
- The existing URLs are no longer valid, updated to the current one Signed-off-by: Jerry Ge <jerry.ge@arm.com>
3534 lines
131 KiB
C++
3534 lines
131 KiB
C++
//===- TosaOps.cpp - MLIR Dialect for TOSA --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements the TOSA Specification:
|
|
// https://www.mlplatform.org/tosa/tosa_spec.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
#include "mlir/Dialect/Mesh/Interfaces/ShardingInterface.h"
|
|
#include "mlir/Dialect/Quant/IR/Quant.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
|
|
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
#include "mlir/Transforms/InliningUtils.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
#include "mlir/Dialect/Tosa/IR/TosaOpsDialect.cpp.inc"
|
|
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Tosa dialect interface includes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/IR/TosaAvailability.cpp.inc"
|
|
#include "mlir/Dialect/Tosa/IR/TosaEnums.cpp.inc"
|
|
#include "mlir/Dialect/Tosa/IR/TosaInterfaces.cpp.inc"
|
|
#include "mlir/Dialect/Tosa/IR/TosaOpAvailabilityImpl.inc"
|
|
|
|
namespace {
|
|
#include "mlir/Dialect/Tosa/IR/TosaDialectBytecode.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect Function Inliner Interface.
|
|
//===----------------------------------------------------------------------===//
|
|
struct TosaInlinerInterface : public DialectInlinerInterface {
|
|
using DialectInlinerInterface::DialectInlinerInterface;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Analysis Hooks.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// All operations can be inlined by default.
|
|
bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned,
|
|
IRMapping &map) const final {
|
|
return true;
|
|
}
|
|
|
|
/// All regions with If and While parent operators can be inlined.
|
|
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
|
|
IRMapping &map) const final {
|
|
return (isa<tosa::IfOp>(dest->getParentOp()) ||
|
|
isa<tosa::WhileOp>(dest->getParentOp()));
|
|
}
|
|
};
|
|
|
|
/// This class implements the bytecode interface for the Tosa dialect.
|
|
struct TosaDialectBytecodeInterface : public BytecodeDialectInterface {
|
|
TosaDialectBytecodeInterface(Dialect *dialect)
|
|
: BytecodeDialectInterface(dialect) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Attributes
|
|
|
|
Attribute readAttribute(DialectBytecodeReader &reader) const override {
|
|
return ::readAttribute(getContext(), reader);
|
|
}
|
|
|
|
LogicalResult writeAttribute(Attribute attr,
|
|
DialectBytecodeWriter &writer) const override {
|
|
return ::writeAttribute(attr, writer);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Types
|
|
|
|
Type readType(DialectBytecodeReader &reader) const override {
|
|
return ::readType(getContext(), reader);
|
|
}
|
|
|
|
LogicalResult writeType(Type type,
|
|
DialectBytecodeWriter &writer) const override {
|
|
return ::writeType(type, writer);
|
|
}
|
|
|
|
void writeVersion(DialectBytecodeWriter &writer) const final {
|
|
// TODO: Populate.
|
|
}
|
|
|
|
std::unique_ptr<DialectVersion>
|
|
readVersion(DialectBytecodeReader &reader) const final {
|
|
// TODO: Populate
|
|
reader.emitError("Dialect does not support versioning");
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult upgradeFromVersion(Operation *topLevelOp,
|
|
const DialectVersion &version) const final {
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA control flow support.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the while loop body.
|
|
SmallVector<Region *> tosa::WhileOp::getLoopRegions() {
|
|
return {&getBodyGraph()};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Tosa dialect initialization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TosaDialect::initialize() {
|
|
addTypes<
|
|
#define GET_TYPEDEF_LIST
|
|
#include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc"
|
|
>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"
|
|
>();
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
|
|
>();
|
|
addInterfaces<TosaDialectBytecodeInterface, TosaInlinerInterface>();
|
|
declarePromisedInterfaces<
|
|
mesh::ShardingInterface, ClampOp, SigmoidOp, TanhOp, AddOp,
|
|
ArithmeticRightShiftOp, BitwiseAndOp, BitwiseOrOp, BitwiseXorOp, IntDivOp,
|
|
LogicalAndOp, LogicalLeftShiftOp, LogicalRightShiftOp, LogicalOrOp,
|
|
LogicalXorOp, MaximumOp, MinimumOp, MulOp, PowOp, SubOp, AbsOp,
|
|
BitwiseNotOp, CeilOp, ClzOp, ExpOp, FloorOp, LogOp, LogicalNotOp,
|
|
NegateOp, ReciprocalOp, RsqrtOp, SelectOp, EqualOp, GreaterOp,
|
|
GreaterEqualOp, MatMulOp>();
|
|
}
|
|
|
|
Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value,
|
|
Type type, Location loc) {
|
|
// Tosa dialect constants only support ElementsAttr unlike standard dialect
|
|
// constant which supports all attributes.
|
|
if (llvm::isa<shapeType>(type) && llvm::isa<DenseIntElementsAttr>(value)) {
|
|
return builder.create<tosa::ConstShapeOp>(
|
|
loc, type, llvm::cast<DenseIntElementsAttr>(value));
|
|
}
|
|
if (llvm::isa<ElementsAttr>(value))
|
|
return builder.create<tosa::ConstOp>(loc, type,
|
|
llvm::cast<ElementsAttr>(value));
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parsers and printers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult mlir::tosa::parseTypeOrAttr(OpAsmParser &parser, TypeAttr &typeAttr,
|
|
Attribute &attr) {
|
|
if (succeeded(parser.parseOptionalEqual())) {
|
|
if (failed(parser.parseAttribute(attr))) {
|
|
return parser.emitError(parser.getCurrentLocation())
|
|
<< "expected attribute";
|
|
}
|
|
if (auto typedAttr = dyn_cast<TypedAttr>(attr)) {
|
|
typeAttr = TypeAttr::get(typedAttr.getType());
|
|
}
|
|
return success();
|
|
}
|
|
|
|
Type type;
|
|
if (failed(parser.parseColonType(type))) {
|
|
return parser.emitError(parser.getCurrentLocation()) << "expected type";
|
|
}
|
|
typeAttr = TypeAttr::get(type);
|
|
|
|
return success();
|
|
}
|
|
|
|
void mlir::tosa::printTypeOrAttr(OpAsmPrinter &p, Operation *op, TypeAttr type,
|
|
Attribute attr) {
|
|
bool needsSpace = false;
|
|
auto typedAttr = dyn_cast_or_null<TypedAttr>(attr);
|
|
if (!typedAttr || typedAttr.getType() != type.getValue()) {
|
|
p << ": ";
|
|
p.printAttribute(type);
|
|
needsSpace = true; // subsequent attr value needs a space separator
|
|
}
|
|
if (attr) {
|
|
if (needsSpace)
|
|
p << ' ';
|
|
p << "= ";
|
|
p.printAttribute(attr);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Tosa utilities.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::optional<int64_t> idivCheck(const int64_t lhs, const int64_t rhs) {
|
|
if (lhs % rhs != 0)
|
|
return std::nullopt;
|
|
return lhs / rhs;
|
|
}
|
|
|
|
Type getStorageElementTypeOrSelf(Type type) {
|
|
auto srcType = getElementTypeOrSelf(type);
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(srcType))
|
|
srcType = quantType.getStorageType();
|
|
return srcType;
|
|
}
|
|
|
|
Type getStorageElementTypeOrSelf(Value value) {
|
|
return getStorageElementTypeOrSelf(value.getType());
|
|
}
|
|
|
|
static LogicalResult verifyRescaleValueAndZpTypes(Operation *op, Value val,
|
|
Value valZp, StringRef name) {
|
|
Type eType = getStorageElementTypeOrSelf(val.getType());
|
|
Type eZpType = getStorageElementTypeOrSelf(valZp.getType());
|
|
|
|
bool bothInts =
|
|
mlir::isa<IntegerType>(eType) && mlir::isa<IntegerType>(eZpType);
|
|
bool sameBitWidth =
|
|
(eType.getIntOrFloatBitWidth() == eZpType.getIntOrFloatBitWidth());
|
|
|
|
if (!bothInts || !sameBitWidth) {
|
|
return op->emitOpError()
|
|
<< "expected " << name << " and " << name
|
|
<< "_zp to both be integer of the same bitwidth, but got " << eType
|
|
<< " vs. " << eZpType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Create a pad-const const tensor with value of `val` of required data-type
|
|
Value mlir::tosa::createPadConstTensor(OpBuilder &builder, Location loc,
|
|
Value src, int32_t val) {
|
|
const auto srcType = getElementTypeOrSelf(src);
|
|
const auto srcElemType = getStorageElementTypeOrSelf(src);
|
|
const auto padConstType = mlir::RankedTensorType::get({1}, srcType);
|
|
const auto padConstEType = mlir::RankedTensorType::get({1}, srcElemType);
|
|
const auto padConstAttr{
|
|
llvm::isa<FloatType>(srcElemType)
|
|
? DenseElementsAttr::get(padConstEType,
|
|
builder.getFloatAttr(srcElemType, val))
|
|
: DenseElementsAttr::get(padConstEType,
|
|
builder.getIntegerAttr(srcElemType, val))};
|
|
return builder.create<tosa::ConstOp>(loc, padConstType, padConstAttr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Operator Verifiers.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyConvOp(T op) {
|
|
// All TOSA conv ops have an input and weight arguments which must be ranked
|
|
// tensors.
|
|
auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
|
|
if (!inputType) {
|
|
op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
|
|
return failure();
|
|
}
|
|
|
|
auto weightType = llvm::dyn_cast<RankedTensorType>(op.getWeight().getType());
|
|
if (!weightType) {
|
|
op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
|
|
return failure();
|
|
}
|
|
|
|
auto inputEType = inputType.getElementType();
|
|
auto weightEType = weightType.getElementType();
|
|
auto biasEType =
|
|
llvm::cast<ShapedType>(op.getBias().getType()).getElementType();
|
|
auto resultEType =
|
|
llvm::cast<ShapedType>(op.getResult().getType()).getElementType();
|
|
bool biasIsFloat = llvm::isa<FloatType>(biasEType);
|
|
bool resultIsFloat = llvm::isa<FloatType>(resultEType);
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType))
|
|
inputEType = quantType.getStorageType();
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(weightEType))
|
|
weightEType = quantType.getStorageType();
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(biasEType))
|
|
biasEType = quantType.getStorageType();
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType))
|
|
resultEType = quantType.getStorageType();
|
|
|
|
if (biasIsFloat && resultIsFloat && (biasEType != resultEType)) {
|
|
// for now, only enforce bias element type == result element type for
|
|
// float types.
|
|
op.emitOpError(
|
|
"expect both bias and result to have same element type, got ")
|
|
<< biasEType << " and " << resultEType;
|
|
return failure();
|
|
}
|
|
|
|
if (isa<Float8E5M2Type>(inputEType) || isa<Float8E4M3FNType>(inputEType) ||
|
|
isa<Float8E5M2Type>(weightEType) || isa<Float8E4M3FNType>(weightEType)) {
|
|
if (inputEType != weightEType) {
|
|
op.emitOpError(
|
|
"expect both input and weight to have same element type, got ")
|
|
<< inputEType << " and " << weightEType;
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
bool inputIsFloat = llvm::isa<FloatType>(inputEType);
|
|
bool weightIsFloat = llvm::isa<FloatType>(weightEType);
|
|
|
|
// Either both must be float or both non-float.
