt))) {
InsertPt = std::next(InsertPt);
}
break;
}
}
}
// Check to see if we already expanded this here.
auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
if (I != InsertedExpressions.end())
return I->second;
SCEVInsertPointGuard Guard(Builder, this);
Builder.SetInsertPoint(InsertPt);
// Expand the expression into instructions.
SmallVector<Instruction *> DropPoisonGeneratingInsts;
Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
if (!V) {
V = visit(S);
V = fixupLCSSAFormFor(V);
} else {
for (Instruction *I : DropPoisonGeneratingInsts) {
rememberFlags(I);
I->dropPoisonGeneratingAnnotations();
// See if we can re-infer from first principles any of the flags we just
// dropped.
if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
auto *BO = cast<BinaryOperator>(I);
BO->setHasNoUnsignedWrap(
ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
BO->setHasNoSignedWrap(
ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
}
if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
auto *Src = NNI->getOperand(0);
if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
Constant::getNullValue(Src->getType()), I,
DL).value_or(false))
NNI->setNonNeg(true);
}
}
}
// Remember the expanded value for this SCEV at this location.
//
// This is independent of PostIncLoops. The mapped value simply materializes
// the expression at this insertion point. If the mapped value happened to be
// a postinc expansion, it could be reused by a non-postinc user, but only if
// its insertion point was already at the head of the loop.
InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
return V;
}
void SCEVExpander::rememberInstruction(Value *I) {
auto DoInsert = [this](Value *V) {
if (!PostIncLoops.empty())
InsertedPostIncValues.insert(V);
else
InsertedValues.insert(V);
};
DoInsert(I);
}
void SCEVExpander::rememberFlags(Instruction *I) {
// If we already have flags for the instruction, keep the existing ones.
OrigFlags.try_emplace(I, PoisonFlags(I));
}
void SCEVExpander::replaceCongruentIVInc(
PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
BasicBlock *LatchBlock = L->getLoopLatch();
if (!LatchBlock)
return;
Instruction *OrigInc =
dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
Instruction *IsomorphicInc =
dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
if (!OrigInc || !IsomorphicInc)
return;
// If this phi has the same width but is more canonical, replace the
// original with it. As part of the "more canonical" determination,
// respect a prior decision to use an IV chain.
if (OrigPhi->getType() == Phi->getType() &&
!(ChainedPhis.count(Phi) ||
isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) &&
(ChainedPhis.count(Phi) ||
isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
std::swap(OrigPhi, Phi);
std::swap(OrigInc, IsomorphicInc);
}
// Replacing the congruent phi is sufficient because acyclic
// redundancy elimination, CSE/GVN, should handle the
// rest. However, once SCEV proves that a phi is congruent,
// it's often the head of an IV user cycle that is isomorphic
// with the original phi. It's worth eagerly cleaning up the
// common case of a single IV increment so that DeleteDeadPHIs
// can remove cycles that had postinc uses.
// Because we may potentially introduce a new use of OrigIV that didn't
// exist before at this point, its poison flags need readjustment.
const SCEV *TruncExpr =
SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) ||
!SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc))
return;
bool BothHaveNUW = false;
bool BothHaveNSW = false;
auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc);
auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc);
if (OBOIncV && OBOIsomorphic) {
BothHaveNUW =
OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap();
BothHaveNSW =
OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap();
}
if (!hoistIVInc(OrigInc, IsomorphicInc,
/*RecomputePoisonFlags*/ true))
return;
// We are replacing with a wider increment. If both OrigInc and IsomorphicInc
// are NUW/NSW, then we can preserve them on the wider increment; the narrower
// IsomorphicInc would wrap before the wider OrigInc, so the replacement won't
// make IsomorphicInc's uses more poisonous.
assert(OrigInc->getType()->getScalarSizeInBits() >=
IsomorphicInc->getType()->getScalarSizeInBits() &&
"Should only replace an increment with a wider one.");
if (BothHaveNUW || BothHaveNSW) {
OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW);
OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW);
}
SCEV_DEBUG_WITH_TYPE(DebugType,
dbgs() << "INDVARS: Eliminated congruent iv.inc: "
<< *IsomorphicInc << '\n');
Value *NewInc = OrigInc;
if (OrigInc->getType() != IsomorphicInc->getType()) {
BasicBlock::iterator IP;
if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
IP = PN->getParent()->getFirstInsertionPt();
else
IP = OrigInc->getNextNonDebugInstruction()->getIterator();
IRBuilder<> Builder(IP);
Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
NewInc =
Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
}
IsomorphicInc->replaceAllUsesWith(NewInc);
DeadInsts.emplace_back(IsomorphicInc);
}
/// replaceCongruentIVs - Check for congruent phis in this loop header and
/// replace them with their most canonical representative. Return the number of
/// phis eliminated.
///
/// This does not depend on any SCEVExpander state but should be used in
/// the same context that SCEVExpander is used.
unsigned
SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
SmallVectorImpl<WeakTrackingVH> &DeadInsts,
const TargetTransformInfo *TTI) {
// Find integer phis in order of increasing width.
SmallVector<PHINode*, 8> Phis;
for (PHINode &PN : L->getHeader()->phis())
Phis.push_back(&PN);
if (TTI)
// Use stable_sort to preserve order of equivalent PHIs, so the order
// of the sorted Phis is the same from run to run on the same loop.
llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
// Put pointers at the back and make sure pointer < pointer = false.
if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
});
unsigned NumElim = 0;
DenseMap<const SCEV *, PHINode *> ExprToIVMap;
// Process phis from wide to narrow. Map wide phis to their truncation
// so narrow phis can reuse them.
for (PHINode *Phi : Phis) {
auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
return V;
if (!SE.isSCEVable(PN->getType()))
return nullptr;
auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
if (!Const)
return nullptr;
return Const->getValue();
};
// Fold constant phis. They may be congruent to other constant phis and
// would confuse the logic below that expects proper IVs.
if (Value *V = SimplifyPHINode(Phi)) {
if (V->getType() != Phi->getType())
continue;
SE.forgetValue(Phi);
Phi->replaceAllUsesWith(V);
DeadInsts.emplace_back(Phi);
++NumElim;
SCEV_DEBUG_WITH_TYPE(DebugType,
dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
<< '\n');
continue;
}
if (!SE.isSCEVable(Phi->getType()))
continue;
PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
if (!OrigPhiRef) {
OrigPhiRef = Phi;
if (Phi->getType()->isIntegerTy() && TTI &&
TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
// Make sure we only rewrite using simple induction variables;
// otherwise, we can make the trip count of a loop unanalyzable
// to SCEV.
const SCEV *PhiExpr = SE.getSCEV(Phi);
if (isa<SCEVAddRecExpr>(PhiExpr)) {
// This phi can be freely truncated to the narrowest phi type. Map the
// truncated expression to it so it will be reused for narrow types.
const SCEV *TruncExpr =
SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
ExprToIVMap[TruncExpr] = Phi;
}
}
continue;
}
// Replacing a pointer phi with an integer phi or vice-versa doesn't make
// sense.
if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
continue;
replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts);
SCEV_DEBUG_WITH_TYPE(DebugType,
dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
<< '\n');
SCEV_DEBUG_WITH_TYPE(
DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
++NumElim;
Value *NewIV = OrigPhiRef;
if (OrigPhiRef->getType() != Phi->getType()) {
IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
}
Phi->replaceAllUsesWith(NewIV);
DeadInsts.emplace_back(Phi);
}
return NumElim;
}
bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
const Instruction *At,
Loop *L) {
using namespace llvm::PatternMatch;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// Look for suitable value in simple conditions at the loop exits.
for (BasicBlock *BB : ExitingBlocks) {
ICmpInst::Predicate Pred;
Instruction *LHS, *RHS;
if (!match(BB->getTerminator(),
m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
m_BasicBlock(), m_BasicBlock())))
continue;
if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
return true;
if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
return true;
}
// Use expand's logic which is used for reusing a previous Value in
// ExprValueMap. Note that we don't currently model the cost of
// needing to drop poison generating flags on the instruction if we
// want to reuse it. We effectively assume that has zero cost.