|
|
if (inputIsFloat != weightIsFloat) {
|
|
op.emitOpError(
|
|
"expect both input and weight to be float or not together, got ")
|
|
<< inputEType << " and " << weightEType;
|
|
return failure();
|
|
}
|
|
|
|
auto inputZpEType = getStorageElementTypeOrSelf(op.getInputZp().getType());
|
|
if (inputEType != inputZpEType) {
|
|
return op.emitOpError("expect both input and its zero point are the same "
|
|
"element type, got ")
|
|
<< inputEType << " and " << inputZpEType;
|
|
}
|
|
|
|
auto weightZpEType = getStorageElementTypeOrSelf(op.getWeightZp().getType());
|
|
if (weightEType != weightZpEType) {
|
|
return op.emitOpError("expect both weight and its zero point are the same "
|
|
"element type, got ")
|
|
<< weightEType << " and " << weightZpEType;
|
|
}
|
|
|
|
FailureOr<int64_t> maybeIZp = op.getInputZeroPoint();
|
|
if (succeeded(maybeIZp) && op.verifyInputZeroPoint(*maybeIZp).failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeWZp = op.getWeightZeroPoint();
|
|
if (succeeded(maybeWZp) && op.verifyWeightZeroPoint(*maybeWZp).failed())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ConstOp::verify() {
|
|
|
|
auto attrType = llvm::dyn_cast<TensorType>(getValuesAttr().getType());
|
|
auto outputType = llvm::dyn_cast<TensorType>(getOutput().getType());
|
|
|
|
if (!attrType || !outputType) {
|
|
emitOpError("expected tensors for attr/result type");
|
|
return failure();
|
|
}
|
|
|
|
if (auto result = llvm::dyn_cast<mlir::quant::QuantizedType>(
|
|
outputType.getElementType())) {
|
|
if (result.getStorageType() == attrType.getElementType())
|
|
return success();
|
|
}
|
|
|
|
if (attrType.getElementType() != outputType.getElementType()) {
|
|
emitOpError("expected same attr/result element types");
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyConvOpModes(T op) {
|
|
auto inputEType =
|
|
llvm::cast<ShapedType>(op.getInput().getType()).getElementType();
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(inputEType))
|
|
inputEType = quantType.getStorageType();
|
|
|
|
auto accType = op.getAccType();
|
|
if (inputEType.isInteger(8) && !accType.isInteger(32))
|
|
return op.emitOpError("accumulator type for i8 tensor is not i32");
|
|
|
|
if (inputEType.isInteger(16) && !accType.isInteger(48))
|
|
return op.emitOpError("accumulator type for i16 tensor is not i48");
|
|
|
|
if (isa<Float8E5M2Type, Float8E4M3Type>(inputEType) && !accType.isF16())
|
|
return op.emitOpError("accumulator type for f8 tensor is not f16");
|
|
|
|
if (inputEType.isF16() && !(accType.isF16() || accType.isF32()))
|
|
return op.emitOpError("accumulator type for f16 tensor is not f16/f32");
|
|
|
|
if (inputEType.isBF16() && !accType.isF32())
|
|
return op.emitOpError("accumulator type for bf16 tensor is not f32");
|
|
|
|
if (inputEType.isF32() && !accType.isF32())
|
|
return op.emitOpError("accumulator type for f32 tensor is not f32");
|
|
|
|
auto resultEType =
|
|
llvm::cast<ShapedType>(op.getResult().getType()).getElementType();
|
|
|
|
if (auto quantType = llvm::dyn_cast<mlir::quant::QuantizedType>(resultEType))
|
|
resultEType = quantType.getStorageType();
|
|
|
|
return success();
|
|
}
|
|
|
|
// verify that inType and outType have same element types
|
|
template <typename T>
|
|
static LogicalResult verifySameElementTypes(T op, Type inType, Type outType) {
|
|
auto inputType = llvm::dyn_cast<TensorType>(inType);
|
|
auto outputType = llvm::dyn_cast<TensorType>(outType);
|
|
if (!inputType) {
|
|
op.emitOpError("expect shaped tensor for input, got ") << inType;
|
|
return failure();
|
|
}
|
|
if (!outputType) {
|
|
op.emitOpError("expect shaped tensor for output, got ") << outType;
|
|
return failure();
|
|
}
|
|
auto inputElementType = inputType.getElementType();
|
|
auto outputElementType = outputType.getElementType();
|
|
auto inputQuantType =
|
|
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputElementType);
|
|
auto outputQuantType =
|
|
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(outputElementType);
|
|
if ((inputElementType.isIntOrIndexOrFloat() || inputQuantType) &&
|
|
(outputElementType.isIntOrIndexOrFloat() || outputQuantType) &&
|
|
inputElementType != outputElementType) {
|
|
// only check if both element types are int/index/float/UniformQuantized
|
|
// eg, not sure how to check quant::QuantizedType
|
|
// this happens in test_conv2d_q_grouped_convolution in
|
|
// tfl-to-tosa-pipeline.mlir
|
|
op.emitOpError("expect input and output to have same element type, got ")
|
|
<< inputElementType << " and " << outputElementType;
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ArgMaxOp::verify() {
|
|
const ShapedType resultType = llvm::cast<ShapedType>(getType());
|
|
|
|
// Ensure output is of 32-bit integer
|
|
if (const auto resultETy = resultType.getElementType();
|
|
!resultETy.isIntOrIndex())
|
|
return emitOpError("result tensor is not of integer type");
|
|
|
|
const auto inputType = llvm::cast<ShapedType>(getInput().getType());
|
|
if (!inputType.hasRank())
|
|
return success();
|
|
|
|
// Ensure axis is within the tensor rank
|
|
const int64_t axis = getAxisAttr().getInt();
|
|
if (((axis < 0) || axis >= inputType.getRank()))
|
|
return emitOpError("specified axis is outside the rank of the tensor");
|
|
|
|
if (!resultType.hasRank())
|
|
return success();
|
|
|
|
const ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
const ArrayRef<int64_t> outputShape = resultType.getShape();
|
|
llvm::SmallVector<int64_t> expectedOutputShape(inputShape.begin(),
|
|
inputShape.end());
|
|
expectedOutputShape.erase(expectedOutputShape.begin() + axis);
|
|
if (failed(verifyCompatibleShape(expectedOutputShape, outputShape)))
|
|
return emitOpError("expected output shape '")
|
|
<< expectedOutputShape << "', got '" << outputShape << "'";
|
|
|
|
return success();
|
|
}
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyPoolingOp(T op) {
|
|
const llvm::ArrayRef<int64_t> kernel = op.getKernel();
|
|
if (llvm::any_of(kernel, [](int64_t s) { return s < 1; }))
|
|
return op.emitOpError("expect all kernel values to be >= 1, got ")
|
|
<< kernel;
|
|
|
|
const llvm::ArrayRef<int64_t> strides = op.getStride();
|
|
if (llvm::any_of(strides, [](int64_t s) { return s < 1; }))
|
|
return op.emitOpError("expect all stride values to be >= 1, got ")
|
|
<< strides;
|
|
|
|
const llvm::ArrayRef<int64_t> padding = op.getPad();
|
|
if (llvm::any_of(padding, [](int64_t p) { return p < 0; }))
|
|
return op.emitOpError("expect all padding values to be >= 0, got ")
|
|
<< padding;
|
|
|
|
// Padding must be less than kernel size to avoid a divide-by-zero
|
|
const int64_t kernelX = kernel[1];
|
|
const int64_t padLeft = padding[2];
|
|
const int64_t padRight = padding[3];
|
|
if (padRight >= kernelX || padLeft >= kernelX)
|
|
return op.emitOpError("expected left/right padding to be less than the "
|
|
"width of the kernel, got pad_left=")
|
|
<< padLeft << ", pad_right=" << padRight << ", kernel_x=" << kernelX;
|
|
|
|
const int64_t kernelY = kernel[0];
|
|
const int64_t padTop = padding[0];
|
|
const int64_t padBottom = padding[1];
|
|
if (padTop >= kernelY || padBottom >= kernelY)
|
|
return op.emitOpError("expected top/bottom padding to be less than the "
|
|
"height of the kernel, got pad_top=")
|
|
<< padTop << ", pad_bottom=" << padBottom
|
|
<< ", kernel_y=" << kernelY;
|
|
|
|
const auto inputType =
|
|
llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
|
|
const auto outputType =
|
|
llvm::dyn_cast<RankedTensorType>(op.getResult().getType());
|
|
if (!inputType || !outputType)
|
|
return success();
|
|
|
|
const auto verifyOutputSize =
|
|
[&op](const int64_t inputSize, const int64_t outputSize,
|
|
const int64_t kernelSize, const int64_t strideSize,
|
|
const int64_t padBefore, const int64_t padAfter,
|
|
const llvm::StringRef dimName, const llvm::StringRef dimAxis,
|
|
const llvm::StringRef padBeforeName,
|
|
const llvm::StringRef padAfterName) -> LogicalResult {
|
|
if (ShapedType::isDynamic(inputSize))
|
|
return success();
|
|
|
|
const std::optional<int64_t> calculatedOutSizeMinusOne =
|
|
idivCheck(inputSize + padBefore + padAfter - kernelSize, strideSize);
|
|
if (!calculatedOutSizeMinusOne.has_value())
|
|
return op.emitOpError("expected input_")
|
|
<< dimName << " + pad_" << padBeforeName << " + pad_"
|
|
<< padAfterName << " - kernel_" << dimAxis
|
|
<< " to be wholly divisible by stride_" << dimAxis << ", got ("
|
|
<< inputSize << " + " << padBefore << " + " << padAfter << " - "
|
|
<< kernelSize << ") / " << strideSize;
|
|
|
|
const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1;
|
|
if (!ShapedType::isDynamic(outputSize) && calculatedOutSize != outputSize)
|
|
return op.emitOpError("calculated output ")
|
|
<< dimName << " did not match expected: "
|
|
<< "calculated=" << calculatedOutSize
|
|
<< ", expected=" << outputSize;
|
|
|
|
return success();
|
|
};
|
|
|
|
if (failed(verifyOutputSize(inputType.getDimSize(1), outputType.getDimSize(1),
|
|
kernel[0], strides[0], padding[0], padding[1],
|
|
"height", "y", "top", "bottom")))
|
|
return failure();
|
|
|
|
if (failed(verifyOutputSize(inputType.getDimSize(2), outputType.getDimSize(2),
|
|
kernel[1], strides[1], padding[2], padding[3],
|
|
"width", "x", "left", "right")))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::AvgPool2dOp::verify() {
|
|
if (failed(verifyPoolingOp(*this)))
|
|
return failure();
|
|
|
|
const Type inputETy = getStorageElementTypeOrSelf(getInput().getType());
|
|
const Type resultETy = getStorageElementTypeOrSelf(getOutput().getType());
|
|
const Type inputZpETy = getStorageElementTypeOrSelf(getInputZp().getType());
|
|
const Type outputZpETy = getStorageElementTypeOrSelf(getOutputZp().getType());
|
|
|
|
auto accType = getAccType();
|
|
if (llvm::isa<IntegerType>(inputETy) && !accType.isInteger(32))
|
|
return emitOpError("accumulator type for integer tensor is not i32");
|
|
|
|
if (inputETy.isF16() && !(accType.isF16() || accType.isF32()))
|
|
return emitOpError("accumulator type for f16 tensor is not f16/f32");
|
|
|
|
if (inputETy.isBF16() && !accType.isF32())
|
|
return emitOpError("accumulator type for bf16 tensor is not f32");
|
|
|
|
if (inputETy.isF32() && !accType.isF32())
|
|
return emitOpError("accumulator type for f32 tensor is not f32");
|
|
|
|
if (inputETy != inputZpETy)
|
|
return emitOpError("expect both input and its zero point are the same "
|
|
"element type, got ")
|
|
<< inputETy << " and " << inputZpETy;
|
|
|
|
if (resultETy != outputZpETy)
|
|
return emitOpError("expect both output and its zero point are the same "
|
|
"element type, got ")
|
|
<< resultETy << " and " << outputZpETy;
|
|
|
|
FailureOr<int64_t> maybeIZp = getInputZeroPoint();
|
|
if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeOZp = getOutputZeroPoint();
|
|
if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ClampOp::verify() {
|
|
mlir::Type inputETy =
|
|
llvm::cast<ShapedType>(getInput().getType()).getElementType();
|
|
if (auto quantType =
|
|
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputETy)) {
|
|
inputETy = quantType.getStorageType();
|
|
}
|
|
mlir::Type outputETy =
|
|
llvm::cast<ShapedType>(getOutput().getType()).getElementType();
|
|
if (auto quantType =
|
|
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(outputETy)) {
|
|
outputETy = quantType.getStorageType();
|
|
}
|
|
if (inputETy != outputETy)
|
|
return emitOpError("input/output element types are incompatible.");
|
|
|
|
auto maxValAttr = getMaxValAttr();
|
|
auto minValAttr = getMinValAttr();
|
|
|
|
unsigned dataTypeBitWidth = inputETy.getIntOrFloatBitWidth();
|
|
|
|
if (inputETy.isInteger(dataTypeBitWidth)) {
|
|
// if input datatype is integer, check that the min_val/max_val attributes
|
|
// are integer attributes, and that their type is the same as the input's
|
|
// datatype
|
|
auto intMaxValAttr = mlir::dyn_cast<mlir::IntegerAttr>(maxValAttr);
|
|
auto intMinValAttr = mlir::dyn_cast<mlir::IntegerAttr>(minValAttr);
|
|
if (!intMaxValAttr || !intMinValAttr ||
|
|
(intMaxValAttr.getType() != intMinValAttr.getType()) ||
|
|
(intMaxValAttr.getType() != inputETy))
|
|
return emitOpError("min/max attributes types are incompatible with "
|
|
"input/output element types.");
|
|
} else {
|
|
// otherwise, input datatype is float, check that the min_val/max_val
|
|
// attributes share the same type and that their type is the same as the
|
|
// input's datatype
|
|
auto floatMaxValAttr = mlir::dyn_cast<mlir::FloatAttr>(maxValAttr);
|
|
auto floatMinValAttr = mlir::dyn_cast<mlir::FloatAttr>(minValAttr);
|
|
if (!floatMaxValAttr || !floatMinValAttr ||
|
|
(floatMaxValAttr.getType() != floatMinValAttr.getType()) ||
|
|
(floatMaxValAttr.getType() != inputETy))
|
|
return emitOpError("min/max attributes types are incompatible with "
|
|
"input/output element types.");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Operator Quantization Builders.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This builder is called on all convolution operators except TransposeConv,
|
|
/// which has specialized output shape semantics. The builder also defines the
|
|
/// bitwidth of the output given the bit width of the input & weight content.
|
|
static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
|
|
Type outputType, Value input, Value weight,
|
|
Value bias, DenseI64ArrayAttr pad,
|
|
DenseI64ArrayAttr stride,
|
|
DenseI64ArrayAttr dilation,
|
|
TypeAttr accType) {
|
|
auto zps = createZPsAsConst(builder, input, weight);
|
|
result.addOperands({input, weight, bias, zps.first, zps.second});
|
|
result.addAttribute("pad", pad);
|
|
result.addAttribute("stride", stride);
|
|
result.addAttribute("dilation", dilation);
|
|
result.addAttribute("acc_type", accType);
|
|
Type finalOutputType = outputType;
|
|
auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight);
|
|
if (quantAttr) {
|
|
finalOutputType =
|
|
buildConvOpResultTypeInfo(builder, outputType, input, weight);
|
|
}
|
|
result.addTypes(finalOutputType);
|
|
}
|
|
|
|
/// Handles tosa.transpose_conv2d which has outpad and output shape
|
|
/// attributes.
|
|
static void
|
|
buildTransConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
|
|
Type outputType, Value input, Value weight,
|
|
Value bias, DenseI64ArrayAttr outpad,
|
|
DenseI64ArrayAttr stride, TypeAttr accType) {
|
|
auto zps = createZPsAsConst(builder, input, weight);
|
|
result.addOperands({input, weight, bias, zps.first, zps.second});
|
|
result.addAttribute("out_pad", outpad);
|
|
result.addAttribute("stride", stride);
|
|
result.addAttribute("acc_type", accType);
|
|
Type finalOutputType = outputType;
|
|
auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight);
|
|
if (quantAttr) {
|
|
finalOutputType =
|
|
buildConvOpResultTypeInfo(builder, outputType, input, weight);
|
|
}
|
|
result.addTypes(finalOutputType);
|
|
}
|
|
|
|
/// The tosa.matmul op is also intended to be generated where a fully_connected
|
|
/// op must be constructed where the weight is not a constant. In this case,
|
|
/// the fully_connected op must be expressed using matmul.
|
|
/// TODO: Add link to the leglization document explaining this.
|
|
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
|
|
OperationState &result, Type outputType,
|
|
Value a, Value b) {
|
|
auto zps = createZPsAsConst(builder, a, b);
|
|
result.addOperands({a, b, zps.first, zps.second});
|
|
|
|
Type finalOutputType{outputType};
|
|
if (auto quantAttr = buildMatMulOpQuantizationAttr(builder, a, b)) {
|
|
auto eType = getStorageElementTypeOrSelf(a.getType());
|
|
auto inputBits = eType.getIntOrFloatBitWidth();
|
|
|
|
auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType);
|
|
assert(outputShapedType && "Output must be a shaped type");
|
|
|
|
IntegerType accElementType;
|
|
if (inputBits == 16)
|
|
accElementType = builder.getIntegerType(48);
|
|
else
|
|
accElementType = builder.getI32Type();
|
|
|
|
finalOutputType = outputShapedType.clone(accElementType);
|
|
}
|
|
result.addTypes(finalOutputType);
|
|
}
|
|
|
|
/// Both the tosa.avg_pool2d and unary ops use the same
|
|
/// UnaryOpQuantizationAttr but avg_pool operator has its own builder as it
|
|
/// has additional parameters not part of the unary ops.
|
|
static void
|
|
buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result,
|
|
Type outputType, Value input,
|
|
DenseArrayAttr kernel, DenseArrayAttr stride,
|
|
DenseArrayAttr pad, TypeAttr accType) {
|
|
const Location loc{result.location};
|
|
int64_t inputZp{0};
|
|
int64_t outputZp{0};
|
|
|
|
if (auto quantAttr =
|
|
buildUnaryOpQuantizationAttr(builder, input, outputType)) {
|
|
inputZp = quantAttr.getInputZp();
|
|
outputZp = quantAttr.getOutputZp();
|
|
}
|
|
const std::optional<Value> inputZpOp =
|
|
createZeroPointTensor(builder, loc, input.getType(), inputZp);
|
|
if (!inputZpOp) {
|
|
(void)emitError(
|
|
loc,
|
|
"Failed to create input zero point tensor for quantized AVG_POOL2D op");
|
|
}
|
|
const std::optional<Value> outputZpOp =
|
|
createZeroPointTensor(builder, loc, outputType, outputZp);
|
|
if (!outputZpOp) {
|
|
(void)emitError(loc, "Failed to create output zero point tensor for "
|
|
"quantized AVG_POOL2D op");
|
|
}
|
|
|
|
if (inputZpOp && outputZpOp) {
|
|
result.addOperands({input, inputZpOp.value(), outputZpOp.value()});
|
|
} else {
|
|
// failed to create one or more zero points above: just add input as
|
|
// operands this will trigger error in building the op because of missing
|
|
// zero points
|
|
result.addOperands({input});
|
|
}
|
|
result.addAttribute("kernel", kernel);
|
|
result.addAttribute("stride", stride);
|
|
result.addAttribute("pad", pad);
|
|
result.addAttribute("acc_type", accType);
|
|
result.types.push_back(outputType);
|
|
}
|
|
|
|
/// This builder is called on single-parameter negate operator
|
|
/// to construct input and output zero points based on their
|
|
/// types.
|
|
static void buildNegateOpWithQuantInfo(OpBuilder &builder,
|
|
OperationState &result, Type outputType,
|
|
Value input) {
|
|
const Location loc{result.location};
|
|
int64_t input1Zp{0};
|
|
int64_t outputZp{0};
|
|
auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
|
|
if (quantAttr) {
|
|
input1Zp = quantAttr.getInputZp();
|
|
outputZp = quantAttr.getOutputZp();
|
|
}
|
|
const std::optional<Value> input1ZpOp =
|
|
createZeroPointTensor(builder, loc, input.getType(), input1Zp);
|
|
if (!input1ZpOp) {
|
|
(void)emitError(
|
|
loc, "Failed to create input1 zero point for quantized NEGATE op");
|
|
}
|
|
|
|
const std::optional<Value> outputZpOp =
|
|
createZeroPointTensor(builder, loc, input.getType(), outputZp);
|
|
if (!outputZpOp) {
|
|
(void)emitError(
|
|
loc, "Failed to create output zero point for quantized NEGATE op");
|
|
}
|
|
|
|
if (input1ZpOp && outputZpOp) {
|
|
result.addOperands({input, input1ZpOp.value(), outputZpOp.value()});
|
|
} else {
|
|
// failed to create one or more zero points above: just add input as
|
|
// operands. This will trigger error in building the op because of
|
|
// missing zero points
|
|
result.addOperands({input});
|
|
}
|
|
|
|
result.types.push_back(outputType);
|
|
}
|
|
|
|
/// This builder is called on TOSA pad operator that needs to create its own
|
|
/// OptionalAttr quantization_attr parameter to scale the padding values
|
|
/// correctly. No pad_const is interpreted as zero-padding.
|
|
static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
|
|
Type outputType, Value input,
|
|
Value paddings) {
|
|
const Location loc{result.location};
|
|
int32_t zp{0};
|
|
const auto quantAttr = buildPadOpQuantizationAttr(builder, input);
|
|
if (quantAttr) {
|
|
zp = static_cast<int32_t>(quantAttr.getInputZp());
|
|
}
|
|
const auto padConstOp{createPadConstTensor(builder, loc, input, zp)};
|
|
result.addOperands({input, paddings, padConstOp});
|
|
result.types.push_back(outputType);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Operator Return Type Inference.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult resolveBroadcastShape(const ValueShapeRange &operands,
|
|
SmallVector<int64_t> &outShape) {
|
|
int64_t outRank = 0;
|
|
for (int i = 0, e = operands.size(); i != e; ++i) {
|
|
auto shape = operands.getShape(i);
|
|
if (!shape.hasRank()) {
|
|
// TODO(jennik): Update function to have better case handling for
|
|
// invalid operands and for ranked tensors.
|
|
return failure();
|
|
}
|
|
outRank = std::max<int64_t>(outRank, shape.getRank());
|
|
}
|
|
|
|
outShape.resize(outRank, 1);
|
|
|
|
for (int i = 0, e = operands.size(); i != e; ++i) {
|
|
auto shape = operands.getShape(i);
|
|
auto rankDiff = outShape.size() - shape.getRank();
|
|
|
|
for (size_t i = 0, e = shape.getRank(); i < e; ++i) {
|
|
auto dim1 = outShape[i + rankDiff];
|
|
auto dim2 = shape.getDimSize(i);
|
|
auto resolvedDim = dim1;
|
|
|
|
if (dim1 == 1) {
|
|
resolvedDim = dim2;
|
|
} else if (dim2 == 1) {
|
|
resolvedDim = dim1;
|
|
} else if (dim1 != dim2) {
|
|
return failure();
|
|
}
|
|
outShape[i + rankDiff] = resolvedDim;
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ArgMaxOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ArgMaxOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
IntegerAttr axis = adaptor.getProperties().axis;
|
|
int32_t axisVal = axis.getValue().getSExtValue();
|
|
|
|
if (!inputShape.hasRank()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents());
|
|
return success();
|
|
}
|
|
|
|
SmallVector<int64_t> outShape;
|
|
outShape.reserve(inputShape.getRank() - 1);
|
|
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
|
|
if (i == axisVal)
|
|
continue;
|
|
outShape.push_back(inputShape.getDimSize(i));
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::RFFT2dOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
RFFT2dOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInputReal().getType());
|
|
|
|
if (!inputShape.hasRank())
|
|
return failure();
|
|
|
|
llvm::SmallVector<int64_t> outputShape;
|
|
outputShape.resize(3, ShapedType::kDynamic);
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
outputShape[1] = inputShape.getDimSize(1);
|
|
int64_t inWidth = inputShape.getDimSize(2);
|
|
|
|
// Note that we can support this calculation symbolically
|
|
// in the future e.g. [x, y, z] -> [x, y, z / 2 + 1]
|
|
if (inWidth != ShapedType::kDynamic)
|
|
outputShape[2] = inWidth / 2 + 1;
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyDimIsPowerOfTwo(Operation *op, const int64_t dimSize,
|
|
const llvm::StringRef dimName) {
|
|
const bool isPowerOfTwo = (dimSize & (dimSize - 1)) == 0 && dimSize > 0;
|
|
if (!isPowerOfTwo)
|
|
return op->emitOpError("expected ")
|
|
<< dimName << " to be a power of two, got " << dimSize;
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::RFFT2dOp::verify() {
|
|
const auto outputTypes = getResultTypes();
|
|
if (failed(verifyCompatibleShapes(outputTypes)))
|
|
return emitOpError("expected output shapes to match, got ") << outputTypes;
|
|
|
|
const auto inputType =
|
|
llvm::dyn_cast<RankedTensorType>(getInputReal().getType());
|
|
if (!inputType)
|
|
return success();
|
|
|
|
const int64_t height = inputType.getDimSize(1);
|
|
if (!ShapedType::isDynamic(height) &&
|
|
failed(verifyDimIsPowerOfTwo(*this, height, "height")))
|
|
return failure();
|
|
|
|
const int64_t width = inputType.getDimSize(2);
|
|
if (!ShapedType::isDynamic(width) &&
|
|
failed(verifyDimIsPowerOfTwo(*this, width, "width")))
|
|
return failure();
|
|
|
|
const auto outputType = llvm::dyn_cast<RankedTensorType>(outputTypes[0]);
|
|
if (!outputType)
|
|
return success();
|
|
|
|
// Batch and height input/output dimensions should match
|
|
if (failed(verifyCompatibleShape(inputType.getShape().drop_back(),
|
|
outputType.getShape().drop_back())))
|
|
return emitOpError("expected batch and height dimensions of input/output "
|
|
"to match, got input=")
|
|
<< inputType << " output=" << outputType;
|
|
|
|
// Output width dimension expected to be input_width / 2 + 1
|
|
const int64_t outputWidth = outputType.getDimSize(2);
|
|
if (!ShapedType::isDynamic(width) && !ShapedType::isDynamic(outputWidth) &&
|
|
(outputWidth != (width / 2) + 1))
|
|
return emitOpError(
|
|
"expected output width to be equal to input_width / 2 + 1, got ")
|
|
<< outputWidth;
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::FFT2dOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
FFT2dOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
inferredReturnShapes.push_back(
|
|
ShapedTypeComponents(ShapeAdaptor(adaptor.getInputReal().getType())));
|
|
inferredReturnShapes.push_back(
|
|
ShapedTypeComponents(ShapeAdaptor(adaptor.getInputImag().getType())));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::FFT2dOp::verify() {
|
|
const auto inputRealType =
|
|
llvm::dyn_cast<RankedTensorType>(getInputReal().getType());
|
|
const auto inputImagType =
|
|
llvm::dyn_cast<RankedTensorType>(getInputImag().getType());
|
|
if (!inputRealType || !inputImagType)
|
|
return success();
|
|
|
|
const auto trySelectStaticDim = [](const int64_t a, const int64_t b) {
|
|
return ShapedType::isDynamic(a) ? a : b;
|
|
};
|
|
|
|
const int64_t height = trySelectStaticDim(inputRealType.getDimSize(1),
|
|
inputImagType.getDimSize(1));
|
|
if (!ShapedType::isDynamic(height) &&
|
|
failed(verifyDimIsPowerOfTwo(*this, height, "height")))
|
|
return failure();
|
|
|
|
const int64_t width = trySelectStaticDim(inputRealType.getDimSize(2),
|
|
inputImagType.getDimSize(2));
|
|
if (!ShapedType::isDynamic(width) &&
|
|
failed(verifyDimIsPowerOfTwo(*this, width, "width")))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ConcatOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ConcatOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
// Infer all dimension sizes by reducing based on inputs.
|
|
const Properties &prop = adaptor.getProperties();
|
|
int32_t axis = prop.axis.getValue().getSExtValue();
|
|
llvm::SmallVector<int64_t> outputShape;
|
|
bool hasRankedInput = false;
|
|
for (auto operand : adaptor.getOperands()) {
|
|
ShapeAdaptor operandShape(operand.getType());
|
|
if (!operandShape.hasRank())
|
|
continue;
|
|
|
|
// Copy the Operand's rank.
|
|
if (!hasRankedInput)
|
|
outputShape.resize(operandShape.getRank(), ShapedType::kDynamic);
|
|
|
|
// Copy shapes until the dim is non-dynamic.
|
|
for (int i = 0, s = operandShape.getRank(); i < s; i++) {
|
|
if (i == axis || operandShape.isDynamicDim(i))
|
|
continue;
|
|
if (outputShape[i] == ShapedType::kDynamic)
|
|
outputShape[i] = operandShape.getDimSize(i);
|
|
if (outputShape[i] != operandShape.getDimSize(i))
|
|
return emitOptionalError(location,
|
|
"Cannot concat tensors with different sizes"
|
|
" on the non-axis dimension ",
|
|
i);
|
|
}
|
|
|
|
hasRankedInput = true;
|
|
}
|
|
Type inputType =
|
|
llvm::cast<TensorType>(adaptor.getInput1().getType()[0]).getElementType();
|
|
if (!hasRankedInput) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(inputType));
|
|
return success();
|
|
}
|
|
|
|
// Determine the dimension size along the concatenation axis.
|
|
int64_t concatDimSize = 0;
|
|
for (auto operand : adaptor.getOperands()) {
|
|
ShapeAdaptor operandShape(operand.getType());
|
|
|
|
// We need to know the length of the concatenation axis of all inputs to
|
|
// determine the dimension size of the output shape.
|
|
if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) {
|
|
concatDimSize = ShapedType::kDynamic;
|
|
break;
|
|
}
|
|
|
|
concatDimSize += operandShape.getDimSize(axis);
|
|
}
|
|
|
|
outputShape[axis] = concatDimSize;
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ConcatOp::verify() {
|
|
// check that each input has same element type as output
|
|
auto outType = getOutput().getType();
|
|
const Operation::operand_range inputList = getInput1();
|
|
|
|
// Check there is at least one input
|
|
if (inputList.empty())
|
|
return emitOpError("expect at least one input");
|
|
|
|
if (!llvm::all_of(inputList, [&](auto input) {
|
|
return succeeded(verifySameElementTypes(
|
|
*this, /* inType = */ input.getType(), outType));
|
|
})) {
|
|
return failure();
|
|
}
|
|
|
|
const int32_t axis = getAxis();
|
|
ShapeAdaptor firstRankedInputShape = nullptr;
|
|
for (const auto &input : inputList) {
|
|
const Type inputType = input.getType();
|
|
ShapeAdaptor currShape(inputType);
|
|
if (currShape.hasRank()) {
|
|
firstRankedInputShape = currShape;
|
|
// Check axis is in expected range
|
|
if (axis < 0 || axis >= firstRankedInputShape.getRank())
|
|
return emitOpError("expect axis to be within range 0 < axis < "
|
|
"rank(input1[firstRankedTensorIdx]), got ")
|
|
<< axis;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const auto allOperandsHasRank = [](const Value input) {
|
|
return ShapeAdaptor(input.getType()).hasRank();
|
|
};
|
|
if (llvm::all_of(inputList, allOperandsHasRank)) {
|
|
const int64_t firstInputRank = firstRankedInputShape.getRank();
|
|
|
|
for (const auto &[index, input] : llvm::enumerate(inputList.drop_front())) {
|
|
const ShapeAdaptor inputShape(input.getType());
|
|
const int64_t inputRank = inputShape.getRank();
|
|
const size_t operandNum = index + 1;
|
|
|
|
// Check that each operand has the same rank
|
|
if (inputRank != firstInputRank)
|
|
return emitOpError(
|
|
"expect all operands to have the same rank, but got ")
|
|
<< firstInputRank << " vs " << inputRank << " on operands 0 and "
|
|
<< operandNum;
|
|
|
|
// Check non-axis dims match
|
|
for (int i = 0; i < inputRank; i++) {
|
|
const int64_t inputDim = inputShape.getDimSize(i);
|
|
const int64_t firstInputDim = firstRankedInputShape.getDimSize(i);
|
|
if (i == axis || firstRankedInputShape.isDynamicDim(i) ||
|
|
inputShape.isDynamicDim(i))
|
|
continue;
|
|
if (inputDim != firstInputDim)
|
|
return emitOpError("expect all operand shapes to have the same sizes "
|
|
"on non-axis dimensions, but got ")
|
|
<< inputDim << " vs " << firstInputDim << " at index " << i
|
|
<< " on operands 0 and " << operandNum;
|
|
}
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::EqualOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ValueShapeRange operands, DictionaryAttr attributes,
|
|
OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
auto elementType = IntegerType::get(context, /*width=*/1);
|
|
|
|
llvm::SmallVector<int64_t> outShape;
|
|
if (resolveBroadcastShape(operands, outShape).failed()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(elementType));
|
|
return success();
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outShape, elementType));
|
|
return success();
|
|
}
|
|
|
|
bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
|
|
if (l.size() != r.size() || l.size() != 1)
|
|
return false;
|
|
return succeeded(verifyCompatibleShape(l[0], r[0]));
|
|
}
|
|
|
|
LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
MatMulOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor lhsShape(adaptor.getA().getType());
|
|
ShapeAdaptor rhsShape(adaptor.getB().getType());
|
|
|
|
// All shapes are dynamic.
|
|
SmallVector<int64_t> outShape;
|
|
outShape.resize(3, ShapedType::kDynamic);
|
|
|
|
if (lhsShape.hasRank()) {
|
|
outShape[0] = lhsShape.getDimSize(0);
|
|
outShape[1] = lhsShape.getDimSize(1);
|
|
}
|
|
|
|
if (rhsShape.hasRank()) {
|
|
outShape[0] = outShape[0] == ShapedType::kDynamic ? rhsShape.getDimSize(0)
|
|
: outShape[0];
|
|
outShape[2] = rhsShape.getDimSize(2);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult MatMulOp::verify() {
|
|
auto aType = llvm::dyn_cast<ShapedType>(getA().getType());
|
|
auto bType = llvm::dyn_cast<ShapedType>(getB().getType());
|
|
|
|
// Must be shaped tensor types
|
|
if (!aType)
|
|
return emitOpError("expect a shaped tensor for input a, got ")
|
|
<< getA().getType();
|
|
|
|
if (!bType)
|
|
return emitOpError("expect a shaped tensor for input b, got ")
|
|
<< getB().getType();
|
|
|
|
auto aElementType = aType.getElementType();
|
|
auto bElementType = bType.getElementType();
|
|
|
|
auto aQuantizedEType =
|
|
llvm::dyn_cast<quant::UniformQuantizedType>(aElementType);
|
|
auto bQuantizedEType =
|
|
llvm::dyn_cast<quant::UniformQuantizedType>(bElementType);
|
|
|
|
if (aQuantizedEType || bQuantizedEType) {
|
|
if (!aQuantizedEType || !bQuantizedEType) {
|
|
return emitOpError("expect operands to be both quantized or both not "
|
|
"quantized, got ")
|
|
<< aElementType << " and " << bElementType;
|
|
}
|
|
// both a and b have quantized element types
|
|
auto aQuantWidth = aQuantizedEType.getStorageTypeIntegralWidth();
|
|
auto bQuantWidth = bQuantizedEType.getStorageTypeIntegralWidth();
|
|
if (aQuantWidth != bQuantWidth) {
|
|
return emitOpError("expect quantized operands to have same widths, got ")
|
|
<< aQuantWidth << " and " << bQuantWidth;
|
|
}
|
|
} else {
|
|
// non-quantized element types
|
|
if (aElementType != bElementType) {
|
|
return emitOpError("expect same element type for inputs a and b, got ")
|
|
<< aElementType << " and " << bElementType;
|
|
}
|
|
}
|
|
|
|
// check a_zp and b_zp
|
|
auto aEType = getStorageElementTypeOrSelf(aType);
|
|
auto aZpEType = getStorageElementTypeOrSelf(getAZp().getType());
|
|
if (aEType != aZpEType) {
|
|
return emitOpError("expect input a and a_zp have the same "
|
|
"element type, got ")
|
|
<< aEType << " and " << aZpEType;
|
|
}
|
|
|
|
auto bEType = getStorageElementTypeOrSelf(bType);
|
|
auto bZpEType = getStorageElementTypeOrSelf(getBZp().getType());
|
|
if (bEType != bZpEType) {
|
|
return emitOpError("expect input b and b_zp have the same "
|
|
"element type, got ")
|
|
<< bEType << " and " << bZpEType;
|
|
}
|
|
|
|
FailureOr<int64_t> maybeAZp = getAZeroPoint();
|
|
if (succeeded(maybeAZp) && verifyAZeroPoint(*maybeAZp).failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeBZp = getBZeroPoint();
|
|
if (succeeded(maybeBZp) && verifyBZeroPoint(*maybeBZp).failed())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::PadOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
PadOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
auto paddingRank =
|
|
cast<tosa::shapeType>(adaptor.getPadding().getType()).getRank();
|
|
SmallVector<int64_t> outputShape;
|
|
|
|
// If the input rank is unknown, we can infer the output rank using the
|
|
// padding shape's rank divided by 2.