SmallVector<Instruction *> DropPoisonGeneratingInsts;
return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
}
template<typename T> static InstructionCost costAndCollectOperands(
const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
TargetTransformInfo::TargetCostKind CostKind,
SmallVectorImpl<SCEVOperand> &Worklist) {
const T *S = cast<T>(WorkItem.S);
InstructionCost Cost = 0;
// Object to help map SCEV operands to expanded IR instructions.
struct OperationIndices {
OperationIndices(unsigned Opc, size_t min, size_t max) :
Opcode(Opc), MinIdx(min), MaxIdx(max) { }
unsigned Opcode;
size_t MinIdx;
size_t MaxIdx;
};
// Collect the operations of all the instructions that will be needed to
// expand the SCEVExpr. This is so that when we come to cost the operands,
// we know what the generated user(s) will be.
SmallVector<OperationIndices, 2> Operations;
auto CastCost = [&](unsigned Opcode) -> InstructionCost {
Operations.emplace_back(Opcode, 0, 0);
return TTI.getCastInstrCost(Opcode, S->getType(),
S->getOperand(0)->getType(),
TTI::CastContextHint::None, CostKind);
};
auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
unsigned MinIdx = 0,
unsigned MaxIdx = 1) -> InstructionCost {
Operations.emplace_back(Opcode, MinIdx, MaxIdx);
return NumRequired *
TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
};
auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
unsigned MaxIdx) -> InstructionCost {
Operations.emplace_back(Opcode, MinIdx, MaxIdx);
Type *OpType = S->getType();
return NumRequired * TTI.getCmpSelInstrCost(
Opcode, OpType, CmpInst::makeCmpResultType(OpType),
CmpInst::BAD_ICMP_PREDICATE, CostKind);
};
switch (S->getSCEVType()) {
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
case scUnknown:
case scConstant:
case scVScale:
return 0;
case scPtrToInt:
Cost = CastCost(Instruction::PtrToInt);
break;
case scTruncate:
Cost = CastCost(Instruction::Trunc);
break;
case scZeroExtend:
Cost = CastCost(Instruction::ZExt);
break;
case scSignExtend:
Cost = CastCost(Instruction::SExt);
break;
case scUDivExpr: {
unsigned Opcode = Instruction::UDiv;
if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
if (SC->getAPInt().isPowerOf2())
Opcode = Instruction::LShr;
Cost = ArithCost(Opcode, 1);
break;
}
case scAddExpr:
Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
break;
case scMulExpr:
// TODO: this is a very pessimistic cost modelling for Mul,
// because of Bin Pow algorithm actually used by the expander,
// see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
break;
case scSMaxExpr:
case scUMaxExpr:
case scSMinExpr:
case scUMinExpr:
case scSequentialUMinExpr: {
// FIXME: should this ask the cost for Intrinsic's?
// The reduction tree.
Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
switch (S->getSCEVType()) {
case scSequentialUMinExpr: {
// The safety net against poison.
// FIXME: this is broken.
Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
Cost += ArithCost(Instruction::Or,
S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
break;
}
default:
assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
"Unhandled SCEV expression type?");
break;
}
break;
}
case scAddRecExpr: {
// In this polynominal, we may have some zero operands, and we shouldn't
// really charge for those. So how many non-zero coefficients are there?
int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
return !Op->isZero();
});
assert(NumTerms >= 1 && "Polynominal should have at least one term.");
assert(!(*std::prev(S->operands().end()))->isZero() &&
"Last operand should not be zero");
// Ignoring constant term (operand 0), how many of the coefficients are u> 1?
int NumNonZeroDegreeNonOneTerms =
llvm::count_if(S->operands(), [](const SCEV *Op) {
auto *SConst = dyn_cast<SCEVConstant>(Op);
return !SConst || SConst->getAPInt().ugt(1);
});
// Much like with normal add expr, the polynominal will require
// one less addition than the number of it's terms.
InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
/*MinIdx*/ 1, /*MaxIdx*/ 1);
// Here, *each* one of those will require a multiplication.
InstructionCost MulCost =
ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
Cost = AddCost + MulCost;
// What is the degree of this polynominal?
int PolyDegree = S->getNumOperands() - 1;
assert(PolyDegree >= 1 && "Should be at least affine.");
// The final term will be:
// Op_{PolyDegree} * x ^ {PolyDegree}
// Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations.
// Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for
// x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free.
// FIXME: this is conservatively correct, but might be overly pessimistic.
Cost += MulCost * (PolyDegree - 1);
break;
}
}
for (auto &CostOp : Operations) {
for (auto SCEVOp : enumerate(S->operands())) {
// Clamp the index to account for multiple IR operations being chained.
size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
}
}
return Cost;
}
bool SCEVExpander::isHighCostExpansionHelper(
const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
SmallPtrSetImpl<const SCEV *> &Processed,
SmallVectorImpl<SCEVOperand> &Worklist) {
if (Cost > Budget)
return true; // Already run out of budget, give up.
const SCEV *S = WorkItem.S;
// Was the cost of expansion of this expression already accounted for?
if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
return false; // We have already accounted for this expression.
// If we can find an existing value for this scev available at the point "At"
// then consider the expression cheap.
if (hasRelatedExistingExpansion(S, &At, L))
return false; // Consider the expression to be free.
TargetTransformInfo::TargetCostKind CostKind =
L->getHeader()->getParent()->hasMinSize()
? TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_RecipThroughput;
switch (S->getSCEVType()) {
case scCouldNotCompute:
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
case scUnknown:
case scVScale:
// Assume to be zero-cost.
return false;
case scConstant: {
// Only evalulate the costs of constants when optimizing for size.
if (CostKind != TargetTransformInfo::TCK_CodeSize)
return false;
const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
Type *Ty = S->getType();
Cost += TTI.getIntImmCostInst(
WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
return Cost > Budget;
}
case scTruncate:
case scPtrToInt:
case scZeroExtend:
case scSignExtend: {
Cost +=
costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
return false; // Will answer upon next entry into this function.
}
case scUDivExpr: {
// UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
// HowManyLessThans produced to compute a precise expression, rather than a
// UDiv from the user's code. If we can't find a UDiv in the code with some
// simple searching, we need to account for it's cost.
// At the beginning of this function we already tried to find existing
// value for plain 'S'. Now try to lookup 'S + 1' since it is common
// pattern involving division. This is just a simple search heuristic.
if (hasRelatedExistingExpansion(
SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
return false; // Consider it to be free.
Cost +=
costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
return false; // Will answer upon next entry into this function.
}
case scAddExpr:
case scMulExpr:
case scUMaxExpr:
case scSMaxExpr:
case scUMinExpr:
case scSMinExpr:
case scSequentialUMinExpr: {
assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
"Nary expr should have more than 1 operand.");
// The simple nary expr will require one less op (or pair of ops)
// than the number of it's terms.
Cost +=
costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
return Cost > Budget;
}
case scAddRecExpr: {
assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
"Polynomial should be at least linear");
Cost += costAndCollectOperands<SCEVAddRecExpr>(
WorkItem, TTI, CostKind, Worklist);
return Cost > Budget;
}
}
llvm_unreachable("Unknown SCEV kind!");
}
Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
Instruction *IP) {
assert(IP);
switch (Pred->getKind()) {
case SCEVPredicate::P_Union:
return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
case SCEVPredicate::P_Compare:
return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
case SCEVPredicate::P_Wrap: {
auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
return expandWrapPredicate(AddRecPred, IP);
}
}
llvm_unreachable("Unknown SCEV predicate type");
}
Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
Instruction *IP) {
Value *Expr0 = expand(Pred->getLHS(), IP);
Value *Expr1 = expand(Pred->getRHS(), IP);
Builder.SetInsertPoint(IP);
auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
return I;
}
Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
Instruction *Loc, bool Signed) {
assert(AR->isAffine() && "Cannot generate RT check for "
"non-affine expression");
// FIXME: It is highly suspicious that we're ignoring the predicates here.
SmallVector<const SCEVPredicate *, 4> Pred;
const SCEV *ExitCount =
SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred);
assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
const SCEV *Step = AR->getStepRecurrence(SE);
const SCEV *Start = AR->getStart();
Type *ARTy = AR->getType();
unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
unsigned DstBits = SE.getTypeSizeInBits(ARTy);
// The expression {Start,+,Step} has nusw/nssw if
// Step < 0, Start - |Step| * Backedge <= Start
// Step >= 0, Start + |Step| * Backedge > Start
// and |Step| * Backedge doesn't unsigned overflow.