|
|
if (!inputShape.hasRank()) {
|
|
outputShape.resize(paddingRank / 2, ShapedType::kDynamic);
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
SmallVector<int64_t> paddingValues;
|
|
// If the paddings value is not a constant, all dimensions must be dynamic.
|
|
if (!tosa::getConstShapeValues(adaptor.getPadding().getDefiningOp(),
|
|
paddingValues)) {
|
|
outputShape.resize(inputShape.getRank(), ShapedType::kDynamic);
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
outputShape.reserve(inputShape.getRank());
|
|
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
|
|
if (inputShape.isDynamicDim(i)) {
|
|
outputShape.push_back(ShapedType::kDynamic);
|
|
continue;
|
|
}
|
|
auto padFront = paddingValues[i * 2];
|
|
auto padBack = paddingValues[i * 2 + 1];
|
|
if (padFront < 0 || padBack < 0) {
|
|
// if either padding for dim i is -1, output dim is unknown
|
|
outputShape.push_back(ShapedType::kDynamic);
|
|
continue;
|
|
}
|
|
|
|
outputShape.push_back(inputShape.getDimSize(i) + padFront + padBack);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::PadOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
|
|
if (auto padConst = getPadConst()) {
|
|
if (verifySameElementTypes(*this, /* inType = */ padConst.getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
RankedTensorType inputType =
|
|
llvm::dyn_cast<RankedTensorType>(getInput1().getType());
|
|
RankedTensorType outputType =
|
|
llvm::dyn_cast<RankedTensorType>(getOutput().getType());
|
|
if (!inputType || !outputType)
|
|
return success();
|
|
|
|
auto paddingRank = cast<tosa::shapeType>(getPadding().getType()).getRank();
|
|
|
|
if (inputType.getRank() != outputType.getRank())
|
|
return emitOpError() << "expect same input and output tensor rank.";
|
|
|
|
if (paddingRank != inputType.getRank() * 2)
|
|
return emitOpError() << "expected padding tensor dim 0 to have size "
|
|
<< inputType.getRank() * 2
|
|
<< " (2*rank(shape1)) but got size " << paddingRank;
|
|
|
|
return success();
|
|
}
|
|
|
|
static SmallVector<int64_t> convertToMlirShape(ArrayRef<int64_t> shape) {
|
|
return to_vector(llvm::map_range(shape, [](int64_t dim) {
|
|
return dim == -1 ? ShapedType::kDynamic : dim;
|
|
}));
|
|
}
|
|
|
|
LogicalResult tosa::SliceOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
SliceOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
|
|
Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType());
|
|
SmallVector<int64_t> start;
|
|
SmallVector<int64_t> size;
|
|
|
|
if (!tosa::getConstShapeValues(adaptor.getStart().getDefiningOp(), start) ||
|
|
!tosa::getConstShapeValues(adaptor.getSize().getDefiningOp(), size)) {
|
|
auto rank = cast<tosa::shapeType>(adaptor.getSize().getType()).getRank();
|
|
SmallVector<int64_t> fallback(rank, ShapedType::kDynamic);
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType));
|
|
return success();
|
|
}
|
|
|
|
// if size[i] is -1, all remaining elements in dimension i are included
|
|
// in the slice, similar to TF.
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
// initialize outputShape to all unknown
|
|
SmallVector<int64_t> outputShape(size.size(), ShapedType::kDynamic);
|
|
if (inputShape.hasRank()) {
|
|
for (size_t i = 0; i < size.size(); i++) {
|
|
if (size[i] != 0 && size[i] >= -1 && start[i] >= 0 &&
|
|
(ShapedType::isDynamic(inputShape.getDimSize(i)) ||
|
|
start[i] < inputShape.getDimSize(i))) {
|
|
// size[i] is not 0 and not < -1, and start[i] is in valid range
|
|
if (ShapedType::isDynamic(inputShape.getDimSize(i))) {
|
|
// input shape has unknown dim[i] - only valid if size[i] > 0
|
|
if (size[i] > 0) {
|
|
outputShape[i] = size[i];
|
|
}
|
|
} else {
|
|
// input shape has known dim[i]
|
|
if (size[i] == -1) {
|
|
outputShape[i] = inputShape.getDimSize(i) - start[i];
|
|
} else if (start[i] + size[i] <= inputShape.getDimSize(i)) {
|
|
// start[i] + size[i] is within bound of input shape's dim[i]
|
|
outputShape[i] = size[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
outputShape = convertToMlirShape(size);
|
|
}
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::SliceOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed())
|
|
return failure();
|
|
auto inputType = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
|
|
if (!inputType)
|
|
return success();
|
|
|
|
auto startShapeRank =
|
|
llvm::cast<tosa::shapeType>(getStart().getType()).getRank();
|
|
if (inputType.getRank() != startShapeRank)
|
|
return emitOpError("length of start is not equal to rank of input shape");
|
|
|
|
auto sizeShapeRank =
|
|
llvm::cast<tosa::shapeType>(getSize().getType()).getRank();
|
|
if (inputType.getRank() != sizeShapeRank)
|
|
return emitOpError("length of size is not equal to rank of input shape");
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::MulOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ValueShapeRange operands, DictionaryAttr attributes,
|
|
OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
// mul op's output shape only depend on input1 and input2, not on shift
|
|
ValueShapeRange twoInputs = operands.drop_back();
|
|
llvm::SmallVector<int64_t> outShape;
|
|
if (resolveBroadcastShape(twoInputs, outShape).failed()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents());
|
|
} else {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::MulOp::verify() {
|
|
auto resElemType = getElementTypeOrSelf(getOutput());
|
|
|
|
// Verify if the element type among operands and result match tosa
|
|
// specification.
|
|
if (auto resIntType = dyn_cast<IntegerType>(resElemType)) {
|
|
IntegerType lhsIntType =
|
|
cast<IntegerType>(getElementTypeOrSelf(getInput1()));
|
|
IntegerType rhsIntType =
|
|
cast<IntegerType>(getElementTypeOrSelf(getInput2()));
|
|
if (lhsIntType != rhsIntType)
|
|
return emitOpError("requires the same element type for all operands");
|
|
|
|
// Though the spec requires the element type of result to be i32, a more
|
|
// relaxed way is provided at dialect level for easier cooperating with
|
|
// other dialects.
|
|
if (lhsIntType.getWidth() > resIntType.getWidth())
|
|
return emitOpError("invalid data type size for operands or result");
|
|
|
|
} else {
|
|
// For other supported type, the spec requires requires the same element
|
|
// type for all operands (excludes `shift` operand) and results.
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (getElementTypeOrSelf(getOperand(i)) != resElemType)
|
|
return emitOpError(
|
|
"requires the same element type for all operands and results");
|
|
}
|
|
|
|
// verify shift has value 0 for non-integer types
|
|
ElementsAttr shift_elem;
|
|
if (matchPattern(getShift(), m_Constant(&shift_elem))) {
|
|
int32_t shift = shift_elem.getValues<IntegerAttr>()[0].getInt();
|
|
if (shift != 0) {
|
|
return emitOpError() << "require shift to be 0 for float type";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify the op has same ranks for all main operands (excludes extra operands
|
|
// such as shift of mul op, so this is the only difference with the built-in
|
|
// `SameOperandsAndResultRank` trait) and results types, if known.
|
|
|
|
// delegate function that returns true if type is a shaped type with known
|
|
// rank
|
|
auto hasRank = [](const Type type) {
|
|
if (auto shaped_type = dyn_cast<ShapedType>(type))
|
|
return shaped_type.hasRank();
|
|
|
|
return false;
|
|
};
|
|
|
|
auto rankedOperandTypes =
|
|
llvm::to_vector(llvm::make_filter_range(getOperandTypes(), hasRank));
|
|
|
|
auto rankedResultTypes =
|
|
llvm::make_filter_range(getOperation()->getResultTypes(), hasRank);
|
|
|
|
// If all operands and results are unranked, then no further verification.
|
|
if (rankedOperandTypes.empty() && rankedResultTypes.empty())
|
|
return success();
|
|
|
|
// delegate function that returns rank of shaped type with known rank
|
|
auto getRank = [](const Type type) {
|
|
return cast<ShapedType>(type).getRank();
|
|
};
|
|
|
|
auto rank = !rankedOperandTypes.empty() ? getRank(*rankedOperandTypes.begin())
|
|
: getRank(*rankedResultTypes.begin());
|
|
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
if (rank != getRank(rankedOperandTypes[i])) {
|
|
return emitOpError("operands don't have matching ranks");
|
|
}
|
|
}
|
|
|
|
for (const auto type : rankedResultTypes) {
|
|
if (rank != getRank(type)) {
|
|
return emitOpError("result type has different rank than operands");
|
|
}
|
|
}
|
|
|
|
// check for broadcast compatible shapes in first two operands (ignoring
|
|
// shift)
|
|
|
|
// delegate function that returns shape of shaped type
|
|
auto getShape = [](const Type type) {
|
|
return mlir::cast<ShapedType>(type).getShape();
|
|
};
|
|
SmallVector<int64_t> resultShape;
|
|
if (!mlir::OpTrait::util::getBroadcastedShape(getShape(rankedOperandTypes[0]),
|
|
getShape(rankedOperandTypes[1]),
|
|
resultShape)) {
|
|
return emitOpError("operands don't have broadcast-compatible shapes");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::TableOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
TableOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
|
|
if (!inputShape.hasRank()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents());
|
|
return success();
|
|
}
|
|
|
|
inferredReturnShapes.resize(1);
|
|
inputShape.getDims(inferredReturnShapes[0]);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::TableOp::verify() {
|
|
TensorType inputType = getInput1().getType();
|
|
TensorType outputType = getOutput().getType();
|
|
|
|
if (inputType.hasRank() && outputType.hasRank() &&
|
|
inputType.getRank() != outputType.getRank())
|
|
return emitOpError()
|
|
<< "expected input tensor rank to equal result tensor rank";
|
|
|
|
auto inputDims = inputType.getShape();
|
|
auto outputDims = outputType.getShape();
|
|
for (auto it : llvm::enumerate(llvm::zip(inputDims, outputDims))) {
|
|
int64_t dim = it.index();
|
|
auto [inputDim, outputDim] = it.value();
|
|
if (!ShapedType::isDynamic(outputDim) && outputDim != inputDim) {
|
|
return emitOpError() << "dim(result, " << dim << ") = " << outputDim
|
|
<< " doesn't match dim(input, " << dim
|
|
<< ") = " << inputDim;
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
tosa::TileOp::getConstantMultiples(SmallVector<int64_t> &multiples) {
|
|
// Multiples must be constants.
|
|
DenseIntElementsAttr multiplesAttr;
|
|
if (!matchPattern(getMultiples(), m_Constant(&multiplesAttr)))
|
|
return failure();
|
|
multiples = llvm::to_vector(
|
|
llvm::map_range(multiplesAttr.getValues<APInt>(),
|
|
[](const APInt &val) { return val.getSExtValue(); }));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::TileOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
TileOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
DenseIntElementsAttr multiplesAttr;
|
|
if (!matchPattern(adaptor.getMultiples(), m_Constant(&multiplesAttr)))
|
|
return failure();
|
|
|
|
SmallVector<int64_t> multiples = llvm::to_vector(
|
|
llvm::map_range(multiplesAttr.getValues<APInt>(),
|
|
[](const APInt &val) { return val.getSExtValue(); }));
|
|
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
SmallVector<int64_t> outputShape;
|
|
if (!inputShape.hasRank()) {
|
|
outputShape.resize(multiples.size(), ShapedType::kDynamic);
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
} else if (static_cast<size_t>(inputShape.getRank()) != multiples.size())
|
|
return failure();
|
|
|
|
// Any non dynamic dimension can be multiplied to a known size.
|
|
outputShape.reserve(multiples.size());
|
|
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
|
|
int64_t dim = inputShape.getDimSize(i);
|
|
if (dim != ShapedType::kDynamic)
|
|
dim *= multiples[i];
|
|
outputShape.push_back(dim);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::TileOp::verify() {
|
|
if (verifySameElementTypes(*this, /* intype = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
ShapedType inputType = llvm::cast<ShapedType>(getInput1().getType());
|
|
ShapedType outputType = llvm::cast<ShapedType>(getType());
|
|
|
|
shapeType multiplesType =
|
|
llvm::cast<tosa::shapeType>(getMultiples().getType());
|
|
|
|
auto multiplesRank = multiplesType.getRank();
|
|
|
|
if (inputType.hasRank()) {
|
|
if (inputType.getRank() != multiplesRank)
|
|
return emitOpError("expect 'multiples' to have rank ")
|
|
<< inputType.getRank() << " but got " << multiplesRank << ".";
|
|
if (outputType.hasRank() && inputType.getRank() != outputType.getRank())
|
|
return emitOpError("expect same input and output tensor rank.");
|
|
} else if (outputType.hasRank() && outputType.getRank() != multiplesRank)
|
|
return emitOpError("expect 'multiples' array to have length ")
|
|
<< outputType.getRank() << " but got " << multiplesRank << ".";
|
|
|
|
SmallVector<int64_t> multiples;
|
|
if (getConstantMultiples(multiples).succeeded() &&
|
|
llvm::any_of(multiples, [](int64_t v) { return v <= 0 && v != -1; }))
|
|
return emitOpError(
|
|
"expect element of 'multiples' to be positive integer or -1.");
|
|
|
|
return success();
|
|
}
|
|
|
|
bool tosa::ReshapeOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
|
|
if (l.size() != r.size() || l.size() != 1)
|
|
return false;
|
|
return getElementTypeOrSelf(l[0]) == getElementTypeOrSelf(r[0]);
|
|
}
|
|
|
|
LogicalResult tosa::ReshapeOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ReshapeOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType());
|
|
llvm::SmallVector<int64_t> newShapeValue;
|
|
if (!tosa::getConstShapeValues(adaptor.getShape().getDefiningOp(),
|
|
newShapeValue)) {
|
|
auto rank = cast<tosa::shapeType>(adaptor.getShape().getType()).getRank();
|
|
SmallVector<int64_t> fallback(rank, ShapedType::kDynamic);
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(fallback, inputType));
|
|
return success();
|
|
} else {
|
|
newShapeValue = convertToMlirShape(newShapeValue);
|
|
}
|
|
|
|
// We cannot infer from the total number of elements so we must take the
|
|
// shape attribute as exact.
|
|
if (!inputShape.hasRank() || !inputShape.hasStaticShape()) {
|
|
inferredReturnShapes.push_back(
|
|
ShapedTypeComponents(newShapeValue, inputType));
|
|
return success();
|
|
}
|
|
|
|
// Determine the number of elements covered by the slice of all static
|
|
// dimensions. This allows us to infer the length of the remaining dynamic
|
|
// dimension.
|
|
int64_t numElements = inputShape.getNumElements();
|
|
int64_t staticMul = 1;
|
|
for (auto val : newShapeValue) {
|
|
if (!ShapedType::isDynamic(val)) {
|
|
staticMul *= val;
|
|
}
|
|
}
|
|
|
|
// Determine the length of the dynamic dimension.
|
|
for (auto &val : newShapeValue) {
|
|
if (ShapedType::isDynamic(val))
|
|
val = numElements / staticMul;
|
|
}
|
|
|
|
inferredReturnShapes.push_back(
|
|
ShapedTypeComponents(newShapeValue, inputType));
|
|
return success();
|
|
}
|
|
|
|
llvm::LogicalResult tosa::ReshapeOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
TensorType inputType = getInput1().getType();
|
|
RankedTensorType outputType = getType();
|
|
|
|
SmallVector<int64_t> shapeValues;
|
|
if (!tosa::getConstShapeValues(getShape().getDefiningOp(), shapeValues)) {
|
|
// skip following checks if shape is not constant
|
|
return mlir::success();
|
|
}
|
|
|
|
if ((int64_t)shapeValues.size() != outputType.getRank())
|
|
return emitOpError() << "new shape does not match result rank";
|
|
|
|
for (auto [newShapeDim, outputShapeDim] :
|
|
zip(shapeValues, outputType.getShape())) {
|
|
if (newShapeDim != -1 && newShapeDim != ShapedType::kDynamic &&
|
|
outputShapeDim != ShapedType::kDynamic && newShapeDim != outputShapeDim)
|
|
return emitOpError() << "new shape is inconsistent with result shape";
|
|
|
|
if (newShapeDim != ShapedType::kDynamic && newShapeDim < -1)
|
|
return emitOpError() << "new shape has invalid tensor dimension size "
|
|
<< newShapeDim;
|
|
}
|
|
|
|
if (inputType.hasStaticShape()) {
|
|
int64_t inputElementsNum = inputType.getNumElements();
|
|
if (outputType.hasStaticShape()) {
|
|
int64_t outputElementsNum = outputType.getNumElements();
|
|
if (inputElementsNum != outputElementsNum) {
|
|
return emitOpError() << "cannot reshape " << inputElementsNum
|
|
<< " elements into " << outputElementsNum;
|
|
}
|
|
}
|
|
|
|
int64_t newShapeElementsNum = std::accumulate(
|
|
shapeValues.begin(), shapeValues.end(), 1LL,
|
|
[](int64_t acc, int64_t dim) { return (dim > 0) ? acc * dim : acc; });
|
|
bool isStaticNewShape =
|
|
llvm::all_of(shapeValues, [](int64_t s) { return s > 0; });
|
|
if ((isStaticNewShape && inputElementsNum != newShapeElementsNum) ||
|
|
(!isStaticNewShape && newShapeElementsNum > inputElementsNum)) {
|
|
return emitOpError() << "cannot reshape " << inputElementsNum
|
|
<< " elements into " << newShapeElementsNum;
|
|
}
|
|
}
|
|
|
|
int missingDims = llvm::count(shapeValues, -1);
|
|
if (missingDims > 1)
|
|
return emitOpError() << "expected at most one target dimension to be -1";
|
|
|
|
return mlir::success();
|
|
}
|
|
|
|
// return failure if val is not a constant
|
|
// set zp to -1 if val is non-zero float or val is not integer nor float
|
|
// otherwise set zp to val's constant value
|
|
template <typename T>
|
|
static FailureOr<int64_t> getZeroPoint(T op, Value val) {
|
|
ElementsAttr zpAttr;
|
|
if (!matchPattern(val, m_Constant(&zpAttr))) {
|
|
return failure();
|
|
}
|
|
|
|
Type zpElemType = zpAttr.getElementType();
|
|
|
|
if (llvm::isa<FloatType>(zpElemType)) {
|
|
if (zpAttr.getValues<APFloat>()[0].isZero()) {
|
|
return 0;
|
|
}
|
|
// return non-zero value to trigger error check
|
|
return -1;
|
|
}
|
|
|
|
if (llvm::isa<IntegerType>(zpElemType)) {
|
|
return zpAttr.getValues<APInt>()[0].getSExtValue();
|
|
}
|
|
|
|
// return non-zero value to trigger error check
|
|
return -1;
|
|
}
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyZeroPoint(T op, Value val, const int64_t &zp,
|
|
const std::string &operand) {
|
|
Type zpElemType = getElementTypeOrSelf(val);
|
|
|
|
if (!zpElemType.isInteger(8) && zp != 0) {
|
|
// convert operand to lower case for error message
|
|
std::string lower = operand;
|
|
std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
|
|
return op.emitOpError()
|
|
<< lower << " zero point must be zero for non-int8 integer types";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyZeroPoint(tosa::RescaleOp op, Value zpVal,
|
|
const int64_t &zp,
|
|
const std::string &operand) {
|
|
bool isInputZp = (operand == "Input");
|
|
|
|
bool tensorUnsigned =
|
|
isInputZp ? op.getInputUnsigned() : op.getOutputUnsigned();
|
|
StringRef tensorName = isInputZp ? "input" : "output";
|
|
|
|
Type zpElemType = getElementTypeOrSelf(zpVal);
|
|
|
|
if (zp != 0) {
|
|
if (!zpElemType.isInteger(8) &&
|
|
!(zpElemType.isInteger(16) && tensorUnsigned)) {
|
|
return op.emitOpError()
|
|
<< "expect " << tensorName << "_zp of 0, got " << zp;
|
|
}
|
|
if (zpElemType.isInteger(16) && tensorUnsigned && zp != 32768) {
|
|
return op.emitOpError() << "expect " << tensorName
|
|
<< "_zp of 0 or 32768 for unsigned int16 "
|
|
<< tensorName << ", got " << zp;
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
#define ZERO_POINT_HELPER(OP, OPERAND_NAME) \
|
|
FailureOr<int64_t> tosa::OP::get##OPERAND_NAME##ZeroPoint() { \
|
|
return getZeroPoint(*this, get##OPERAND_NAME##Zp()); \
|
|
} \
|
|
LogicalResult tosa::OP::verify##OPERAND_NAME##ZeroPoint(int64_t zp) { \
|
|
return verifyZeroPoint(*this, get##OPERAND_NAME##Zp(), zp, #OPERAND_NAME); \
|
|
}
|
|
|
|
ZERO_POINT_HELPER(Conv2DOp, Input)
|
|
ZERO_POINT_HELPER(Conv2DOp, Weight)
|
|
ZERO_POINT_HELPER(Conv3DOp, Input)
|
|
ZERO_POINT_HELPER(Conv3DOp, Weight)
|
|
ZERO_POINT_HELPER(DepthwiseConv2DOp, Input)
|
|
ZERO_POINT_HELPER(DepthwiseConv2DOp, Weight)
|
|
ZERO_POINT_HELPER(TransposeConv2DOp, Input)
|
|
ZERO_POINT_HELPER(TransposeConv2DOp, Weight)
|
|
ZERO_POINT_HELPER(AvgPool2dOp, Input)
|
|
ZERO_POINT_HELPER(AvgPool2dOp, Output)
|
|
ZERO_POINT_HELPER(MatMulOp, A)
|
|
ZERO_POINT_HELPER(MatMulOp, B)
|
|
ZERO_POINT_HELPER(NegateOp, Input1)
|
|
ZERO_POINT_HELPER(NegateOp, Output)
|
|
ZERO_POINT_HELPER(RescaleOp, Input)
|
|
ZERO_POINT_HELPER(RescaleOp, Output)
|
|
#undef ZERO_POINT_HELPER
|
|
|
|
LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
TransposeOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
|
|
// If input rank and permutation length is unknown, the output rank is
|
|
// unknown.
|
|
if (!inputShape.hasRank()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents());
|
|
return success();
|
|
}
|
|
|
|
const auto inputRank = inputShape.getRank();
|
|
|
|
// This would imply the number of permutations does not match the rank of
|
|
// the input which is illegal.
|
|
if (adaptor.getPerms().size() != static_cast<size_t>(inputRank)) {
|
|
return failure();
|
|
}
|
|
|
|
SmallVector<int64_t> outputShape;
|
|
// Rank-0 means no permutations matter.
|
|
if (inputRank == 0) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
// Check whether the input dimensions are all the same.
|
|
bool allTheSame = true;
|
|
for (int i = 1, s = inputRank; i < s; i++) {
|
|
if (inputShape.getDimSize(0) != inputShape.getDimSize(i)) {
|
|
allTheSame = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If all of the input dimensions are the same we don't care about the
|
|
// permutation.
|
|
if (allTheSame) {
|
|
outputShape.resize(inputRank, inputShape.getDimSize(0));
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
outputShape.resize(inputRank, ShapedType::kDynamic);
|
|
|
|
// Constant permutation values must be within the input rank.
|
|
if (llvm::any_of(adaptor.getPerms(),
|
|
[inputRank](const auto i) { return i >= inputRank; }))
|
|
return failure();
|
|
|
|
outputShape.reserve(inputRank);
|
|
for (int i = 0, s = inputRank; i < s; i++) {
|
|
outputShape[i] = inputShape.getDimSize(adaptor.getPerms()[i]);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::TransposeOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
TensorType inputType = getInput1().getType();
|
|
TensorType outputType = getOutput().getType();
|
|
const llvm::ArrayRef<int32_t> constantPerms = getPerms();
|
|
|
|
if (inputType.hasRank() &&
|
|
constantPerms.size() != static_cast<size_t>(inputType.getRank()))
|
|
return emitOpError() << "expected perms attribute to have size "
|
|
<< inputType.getRank() << " (input rank) but got size "
|
|
<< constantPerms.size();
|
|
if (inputType.hasRank() && outputType.hasRank() &&
|
|
inputType.getRank() != outputType.getRank())
|
|
return emitOpError()
|
|
<< "expected input tensor rank to equal result tensor rank";
|
|
if (outputType.hasRank() &&
|
|
constantPerms.size() != static_cast<size_t>(outputType.getRank()))
|
|
return emitOpError() << "expected perms attribute to have size "
|
|
<< outputType.getRank()
|
|
<< " (output rank) but got size "
|
|
<< constantPerms.size();
|
|
|
|
if (!llvm::all_of(constantPerms,
|
|
[&constantPerms](int32_t s) {
|
|
return s >= 0 &&
|
|
static_cast<size_t>(s) < constantPerms.size();
|
|
}) ||
|
|
!isPermutationVector(llvm::to_vector(llvm::map_range(
|
|
constantPerms, [](int32_t v) -> int64_t { return v; }))))
|
|
return emitOpError() << "expected valid permutation indices";
|
|
|
|
// Verify that the types of the input and output tensors are properly
|
|
// permuted.
|
|
if (inputType.hasRank() && outputType.hasRank()) {
|
|
assert(constantPerms.size() == static_cast<size_t>(inputType.getRank()) &&
|
|
inputType.getRank() == outputType.getRank());
|
|
|
|
for (auto i = 0; i < outputType.getRank(); i++) {
|
|
if (inputType.isDynamicDim(constantPerms[i]) ||
|
|
outputType.isDynamicDim(i))
|
|
continue;
|
|
|
|
if (inputType.getDimSize(constantPerms[i]) != outputType.getDimSize(i))
|
|
return emitOpError()
|
|
<< "expected output tensor dim " << i << " to match "
|
|
<< "input dim " << constantPerms[i] << " with value of "
|
|
<< inputType.getDimSize(constantPerms[i]);
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult TransposeOp::reifyResultShapes(
|
|
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
|
|
|
|
const llvm::ArrayRef<int32_t> transposePerms = getPerms();
|
|
|
|
Value input = getInput1();
|
|
auto inputType = cast<TensorType>(input.getType());
|
|
|
|
SmallVector<OpFoldResult> returnedDims(inputType.getRank());
|
|
for (auto dim : transposePerms) {
|
|
int32_t dimInInput = transposePerms[dim];
|
|
if (inputType.isDynamicDim(dimInInput))
|
|
returnedDims[dim] =
|
|
builder.create<tensor::DimOp>(getLoc(), input, dimInInput)
|
|
.getResult();
|
|
else
|
|
returnedDims[dim] =
|
|
builder.getIndexAttr(inputType.getDimSize(dimInInput));
|
|
}
|
|
|
|
reifiedReturnShapes.emplace_back(std::move(returnedDims));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::GatherOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
GatherOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape;
|
|
outputShape.resize(3, ShapedType::kDynamic);
|
|
|
|
ShapeAdaptor valuesShape(adaptor.getValues().getType());
|
|
if (valuesShape.hasRank()) {
|
|
outputShape[0] = valuesShape.getDimSize(0);
|
|
outputShape[2] = valuesShape.getDimSize(2);
|
|
}
|
|
|
|
ShapeAdaptor indicesShape(adaptor.getIndices().getType());
|
|
if (indicesShape.hasRank()) {
|
|
if (outputShape[0] == ShapedType::kDynamic)
|
|
outputShape[0] = indicesShape.getDimSize(0);
|
|
if (outputShape[1] == ShapedType::kDynamic)
|
|
outputShape[1] = indicesShape.getDimSize(1);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::GatherOp::verify() {
|
|
return verifySameElementTypes(*this, /* inType = */ getValues().getType(),
|
|
/* outType = */ getOutput().getType());
|
|
}
|
|
|
|
LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ResizeOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t, 4> outputShape;
|
|
outputShape.resize(4, ShapedType::kDynamic);
|
|
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (!inputShape.hasRank())
|
|
return failure();
|
|
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
outputShape[3] = inputShape.getDimSize(3);
|
|
int64_t inputHeight = inputShape.getDimSize(1);
|
|
int64_t inputWidth = inputShape.getDimSize(2);
|
|
|
|
if ((inputHeight == ShapedType::kDynamic) ||
|
|
(inputWidth == ShapedType::kDynamic))
|
|
return failure();
|
|
|
|
SmallVector<int64_t> scaleInt, offsetInt, borderInt;
|
|
if (!tosa::getConstShapeValues(adaptor.getScale().getDefiningOp(),
|
|
scaleInt) ||
|
|
!tosa::getConstShapeValues(adaptor.getOffset().getDefiningOp(),
|
|
offsetInt) ||
|
|
!tosa::getConstShapeValues(adaptor.getBorder().getDefiningOp(),
|
|
borderInt)) {
|
|
return failure();
|
|
}
|
|
|
|
// Compute the output shape based on attributes: scale, offset, and border.
|
|
outputShape[1] =
|
|
(((inputHeight - 1) * scaleInt[0] - offsetInt[0] + borderInt[0]) /
|
|
scaleInt[1]) +
|
|
1;
|
|
|
|
outputShape[2] =
|
|
(((inputWidth - 1) * scaleInt[2] - offsetInt[1] + borderInt[1]) /
|
|
scaleInt[3]) +
|
|
1;
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ResizeOp::verify() {
|
|
const Value input = getInput();
|
|
const Value output = getOutput();
|
|
const RankedTensorType inputType =
|
|
llvm::dyn_cast<RankedTensorType>(input.getType());
|
|
const RankedTensorType outputType =
|
|
llvm::dyn_cast<RankedTensorType>(output.getType());
|
|
|
|
if (!inputType)
|
|
return emitOpError("expect a ranked input tensor");
|
|
if (!outputType)
|
|
return emitOpError("expect a ranked output tensor");
|
|
|
|
const int64_t oh = outputType.getDimSize(1);
|
|
const int64_t ow = outputType.getDimSize(2);
|
|
const int64_t ih = inputType.getDimSize(1);
|
|
const int64_t iw = inputType.getDimSize(2);
|
|
|
|
SmallVector<int64_t> scaleValues;
|
|
SmallVector<int64_t> offsetValues;
|
|
SmallVector<int64_t> borderValues;
|
|
if (!tosa::getConstShapeValues(getScale().getDefiningOp(), scaleValues) ||
|
|
!tosa::getConstShapeValues(getOffset().getDefiningOp(), offsetValues) ||
|
|
!tosa::getConstShapeValues(getBorder().getDefiningOp(), borderValues)) {
|
|
// Skip following checks if shape is not constant
|
|
return success();
|
|
}
|
|
|
|
if (llvm::any_of(scaleValues, [](int64_t s) { return s <= 0; }))
|
|
return emitOpError("expect all scale values to be > 0, got ")
|
|
<< scaleValues;
|
|
|
|
const int64_t scaleYN = scaleValues[0];
|
|
const int64_t scaleYD = scaleValues[1];
|
|
const int64_t scaleXN = scaleValues[2];
|
|
const int64_t scaleXD = scaleValues[3];
|
|
|
|
const int64_t offsetY = offsetValues[0];
|
|
const int64_t offsetX = offsetValues[1];
|
|
|
|
const int64_t borderY = borderValues[0];
|
|
const int64_t borderX = borderValues[1];
|
|
|
|
// Don't check with input height that could be broadcast (ih != 1)
|
|
// since Linalg, a consumer of TOSA, expects broadcasting support
|
|
// in resize to be available. Taking the cautious approach for now,
|
|
// we can consider removing support for broadcasting later.