Builder.SetInsertPoint(Loc);
Value *TripCountVal = expand(ExitCount, Loc);
IntegerType *Ty =
IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
Value *StepValue = expand(Step, Loc);
Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
Value *StartValue = expand(Start, Loc);
ConstantInt *Zero =
ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
Builder.SetInsertPoint(Loc);
// Compute |Step|
Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
// Compute |Step| * Backedge
// Compute:
// 1. Start + |Step| * Backedge < Start
// 2. Start - |Step| * Backedge > Start
//
// And select either 1. or 2. depending on whether step is positive or
// negative. If Step is known to be positive or negative, only create
// either 1. or 2.
auto ComputeEndCheck = [&]() -> Value * {
// Checking <u 0 is always false.
if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
return ConstantInt::getFalse(Loc->getContext());
// Get the backedge taken count and truncate or extended to the AR type.
Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
Value *MulV, *OfMul;
if (Step->isOne()) {
// Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
// needed, there is never an overflow, so to avoid artificially inflating
// the cost of the check, directly emit the optimized IR.
MulV = TruncTripCount;
OfMul = ConstantInt::getFalse(MulV->getContext());
} else {
auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
Intrinsic::umul_with_overflow, Ty);
CallInst *Mul =
Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
}
Value *Add = nullptr, *Sub = nullptr;
bool NeedPosCheck = !SE.isKnownNegative(Step);
bool NeedNegCheck = !SE.isKnownPositive(Step);
if (isa<PointerType>(ARTy)) {
Value *NegMulV = Builder.CreateNeg(MulV);
if (NeedPosCheck)
Add = Builder.CreatePtrAdd(StartValue, MulV);
if (NeedNegCheck)
Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
} else {
if (NeedPosCheck)
Add = Builder.CreateAdd(StartValue, MulV);
if (NeedNegCheck)
Sub = Builder.CreateSub(StartValue, MulV);
}
Value *EndCompareLT = nullptr;
Value *EndCompareGT = nullptr;
Value *EndCheck = nullptr;
if (NeedPosCheck)
EndCheck = EndCompareLT = Builder.CreateICmp(
Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
if (NeedNegCheck)
EndCheck = EndCompareGT = Builder.CreateICmp(
Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
if (NeedPosCheck && NeedNegCheck) {
// Select the answer based on the sign of Step.
EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
}
return Builder.CreateOr(EndCheck, OfMul);
};
Value *EndCheck = ComputeEndCheck();
// If the backedge taken count type is larger than the AR type,
// check that we don't drop any bits by truncating it. If we are
// dropping bits, then we have overflow (unless the step is zero).
if (SrcBits > DstBits) {
auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
auto *BackedgeCheck =
Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
ConstantInt::get(Loc->getContext(), MaxVal));
BackedgeCheck = Builder.CreateAnd(
BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
}
return EndCheck;
}
Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
Instruction *IP) {
const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
// Add a check for NUSW
if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
NUSWCheck = generateOverflowCheck(A, IP, false);
// Add a check for NSSW
if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
NSSWCheck = generateOverflowCheck(A, IP, true);
if (NUSWCheck && NSSWCheck)
return Builder.CreateOr(NUSWCheck, NSSWCheck);
if (NUSWCheck)
return NUSWCheck;
if (NSSWCheck)
return NSSWCheck;
return ConstantInt::getFalse(IP->getContext());
}
Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
Instruction *IP) {
// Loop over all checks in this set.
SmallVector<Value *> Checks;
for (const auto *Pred : Union->getPredicates()) {
Checks.push_back(expandCodeForPredicate(Pred, IP));
Builder.SetInsertPoint(IP);
}
if (Checks.empty())
return ConstantInt::getFalse(IP->getContext());
return Builder.CreateOr(Checks);
}
Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
auto *DefI = dyn_cast<Instruction>(V);
if (!PreserveLCSSA || !DefI)
return V;
BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
return V;
// Create a temporary instruction to at the current insertion point, so we
// can hand it off to the helper to create LCSSA PHIs if required for the
// new use.
// FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
// would accept a insertion point and return an LCSSA phi for that
// insertion point, so there is no need to insert & remove the temporary
// instruction.
Type *ToTy;
if (DefI->getType()->isIntegerTy())
ToTy = PointerType::get(DefI->getContext(), 0);
else
ToTy = Type::getInt32Ty(DefI->getContext());
Instruction *User =
CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
auto RemoveUserOnExit =
make_scope_exit([User]() { User->eraseFromParent(); });
SmallVector<Instruction *, 1> ToUpdate;
ToUpdate.push_back(DefI);
SmallVector<PHINode *, 16> PHIsToRemove;
SmallVector<PHINode *, 16> InsertedPHIs;
formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
&InsertedPHIs);
for (PHINode *PN : InsertedPHIs)
rememberInstruction(PN);
for (PHINode *PN : PHIsToRemove) {
if (!PN->use_empty())
continue;
InsertedValues.erase(PN);
InsertedPostIncValues.erase(PN);
PN->eraseFromParent();
}
return User->getOperand(0);
}
namespace {
// Search for a SCEV subexpression that is not safe to expand. Any expression
// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
// UDiv expressions. We don't know if the UDiv is derived from an IR divide
// instruction, but the important thing is that we prove the denominator is
// nonzero before expansion.
//
// IVUsers already checks that IV-derived expressions are safe. So this check is
// only needed when the expression includes some subexpression that is not IV
// derived.
//
// Currently, we only allow division by a value provably non-zero here.
//
// We cannot generally expand recurrences unless the step dominates the loop
// header. The expander handles the special case of affine recurrences by
// scaling the recurrence outside the loop, but this technique isn't generally
// applicable. Expanding a nested recurrence outside a loop requires computing
// binomial coefficients. This could be done, but the recurrence has to be in a
// perfectly reduced form, which can't be guaranteed.
struct SCEVFindUnsafe {
ScalarEvolution &SE;
bool CanonicalMode;
bool IsUnsafe = false;
SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
: SE(SE), CanonicalMode(CanonicalMode) {}
bool follow(const SCEV *S) {
if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
if (!SE.isKnownNonZero(D->getRHS())) {
IsUnsafe = true;
return false;
}
}
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// For non-affine addrecs or in non-canonical mode we need a preheader
// to insert into.
if (!AR->getLoop()->getLoopPreheader() &&
(!CanonicalMode || !AR->isAffine())) {
IsUnsafe = true;
return false;
}
}
return true;
}
bool isDone() const { return IsUnsafe; }
};
} // namespace
bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
SCEVFindUnsafe Search(SE, CanonicalMode);
visitAll(S, Search);
return !Search.IsUnsafe;
}
bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
const Instruction *InsertionPoint) const {
if (!isSafeToExpand(S))
return false;
// We have to prove that the expanded site of S dominates InsertionPoint.
// This is easy when not in the same block, but hard when S is an instruction
// to be expanded somewhere inside the same block as our insertion point.
// What we really need here is something analogous to an OrderedBasicBlock,
// but for the moment, we paper over the problem by handling two common and
// cheap to check cases.
if (SE.properlyDominates(S, InsertionPoint->getParent()))
return true;
if (SE.dominates(S, InsertionPoint->getParent())) {
if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
return true;
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
return true;
}
return false;
}
void SCEVExpanderCleaner::cleanup() {
// Result is used, nothing to remove.
if (ResultUsed)
return;
// Restore original poison flags.
for (auto [I, Flags] : Expander.OrigFlags)
Flags.apply(I);
auto InsertedInstructions = Expander.getAllInsertedInstructions();
#ifndef NDEBUG
SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
InsertedInstructions.end());
(void)InsertedSet;
#endif
// Remove sets with value handles.
Expander.clear();
// Remove all inserted instructions.
for (Instruction *I : reverse(InsertedInstructions)) {
#ifndef NDEBUG
assert(all_of(I->users(),
[&InsertedSet](Value *U) {
return InsertedSet.contains(cast<Instruction>(U));
}) &&
"removed instruction should only be used by instructions inserted "
"during expansion");
#endif
assert(!I->getType()->isVoidTy() &&
"inserted instruction should have non-void types");
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
I->eraseFromParent();
}
}