|
|
if (ih != ShapedType::kDynamic && ih != 1) {
|
|
const std::optional<int64_t> calculatedOutHeightMinusOne =
|
|
idivCheck((ih - 1) * scaleYN - offsetY + borderY, scaleYD);
|
|
if (!calculatedOutHeightMinusOne.has_value())
|
|
return emitOpError("expected (input_height - 1) * scale_y_n - offset_y + "
|
|
"border_y ")
|
|
<< "to be wholly divisible by scale_y_d, got ((" << ih
|
|
<< " - 1) * " << scaleYN << " - " << offsetY << " + " << borderY
|
|
<< ") / " << scaleYD;
|
|
const int64_t calculatedOutHeight = calculatedOutHeightMinusOne.value() + 1;
|
|
if (oh != ShapedType::kDynamic && calculatedOutHeight != oh)
|
|
return emitOpError("calculated output height did not match expected: ")
|
|
<< "calculated=" << calculatedOutHeight << ", expected=" << oh;
|
|
}
|
|
|
|
// Don't check with input width that could be broadcast (iw != 1)
|
|
// since Linalg, a consumer of TOSA, expects broadcasting support
|
|
// in resize to be available. Taking the cautious approach for now,
|
|
// we can consider removing support for broadcasting later.
|
|
if (iw != ShapedType::kDynamic && iw != 1) {
|
|
const int64_t scaledInWidth = (iw - 1) * scaleXN - offsetX + borderX;
|
|
const std::optional<int64_t> calculatedOutWidthMinusOne =
|
|
idivCheck(scaledInWidth, scaleXD);
|
|
if (!calculatedOutWidthMinusOne.has_value())
|
|
return emitOpError("expected (input_width - 1) * scale_x_n - offset_x + "
|
|
"border_x ")
|
|
<< "to be wholly divisible by scale_x_d, got ((" << iw
|
|
<< " - 1) * " << scaleXN << " - " << offsetX << " + " << borderX
|
|
<< ") / " << scaleXD;
|
|
const int64_t calculatedOutWidth = calculatedOutWidthMinusOne.value() + 1;
|
|
if (ow != ShapedType::kDynamic && calculatedOutWidth != ow)
|
|
return emitOpError("calculated output width did not match expected: ")
|
|
<< "calculated=" << calculatedOutWidth << ", expected=" << ow;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ScatterOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
ScatterOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape;
|
|
outputShape.resize(3, ShapedType::kDynamic);
|
|
|
|
ShapeAdaptor valuesInShape(adaptor.getValuesIn().getType());
|
|
if (valuesInShape.hasRank()) {
|
|
outputShape[0] = valuesInShape.getDimSize(0);
|
|
outputShape[1] = valuesInShape.getDimSize(1);
|
|
outputShape[2] = valuesInShape.getDimSize(2);
|
|
}
|
|
|
|
ShapeAdaptor indicesShape(adaptor.getIndices().getType());
|
|
if (indicesShape.hasRank()) {
|
|
if (outputShape[0] == ShapedType::kDynamic)
|
|
outputShape[0] = indicesShape.getDimSize(0);
|
|
}
|
|
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (inputShape.hasRank()) {
|
|
if (outputShape[0] == ShapedType::kDynamic)
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
if (outputShape[2] == ShapedType::kDynamic)
|
|
outputShape[2] = inputShape.getDimSize(2);
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ScatterOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getValuesIn().getType(),
|
|
/* outType = */ getValuesOut().getType())
|
|
.failed() ||
|
|
verifySameElementTypes(*this, /* inType = */ getInput().getType(),
|
|
/* outType = */ getValuesOut().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult ReduceInferReturnTypes(
|
|
ShapeAdaptor operandShape, Type inputType, IntegerAttr axis,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
int64_t axisVal = axis.getValue().getSExtValue();
|
|
if (!operandShape.hasRank() || operandShape.getRank() <= axisVal) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(inputType));
|
|
return success();
|
|
}
|
|
|
|
SmallVector<int64_t> outputShape;
|
|
operandShape.getDims(outputShape);
|
|
outputShape[axisVal] = 1;
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType));
|
|
return success();
|
|
}
|
|
|
|
#define COMPATIBLE_RETURN_TYPES(OP) \
|
|
bool OP::isCompatibleReturnTypes(TypeRange l, TypeRange r) { \
|
|
if (l.size() != r.size() || l.size() != 1) \
|
|
return false; \
|
|
if (getElementTypeOrSelf(l[0]) != getElementTypeOrSelf(r[0])) \
|
|
return false; \
|
|
return succeeded(verifyCompatibleShape(l[0], r[0])); \
|
|
}
|
|
|
|
#define REDUCE_SHAPE_INFER(OP) \
|
|
LogicalResult OP::inferReturnTypeComponents( \
|
|
MLIRContext *context, ::std::optional<Location> location, \
|
|
OP::Adaptor adaptor, \
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
|
|
Type inputType = \
|
|
llvm::cast<TensorType>(adaptor.getInput().getType()).getElementType(); \
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType()); \
|
|
const Properties &prop = adaptor.getProperties(); \
|
|
return ReduceInferReturnTypes(inputShape, inputType, prop.axis, \
|
|
inferredReturnShapes); \
|
|
} \
|
|
COMPATIBLE_RETURN_TYPES(OP)
|
|
|
|
REDUCE_SHAPE_INFER(tosa::ReduceAllOp)
|
|
REDUCE_SHAPE_INFER(tosa::ReduceAnyOp)
|
|
REDUCE_SHAPE_INFER(tosa::ReduceMaxOp)
|
|
REDUCE_SHAPE_INFER(tosa::ReduceMinOp)
|
|
REDUCE_SHAPE_INFER(tosa::ReduceProductOp)
|
|
REDUCE_SHAPE_INFER(tosa::ReduceSumOp)
|
|
#undef REDUCE_SHAPE_INFER
|
|
COMPATIBLE_RETURN_TYPES(tosa::ConcatOp)
|
|
#undef COMPATIBLE_RETURN_TYPES
|
|
|
|
template <typename T>
|
|
static LogicalResult verifyReduceOp(T op) {
|
|
// All TOSA reduce Ops have input, output and axis.
|
|
TensorType inputType = op.getInput().getType();
|
|
TensorType outputType = op.getOutput().getType();
|
|
int32_t reduceAxis = op.getAxis();
|
|
|
|
if (reduceAxis < 0) {
|
|
op.emitOpError("reduce axis must not be negative");
|
|
return failure();
|
|
}
|
|
if (inputType.hasRank()) {
|
|
int64_t inputRank = inputType.getRank();
|
|
// We allow for a special case where the input/output shape has rank 0 and
|
|
// axis is also 0.
|
|
if (reduceAxis >= inputRank && !(reduceAxis == 0 && inputRank == 0)) {
|
|
op.emitOpError("expect input tensor rank (")
|
|
<< inputRank << ") to be larger than reduce axis (" << reduceAxis
|
|
<< ")";
|
|
return failure();
|
|
}
|
|
}
|
|
if (outputType.hasRank()) {
|
|
int64_t outputRank = outputType.getRank();
|
|
if (inputType.hasRank() && outputRank != inputType.getRank()) {
|
|
op.emitOpError(
|
|
"expect output tensor rank to be equal to input tensor rank");
|
|
return failure();
|
|
}
|
|
if (reduceAxis >= outputRank && !(reduceAxis == 0 && outputRank == 0)) {
|
|
op.emitOpError("expect output tensor rank (")
|
|
<< outputRank << ") to be larger than reduce axis (" << reduceAxis
|
|
<< ")";
|
|
return failure();
|
|
}
|
|
// We can only verify the reduced dimension size to be 1 if this is not
|
|
// the special case of output rank == 0.
|
|
if (outputRank != 0) {
|
|
auto outputShape = outputType.getShape();
|
|
if (!outputType.isDynamicDim(reduceAxis) &&
|
|
outputShape[reduceAxis] != 1) {
|
|
op.emitOpError("expect reduced dimension size to be 1, got ")
|
|
<< outputShape[reduceAxis];
|
|
return failure();
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::ReduceAllOp::verify() { return verifyReduceOp(*this); }
|
|
LogicalResult tosa::ReduceAnyOp::verify() { return verifyReduceOp(*this); }
|
|
LogicalResult tosa::ReduceMaxOp::verify() { return verifyReduceOp(*this); }
|
|
LogicalResult tosa::ReduceMinOp::verify() { return verifyReduceOp(*this); }
|
|
LogicalResult tosa::ReduceProductOp::verify() { return verifyReduceOp(*this); }
|
|
LogicalResult tosa::ReduceSumOp::verify() { return verifyReduceOp(*this); }
|
|
|
|
static LogicalResult NAryInferReturnTypes(
|
|
const ValueShapeRange &operands,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outShape;
|
|
if (resolveBroadcastShape(operands, outShape).failed()) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents());
|
|
} else {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
#define NARY_SHAPE_INFER(OP) \
|
|
LogicalResult OP::inferReturnTypeComponents( \
|
|
MLIRContext *context, ::std::optional<Location> location, \
|
|
ValueShapeRange operands, DictionaryAttr attributes, \
|
|
OpaqueProperties properties, RegionRange regions, \
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
|
|
return NAryInferReturnTypes(operands, inferredReturnShapes); \
|
|
}
|
|
|
|
NARY_SHAPE_INFER(tosa::AbsOp)
|
|
NARY_SHAPE_INFER(tosa::AddOp)
|
|
NARY_SHAPE_INFER(tosa::ArithmeticRightShiftOp)
|
|
NARY_SHAPE_INFER(tosa::BitwiseAndOp)
|
|
NARY_SHAPE_INFER(tosa::BitwiseOrOp)
|
|
NARY_SHAPE_INFER(tosa::BitwiseXorOp)
|
|
NARY_SHAPE_INFER(tosa::BitwiseNotOp)
|
|
NARY_SHAPE_INFER(tosa::CastOp)
|
|
NARY_SHAPE_INFER(tosa::CeilOp)
|
|
NARY_SHAPE_INFER(tosa::ClampOp)
|
|
NARY_SHAPE_INFER(tosa::ClzOp)
|
|
NARY_SHAPE_INFER(tosa::CosOp)
|
|
NARY_SHAPE_INFER(tosa::ExpOp)
|
|
NARY_SHAPE_INFER(tosa::FloorOp)
|
|
NARY_SHAPE_INFER(tosa::GreaterEqualOp)
|
|
NARY_SHAPE_INFER(tosa::GreaterOp)
|
|
NARY_SHAPE_INFER(tosa::IdentityOp)
|
|
NARY_SHAPE_INFER(tosa::IntDivOp)
|
|
NARY_SHAPE_INFER(tosa::LogOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalAndOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalLeftShiftOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalNotOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalOrOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalRightShiftOp)
|
|
NARY_SHAPE_INFER(tosa::LogicalXorOp)
|
|
NARY_SHAPE_INFER(tosa::MaximumOp)
|
|
NARY_SHAPE_INFER(tosa::MinimumOp)
|
|
NARY_SHAPE_INFER(tosa::PowOp)
|
|
NARY_SHAPE_INFER(tosa::ReciprocalOp)
|
|
NARY_SHAPE_INFER(tosa::ReverseOp)
|
|
NARY_SHAPE_INFER(tosa::RsqrtOp)
|
|
NARY_SHAPE_INFER(tosa::SinOp)
|
|
NARY_SHAPE_INFER(tosa::SelectOp)
|
|
NARY_SHAPE_INFER(tosa::SubOp)
|
|
NARY_SHAPE_INFER(tosa::TanhOp)
|
|
NARY_SHAPE_INFER(tosa::ErfOp)
|
|
NARY_SHAPE_INFER(tosa::SigmoidOp)
|
|
#undef PRED_SHAPE_INFER
|
|
|
|
LogicalResult tosa::NegateOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
NegateOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput1().getType());
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(inputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::NegateOp::verify() {
|
|
// Verify same element type
|
|
const Type input1Type = getInput1().getType();
|
|
const Type outputType = getOutput().getType();
|
|
if (verifySameElementTypes(*this, input1Type, outputType).failed())
|
|
return failure();
|
|
|
|
// Verify same shape
|
|
const SmallVector<Type, 2> types = {input1Type, outputType};
|
|
if (failed(verifyCompatibleShapes(types)))
|
|
return emitOpError() << "requires the same shape for input1 and output";
|
|
|
|
const Type input1EType = getStorageElementTypeOrSelf(getInput1().getType());
|
|
const Type input1ZpEType =
|
|
getStorageElementTypeOrSelf(getInput1Zp().getType());
|
|
if (input1EType != input1ZpEType) {
|
|
return emitOpError("expect both input1 and its zero point are the same "
|
|
"element type, got ")
|
|
<< input1EType << " and " << input1ZpEType;
|
|
}
|
|
const Type outputEType = getStorageElementTypeOrSelf(getOutput().getType());
|
|
const Type outputZpEType =
|
|
getStorageElementTypeOrSelf(getOutputZp().getType());
|
|
if (outputEType != outputZpEType) {
|
|
return emitOpError("expect both output and its zero point are the same "
|
|
"element type, got ")
|
|
<< outputEType << " and " << outputZpEType;
|
|
}
|
|
|
|
FailureOr<int64_t> maybeIZp = getInput1ZeroPoint();
|
|
if (succeeded(maybeIZp) && verifyInput1ZeroPoint(*maybeIZp).failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeOZp = getOutputZeroPoint();
|
|
if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult poolingInferReturnTypes(
|
|
ShapeAdaptor inputShape, ArrayRef<int64_t> kernel, ArrayRef<int64_t> stride,
|
|
ArrayRef<int64_t> pad,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape;
|
|
outputShape.resize(4, ShapedType::kDynamic);
|
|
|
|
// We only know the rank if the input type is unranked.
|
|
if (!inputShape) {
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
// Batch and number of channels are identical for pooling layer.
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
outputShape[3] = inputShape.getDimSize(3);
|
|
|
|
int64_t height = inputShape.getDimSize(1);
|
|
int64_t width = inputShape.getDimSize(2);
|
|
|
|
if (!ShapedType::isDynamic(height)) {
|
|
int64_t padded = height + pad[0] + pad[1] - kernel[0];
|
|
outputShape[1] = padded / stride[0] + 1;
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(width)) {
|
|
int64_t padded = width + pad[2] + pad[3] - kernel[1];
|
|
outputShape[2] = padded / stride[1] + 1;
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult Conv2DOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
Conv2DOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
|
|
|
|
int64_t inputWidth = ShapedType::kDynamic;
|
|
int64_t inputHeight = ShapedType::kDynamic;
|
|
int64_t weightWidth = ShapedType::kDynamic;
|
|
int64_t weightHeight = ShapedType::kDynamic;
|
|
|
|
// Input shape describes input width/height and batch.
|
|
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (inputShape.hasRank()) {
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
inputHeight = inputShape.getDimSize(1);
|
|
inputWidth = inputShape.getDimSize(2);
|
|
}
|
|
|
|
// Weight shapes describes the filter width/height and the output channels.
|
|
ShapeAdaptor weightShape(adaptor.getWeight().getType());
|
|
if (weightShape.hasRank()) {
|
|
outputShape[3] = weightShape.getDimSize(0);
|
|
weightHeight = weightShape.getDimSize(1);
|
|
weightWidth = weightShape.getDimSize(2);
|
|
}
|
|
|
|
// Bias shape can describe the output channels.
|
|
ShapeAdaptor biasShape(adaptor.getBias().getType());
|
|
if (biasShape.hasRank()) {
|
|
outputShape[3] = ShapedType::isDynamic(outputShape[3])
|
|
? biasShape.getDimSize(0)
|
|
: outputShape[3];
|
|
}
|
|
|
|
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
|
|
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
|
|
llvm::ArrayRef<int64_t> padding = adaptor.getPad();
|
|
|
|
if (!ShapedType::isDynamic(inputHeight) &&
|
|
!ShapedType::isDynamic(weightHeight)) {
|
|
int64_t inputSize = inputHeight + padding[0] + padding[1];
|
|
int64_t filterSize = (weightHeight - 1) * dilation[0] + 1;
|
|
int64_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(inputWidth) &&
|
|
!ShapedType::isDynamic(weightWidth)) {
|
|
int64_t inputSize = inputWidth + padding[2] + padding[3];
|
|
int64_t filterSize = (weightWidth - 1) * dilation[1] + 1;
|
|
int64_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult Conv2DOp::verify() {
|
|
if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
|
|
return failure();
|
|
|
|
llvm::ArrayRef<int64_t> padding = getPad();
|
|
if (llvm::any_of(padding, [](int64_t p) { return p < 0; }))
|
|
return emitOpError("expect all padding values to be >= 0, got ") << padding;
|
|
|
|
llvm::ArrayRef<int64_t> strides = getStride();
|
|
if (llvm::any_of(strides, [](int64_t s) { return s < 1; }))
|
|
return emitOpError("expect all stride values to be >= 1, got ") << strides;
|
|
|
|
llvm::ArrayRef<int64_t> dilations = getDilation();
|
|
if (llvm::any_of(dilations, [](int64_t d) { return d < 1; }))
|
|
return emitOpError("expect all dilation values to be >= 1, got ")
|
|
<< dilations;
|
|
|
|
const RankedTensorType outputType =
|
|
llvm::dyn_cast<RankedTensorType>(getOutput().getType());
|
|
if (!outputType)
|
|
// Skip following checks if output is not ranked
|
|
return success();
|
|
|
|
const RankedTensorType inputType =
|
|
llvm::dyn_cast<RankedTensorType>(getInput().getType());
|
|
const RankedTensorType weightType =
|
|
llvm::dyn_cast<RankedTensorType>(getWeight().getType());
|
|
|
|
if (inputType && weightType) {
|
|
const auto verifyOutputSize =
|
|
[this](const int64_t inputSize, const int64_t kernelSize,
|
|
const int64_t outputSize, const int64_t padBefore,
|
|
const int64_t padAfter, const int64_t stride,
|
|
const int64_t dilation, const llvm::StringRef dimName,
|
|
const llvm::StringRef dimAxis,
|
|
const llvm::StringRef padBeforeName,
|
|
const llvm::StringRef padAfterName) -> LogicalResult {
|
|
if (inputSize == ShapedType::kDynamic ||
|
|
kernelSize == ShapedType::kDynamic)
|
|
return success();
|
|
|
|
const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck(
|
|
inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation,
|
|
stride);
|
|
if (!calculatedOutSizeMinusOne.has_value())
|
|
return emitOpError("expected input_")
|
|
<< dimName << " - 1 + pad_" << padBeforeName << " + pad_"
|
|
<< padAfterName << " - (kernel_" << dimName
|
|
<< " - 1) * dilation_" << dimAxis
|
|
<< " to be wholly divisible by stride_" << dimAxis << ", got ("
|
|
<< inputSize << " - 1 + " << padBefore << " + " << padAfter
|
|
<< " - (" << kernelSize << " - 1) * " << dilation << ") / "
|
|
<< stride;
|
|
|
|
const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1;
|
|
if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize)
|
|
return emitOpError("calculated output ")
|
|
<< dimName << " did not match expected: "
|
|
<< "calculated=" << calculatedOutSize
|
|
<< ", expected=" << outputSize;
|
|
|
|
return success();
|
|
};
|
|
|
|
if (failed(verifyOutputSize(
|
|
inputType.getDimSize(1), weightType.getDimSize(1),
|
|
outputType.getDimSize(1), padding[0], padding[1], strides[0],
|
|
dilations[0], "height", "y", "top", "bottom")))
|
|
return failure();
|
|
|
|
if (failed(verifyOutputSize(
|
|
inputType.getDimSize(2), weightType.getDimSize(2),
|
|
outputType.getDimSize(2), padding[2], padding[3], strides[1],
|
|
dilations[1], "width", "x", "left", "right")))
|
|
return failure();
|
|
}
|
|
|
|
const RankedTensorType biasType =
|
|
llvm::dyn_cast<RankedTensorType>(getBias().getType());
|
|
if (!biasType)
|
|
// Skip following checks if bias is not ranked
|
|
return success();
|
|
|
|
const int64_t biasChannels = biasType.getDimSize(0);
|
|
const int64_t outputChannels = outputType.getDimSize(3);
|
|
if (biasChannels == ShapedType::kDynamic ||
|
|
outputChannels == ShapedType::kDynamic)
|
|
// Skip following checks if biasChannels or outputChannels is dynamic dim
|
|
return success();
|
|
|
|
if (biasChannels != outputChannels && biasChannels != 1)
|
|
return emitOpError(
|
|
"bias channels expected to be equal to output channels (")
|
|
<< outputChannels << ") or 1, got " << biasChannels;
|
|
return success();
|
|
}
|
|
|
|
LogicalResult Conv3DOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
Conv3DOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamic);
|
|
|
|
int64_t inputWidth = ShapedType::kDynamic;
|
|
int64_t inputHeight = ShapedType::kDynamic;
|
|
int64_t inputDepth = ShapedType::kDynamic;
|
|
|
|
int64_t weightWidth = ShapedType::kDynamic;
|
|
int64_t weightHeight = ShapedType::kDynamic;
|
|
int64_t weightDepth = ShapedType::kDynamic;
|
|
|
|
// Input shape describes input width/height and batch.
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (inputShape.hasRank()) {
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
inputDepth = inputShape.getDimSize(1);
|
|
inputHeight = inputShape.getDimSize(2);
|
|
inputWidth = inputShape.getDimSize(3);
|
|
}
|
|
|
|
// Weight shapes describes the filter width/height and the output channels.
|
|
ShapeAdaptor weightShape(adaptor.getWeight().getType());
|
|
if (weightShape.hasRank()) {
|
|
outputShape[4] = weightShape.getDimSize(0);
|
|
weightDepth = weightShape.getDimSize(1);
|
|
weightHeight = weightShape.getDimSize(2);
|
|
weightWidth = weightShape.getDimSize(3);
|
|
}
|
|
|
|
// Bias shape can describe the output channels.
|
|
ShapeAdaptor biasShape(adaptor.getBias().getType());
|
|
if (biasShape.hasRank() && ShapedType::isDynamic(outputShape[4])) {
|
|
outputShape[4] = biasShape.getDimSize(0);
|
|
}
|
|
|
|
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
|
|
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
|
|
llvm::ArrayRef<int64_t> pad = adaptor.getPad();
|
|
|
|
if (!ShapedType::isDynamic(inputDepth) &&
|
|
!ShapedType::isDynamic(weightDepth)) {
|
|
int32_t inputSize = inputDepth + pad[0] + pad[1];
|
|
int32_t filterSize = (weightDepth - 1) * dilation[0] + 1;
|
|
int32_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(inputHeight) &&
|
|
!ShapedType::isDynamic(weightHeight)) {
|
|
int32_t inputSize = inputHeight + pad[2] + pad[3];
|
|
int32_t filterSize = (weightHeight - 1) * dilation[1] + 1;
|
|
int32_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(inputWidth) &&
|
|
!ShapedType::isDynamic(weightWidth)) {
|
|
int32_t inputSize = inputWidth + pad[4] + pad[5];
|
|
int32_t filterSize = (weightWidth - 1) * dilation[2] + 1;
|
|
int32_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[3] = (unstridedResult - 1) / stride[2] + 1;
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult Conv3DOp::verify() {
|
|
if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AvgPool2dOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
AvgPool2dOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
const Properties &prop = adaptor.getProperties();
|
|
return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad,
|
|
inferredReturnShapes);
|
|
}
|
|
|
|
LogicalResult MaxPool2dOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
MaxPool2dOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
const Properties &prop = adaptor.getProperties();
|
|
return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad,
|
|
inferredReturnShapes);
|
|
}
|
|
|
|
LogicalResult MaxPool2dOp::verify() {
|
|
if (failed(verifySameElementTypes(*this, /* intype = */ getInput().getType(),
|
|
/* outType = */ getOutput().getType())))
|
|
return failure();
|
|
|
|
if (failed(verifyPoolingOp(*this)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
DepthwiseConv2DOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
|
|
|
|
int64_t inputWidth = ShapedType::kDynamic;
|
|
int64_t inputHeight = ShapedType::kDynamic;
|
|
int64_t inputChannels = ShapedType::kDynamic;
|
|
|
|
int64_t weightWidth = ShapedType::kDynamic;
|
|
int64_t weightHeight = ShapedType::kDynamic;
|
|
int64_t depthChannels = ShapedType::kDynamic;
|
|
|
|
// Input shape describes input width/height and batch.
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (inputShape.hasRank()) {
|
|
outputShape[0] = inputShape.getDimSize(0);
|
|
inputHeight = inputShape.getDimSize(1);
|
|
inputWidth = inputShape.getDimSize(2);
|
|
inputChannels = inputShape.getDimSize(3);
|
|
}
|
|
|
|
// Weight shapes describes the filter width/height and the output channels.
|
|
ShapeAdaptor weightShape(adaptor.getWeight().getType());
|
|
if (weightShape.hasRank()) {
|
|
weightHeight = weightShape.getDimSize(0);
|
|
weightWidth = weightShape.getDimSize(1);
|
|
inputChannels = ShapedType::isDynamic(inputChannels)
|
|
? weightShape.getDimSize(2)
|
|
: inputChannels;
|
|
depthChannels = weightShape.getDimSize(3);
|
|
}
|
|
|
|
// If both inputChannels and depthChannels are available we can determine
|
|
// the output channels.
|
|
if (!ShapedType::isDynamic(inputChannels) &&
|
|
!ShapedType::isDynamic(depthChannels)) {
|
|
outputShape[3] = inputChannels * depthChannels;
|
|
}
|
|
|
|
// Bias shape can describe the output channels.
|
|
ShapeAdaptor biasShape(adaptor.getBias().getType());
|
|
if (biasShape.hasRank()) {
|
|
outputShape[3] = ShapedType::isDynamic(outputShape[3])
|
|
? biasShape.getDimSize(0)
|
|
: outputShape[3];
|
|
}
|
|
|
|
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
|
|
llvm::ArrayRef<int64_t> padding = adaptor.getPad();
|
|
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
|
|
|
|
if (!ShapedType::isDynamic(inputHeight) &&
|
|
!ShapedType::isDynamic(weightHeight)) {
|
|
int64_t inputSize = inputHeight + padding[0] + padding[1];
|
|
int64_t filterSize = (weightHeight - 1) * dilation[0] + 1;
|
|
int64_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(inputWidth) &&
|
|
!ShapedType::isDynamic(weightWidth)) {
|
|
int64_t inputSize = inputWidth + padding[2] + padding[3];
|
|
int64_t filterSize = (weightWidth - 1) * dilation[1] + 1;
|
|
int64_t unstridedResult = inputSize - filterSize + 1;
|
|
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult DepthwiseConv2DOp::verify() {
|
|
if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
TransposeConv2DOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
|
|
|
|
int64_t inputWidth = ShapedType::kDynamic;
|
|
int64_t inputHeight = ShapedType::kDynamic;
|
|
int64_t weightWidth = ShapedType::kDynamic;
|
|
int64_t weightHeight = ShapedType::kDynamic;
|
|
|
|
// Input shape describes input width/height and batch.
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
if (inputShape.hasRank()) {
|
|
outputShape[0] = ShapedType::isDynamic(outputShape[0])
|
|
? inputShape.getDimSize(0)
|
|
: outputShape[0];
|
|
inputHeight = inputShape.getDimSize(1);
|
|
inputWidth = inputShape.getDimSize(2);
|
|
}
|
|
|
|
// Weight shapes describes the filter width/height and the output channels.
|
|
ShapeAdaptor weightShape(adaptor.getWeight().getType());
|
|
if (weightShape.hasRank()) {
|
|
outputShape[3] = ShapedType::isDynamic(outputShape[3])
|
|
? weightShape.getDimSize(0)
|
|
: outputShape[3];
|
|
weightHeight = weightShape.getDimSize(1);
|
|
weightWidth = weightShape.getDimSize(2);
|
|
}
|
|
|
|
// Bias shape can describe the output channels.
|
|
ShapeAdaptor biasShape(adaptor.getInput().getType());
|
|
if (biasShape.hasRank()) {
|
|
outputShape[3] = ShapedType::isDynamic(outputShape[3])
|
|
? biasShape.getDimSize(0)
|
|
: outputShape[3];
|
|
}
|
|
|
|
llvm::ArrayRef<int64_t> padding = adaptor.getOutPad();
|
|
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
|
|
|
|
if (!ShapedType::isDynamic(inputHeight) &&
|
|
!ShapedType::isDynamic(weightHeight)) {
|
|
int64_t calculateSize =
|
|
(inputHeight - 1) * stride[0] + padding[0] + padding[1] + weightHeight;
|
|
outputShape[1] =
|
|
ShapedType::isDynamic(outputShape[1]) ? calculateSize : outputShape[1];
|
|
}
|
|
|
|
if (!ShapedType::isDynamic(inputWidth) &&
|
|
!ShapedType::isDynamic(weightWidth)) {
|
|
int64_t calculateSize =
|
|
(inputWidth - 1) * stride[1] + padding[2] + padding[3] + weightWidth;
|
|
outputShape[2] =
|
|
ShapedType::isDynamic(outputShape[2]) ? calculateSize : outputShape[2];
|
|
}
|
|
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult TransposeConv2DOp::verify() {
|
|
if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
|
|
return failure();
|
|
|
|
const llvm::ArrayRef<int64_t> strides = getStride();
|
|
const int64_t strideY = strides[0];
|
|
const int64_t strideX = strides[1];
|
|
|
|
if (strideY < 1 || strideX < 1)
|
|
return emitOpError("expect all stride values to be >= 1, got [")
|
|
<< strides << "]";
|
|
|
|
const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
|
|
|
|
const auto outputType =
|
|
llvm::dyn_cast<RankedTensorType>(getOutput().getType());
|
|
|
|
const auto weightType =
|
|
llvm::dyn_cast<RankedTensorType>(getWeight().getType());
|
|
|
|
const auto checkPadAgainstKernelDim =
|
|
[this](int64_t pad_value, int64_t kernel_dim_size,
|
|
llvm::StringRef pad_name,
|
|
llvm::StringRef kernel_dim_name) -> LogicalResult {
|
|
if (pad_value <= -kernel_dim_size)
|
|
return emitOpError("expected ")
|
|
<< pad_name << " > -" << kernel_dim_name
|
|
<< ", but got: " << pad_name << "=" << pad_value << " and "
|
|
<< kernel_dim_name << "=" << kernel_dim_size;
|
|
return success();
|
|
};
|
|
|
|
const llvm::ArrayRef<int64_t> padding = getOutPad();
|
|
|
|
const int64_t outPadTop = padding[0];
|
|
const int64_t outPadBottom = padding[1];
|
|
|
|
const int64_t kernelHeight = weightType.getDimSize(1);
|
|
|
|
if (!ShapedType::isDynamic(kernelHeight)) {
|
|
if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, "out_pad_top",
|
|
"KH")))
|
|
return failure();
|
|
|
|
if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight,
|
|
"out_pad_bottom", "KH")))
|
|
return failure();
|
|
}
|
|
|
|
const int64_t kernelWidth = weightType.getDimSize(2);
|
|
|
|
const int64_t outPadLeft = padding[2];
|
|
const int64_t outPadRight = padding[3];
|
|
|
|
if (!ShapedType::isDynamic(kernelWidth)) {
|
|
if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, "out_pad_left",
|
|
"KW")))
|
|
return failure();
|
|
|
|
if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth,
|
|
"out_pad_right", "KW")))
|
|
return failure();
|
|
}
|
|
|
|
// Rest of the checks depend on the output type being a RankedTensorType
|
|
if (!outputType)
|
|
return success();
|
|
|
|
const int64_t inputHeight = inputType.getDimSize(1);
|
|
const int64_t outputHeight = outputType.getDimSize(1);
|
|
|
|
if (!ShapedType::isDynamic(inputHeight) &&
|
|
!ShapedType::isDynamic(outputHeight)) {
|
|
if (outputHeight !=
|
|
(inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight)
|
|
return emitOpError(
|
|
"dimension mismatch: expected OH == (IH - 1) * stride_y "
|
|
"+ out_pad_top + out_pad_bottom + KH, but got ")
|
|
<< outputHeight << " != (" << inputHeight << " - 1) * " << strideY
|
|
<< " + " << outPadTop << " + " << outPadBottom << " + "
|
|
<< kernelHeight;
|
|
}
|
|
|
|
const int64_t inputWidth = inputType.getDimSize(2);
|
|
const int64_t outputWidth = outputType.getDimSize(2);
|
|
|
|
if (!ShapedType::isDynamic(inputWidth) &&
|
|
!ShapedType::isDynamic(outputWidth)) {
|
|
if (outputWidth !=
|
|
(inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth)
|
|
return emitOpError(
|
|
"dimension mismatch: expected OW == (IW - 1) * stride_x "
|
|
"+ out_pad_left + out_pad_right + KW, but got ")
|
|
<< outputWidth << " != (" << inputWidth << " - 1) * " << strideX
|
|
<< " + " << outPadLeft << " + " << outPadRight << " + "
|
|
<< kernelWidth;
|
|
}
|
|
|
|
const auto biasType = llvm::dyn_cast<RankedTensorType>(getBias().getType());
|
|
|
|
if (!biasType)
|
|
return success();
|
|
|
|
const int64_t biasChannels = biasType.getDimSize(0);
|
|
|
|
// Skip further checks if bias is dynamic
|
|
if (biasChannels == ShapedType::kDynamic)
|
|
return success();
|
|
|
|
const int64_t outputChannels = outputType.getDimSize(3);
|
|
if (biasChannels != outputChannels && biasChannels != 1)
|
|
return emitOpError(
|
|
"bias channels expected to be equal to output channels (")
|
|
<< outputChannels << ") or 1, got " << biasChannels;
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult RescaleOp::verify() {
|
|
auto inputType = llvm::dyn_cast<ShapedType>(getInput().getType());
|
|
if (!inputType) {
|
|
emitOpError("expect shaped tensor for input, got ") << getInput().getType();
|
|
return failure();
|
|
}
|
|
|
|
auto inputElementType =
|
|
getStorageElementTypeOrSelf(inputType.getElementType());
|
|
if (!mlir::isa<IntegerType>(inputElementType)) {
|
|
emitOpError("expect input to have integer element type, got ")
|
|
<< inputElementType;
|
|
return failure();
|
|
}
|
|
|
|
auto outputType = llvm::dyn_cast<ShapedType>(getOutput().getType());
|
|
if (!outputType) {
|
|
emitOpError("expect shaped tensor for output, got ")
|
|
<< getOutput().getType();
|
|
return failure();
|
|
}
|
|
|
|
auto outputElementType =
|
|
getStorageElementTypeOrSelf(outputType.getElementType());
|
|
if (!mlir::isa<IntegerType>(outputElementType)) {
|
|
emitOpError("expect output to have integer element type, got ")
|
|
<< outputElementType;
|
|
return failure();
|
|
}
|
|
|
|
if (verifyRescaleValueAndZpTypes(*this, getInput(), getInputZp(), "input")
|
|
.failed())
|
|
return failure();
|
|
|
|
if (verifyRescaleValueAndZpTypes(*this, getOutput(), getOutputZp(), "output")
|
|
.failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeIZp = getInputZeroPoint();
|
|
if (succeeded(maybeIZp) && verifyInputZeroPoint(*maybeIZp).failed())
|
|
return failure();
|
|
|
|
FailureOr<int64_t> maybeOZp = getOutputZeroPoint();
|
|
if (succeeded(maybeOZp) && verifyOutputZeroPoint(*maybeOZp).failed())
|
|
return failure();
|
|
|
|
auto multiplierType = llvm::dyn_cast<ShapedType>(getMultiplier().getType());
|
|
if (!multiplierType) {
|
|
emitOpError("expect shaped tensor for multiplier, got ")
|
|
<< getMultiplier().getType();
|
|
return failure();
|
|
}
|
|
|
|
auto shiftType = llvm::dyn_cast<ShapedType>(getShift().getType());
|
|
if (!shiftType) {
|
|
emitOpError("expect shaped tensor for shift, got ") << getShift().getType();
|
|
return failure();
|
|
}
|
|
|
|
// multiplier element type must be i32 for scale32 = true
|
|
if (getScale32() && !multiplierType.getElementType().isInteger(32)) {
|
|
emitOpError("expect i32 element type for multiplier for scale32=true, got ")
|
|
<< multiplierType.getElementType();
|
|
return failure();
|
|
}
|
|
|
|
// multiplier element type must be i16 for scale32 = false
|
|
if (!getScale32() && !multiplierType.getElementType().isInteger(16)) {
|
|
emitOpError(
|
|
"expect i16 element type for multiplier for scale32=false, got ")
|
|
<< multiplierType.getElementType();
|
|
return failure();
|
|
}
|
|
|
|
if (!inputType.hasRank())
|
|
return success();
|
|
|
|
// multiplier/shift must have shape = {numChannels},
|
|
// where numChannel is 1 if per_channel = false
|
|
// otherwise numChannel is dimension in input shape's last axis
|
|
int64_t numChannels = 1;
|
|
if (getPerChannel()) {
|
|
numChannels = inputType.getDimSize(inputType.getRank() - 1);
|
|
}
|
|
|
|
if (!multiplierType.hasRank())
|
|
return success();
|
|
|
|
ArrayRef<int64_t> multiplierShape = multiplierType.getShape();
|
|
// multiplier input has rank 1 by dialect definition
|
|
if (multiplierShape[0] != ShapedType::kDynamic &&
|
|
multiplierShape[0] != numChannels) {
|
|
emitOpError("expect shape of { ")
|
|
<< numChannels << " } for multiplier input, got { "
|
|
<< multiplierShape[0] << " }";
|
|
return failure();
|
|
}
|
|
|
|
if (!shiftType.hasRank())
|
|
return success();
|
|
|
|
ArrayRef<int64_t> shiftShape = shiftType.getShape();
|
|
// shift input has rank 1 by dialect definition
|
|
if (shiftShape[0] != ShapedType::kDynamic && shiftShape[0] != numChannels) {
|
|
emitOpError("expect shape of { ")
|
|
<< numChannels << " } for shift input, got { " << shiftShape[0] << " }";
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult RescaleOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
RescaleOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
ShapeAdaptor inputShape(adaptor.getInput().getType());
|
|
inferredReturnShapes.push_back(ShapedTypeComponents(inputShape));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult IfOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
IfOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<tosa::YieldOp> yieldOps;
|
|
for (Region *region : adaptor.getRegions()) {
|
|
for (auto &block : *region)
|
|
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
|
|
yieldOps.push_back(returnOp);
|
|
}
|
|
|
|
if (yieldOps.empty())
|
|
return failure();
|
|
|
|
// Get the initial type information for the yield op.
|
|
llvm::SmallVector<ValueKnowledge> resultKnowledge;
|
|
resultKnowledge.reserve(yieldOps.front().getNumOperands());
|
|
for (auto operand : yieldOps.front().getOperands()) {
|
|
resultKnowledge.push_back(
|
|
ValueKnowledge::getKnowledgeFromType(operand.getType()));
|
|
}
|
|
|
|
for (auto yieldOp : yieldOps) {
|
|
if (resultKnowledge.size() != yieldOp.getNumOperands())
|
|
return failure();
|
|
|
|
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
|
|
int32_t index = it.index();
|
|
auto meet = ValueKnowledge::meet(
|
|
resultKnowledge[index],
|
|
ValueKnowledge::getKnowledgeFromType(it.value().getType()));
|
|
if (!meet)
|
|
continue;
|
|
resultKnowledge[index] = meet;
|
|
}
|
|
}
|
|
|
|
for (const ValueKnowledge &result : resultKnowledge) {
|
|
inferredReturnShapes.push_back(result.getShapedTypeComponents());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult WhileOp::inferReturnTypeComponents(
|
|
MLIRContext *context, ::std::optional<Location> location,
|
|
WhileOp::Adaptor adaptor,
|
|
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
|
|
llvm::SmallVector<tosa::YieldOp> yieldOps;
|
|
for (auto &block : adaptor.getBodyGraph())
|
|
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
|
|
yieldOps.push_back(returnOp);
|
|
|
|
// TOSA's while must have a tosa.yield as its terminator. If not found this
|
|
// tosa.while is invalid.
|
|
if (yieldOps.empty())
|
|
return failure();
|
|
|
|
// Get the initial type information from the operand types.
|
|
llvm::SmallVector<ValueKnowledge> resultKnowledge;
|
|
resultKnowledge.reserve(yieldOps.front().getNumOperands());
|
|
for (auto operand : yieldOps.front().getOperands()) {
|
|
resultKnowledge.push_back(
|
|
ValueKnowledge::getKnowledgeFromType(operand.getType()));
|
|
}
|
|
|
|
for (auto yieldOp : yieldOps) {
|
|
if (resultKnowledge.size() != yieldOp.getNumOperands())
|
|
return failure();
|
|
|
|
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
|
|
int32_t index = it.index();
|
|
if (auto meet = ValueKnowledge::meet(
|
|
resultKnowledge[index],
|
|
ValueKnowledge::getKnowledgeFromType(it.value().getType()))) {
|
|
resultKnowledge[index] = meet;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const ValueKnowledge &result : resultKnowledge) {
|
|
inferredReturnShapes.push_back(result.getShapedTypeComponents());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> ApplyScaleOp::getShapeForUnroll() {
|
|
if (auto vt = llvm::dyn_cast<VectorType>(getType()))
|
|
return llvm::to_vector<4>(vt.getShape());
|
|
return std::nullopt;
|
|
}
|
|
|
|
// parse and print of IfOp refer to the implementation of SCF dialect.
|
|
ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Create the regions for 'then'.
|
|
result.regions.reserve(2);
|
|
Region *thenRegion = result.addRegion();
|
|
Region *elseRegion = result.addRegion();
|
|
|
|
auto &builder = parser.getBuilder();
|
|
OpAsmParser::UnresolvedOperand cond;
|
|
// Create a i1 tensor type for the boolean condition.
|
|
Type i1Type = RankedTensorType::get({}, builder.getIntegerType(1));
|
|
if (parser.parseOperand(cond) ||
|
|
parser.resolveOperand(cond, i1Type, result.operands))
|
|
return failure();
|
|
// Parse optional results type list.
|
|
if (parser.parseOptionalArrowTypeList(result.types))
|
|
return failure();
|
|
// Parse the 'then' region.
|
|
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
|
|
return failure();
|
|
|
|
// If we find an 'else' keyword then parse the 'else' region.
|
|
if (!parser.parseOptionalKeyword("else")) {
|
|
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
|
|
return failure();
|
|
}
|
|
|
|
// Parse the optional attribute list.
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
void IfOp::print(OpAsmPrinter &p) {
|
|
bool printBlockTerminators = false;
|
|
|
|
p << " " << getCondition();
|
|
if (!getResults().empty()) {
|
|
p << " -> (" << getResultTypes() << ")";
|
|
// Print yield explicitly if the op defines values.
|
|
printBlockTerminators = true;
|
|
}
|
|
p << ' ';
|
|
p.printRegion(getThenGraph(),
|
|
/*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/printBlockTerminators);
|
|
|
|
// Print the 'else' regions if it exists and has a block.
|
|
auto &elseRegion = getElseGraph();
|
|
if (!elseRegion.empty()) {
|
|
p << " else ";
|
|
p.printRegion(elseRegion,
|
|
/*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/printBlockTerminators);
|
|
}
|
|
|
|
p.printOptionalAttrDict((*this)->getAttrs());
|
|
}
|
|
|
|
LogicalResult ReverseOp::verify() {
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput1().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed())
|
|
return failure();
|
|
TensorType inputType = getInput1().getType();
|
|
TensorType outputType = getOutput().getType();
|
|
int32_t reverseAxis = getAxis();
|
|
|
|
if (reverseAxis < 0)
|
|
return emitOpError("expected non-negative reverse axis");
|
|
if (inputType.hasRank()) {
|
|
int64_t inputRank = inputType.getRank();
|
|
// We allow for a special case where the input/output shape has rank 0 and
|
|
// axis is also 0.
|
|
if (reverseAxis >= inputRank && !(reverseAxis == 0 && inputRank == 0))
|
|
return emitOpError("expect input tensor rank (")
|
|
<< inputRank << ") to be larger than reverse axis (" << reverseAxis
|
|
<< ")";
|
|
}
|
|
if (outputType.hasRank()) {
|
|
int64_t outputRank = outputType.getRank();
|
|
if (inputType.hasRank() && outputRank != inputType.getRank())
|
|
return emitOpError(
|
|
"expect output tensor rank to be equal to input tensor rank");
|
|
if (reverseAxis >= outputRank && !(reverseAxis == 0 && outputRank == 0))
|
|
return emitOpError("expect output tensor rank (")
|
|
<< outputRank << ") to be larger than reverse axis ("
|
|
<< reverseAxis << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult tosa::SelectOp::verify() {
|
|
// verify input2 and input3 have same element type as output
|
|
if (verifySameElementTypes(*this, /* inType = */ getInput2().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed() ||
|
|
verifySameElementTypes(*this, /* inType = */ getInput3().getType(),
|
|
/* outType = */ getOutput().getType())
|
|
.failed()) {
|
|
return failure();
|
|
}
|
|
// verify input1 has element type of bool
|
|
auto predicateType = llvm::dyn_cast<ShapedType>(getInput1().getType());
|
|
if (!predicateType) {
|
|
return emitOpError("expect shaped tensor for input1, got ")
|
|
<< getInput1().getType();
|
|
}
|
|
auto predicateElementType = predicateType.getElementType();
|
|
if (!predicateElementType.isInteger(1)) {
|
|
return emitOpError("expect element type of bool for input1, got ")
|
|
<< predicateElementType;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// parse and print of WhileOp refer to the implementation of SCF dialect.
|
|
ParseResult WhileOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::Argument, 4> regionArgs;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 4> operands;
|
|
Region *cond = result.addRegion();
|
|
Region *body = result.addRegion();
|
|
|
|
OptionalParseResult listResult =
|
|
parser.parseOptionalAssignmentList(regionArgs, operands);
|
|
if (listResult.has_value() && failed(listResult.value()))
|
|
return failure();
|
|
|
|
FunctionType functionType;
|
|
SMLoc typeLoc = parser.getCurrentLocation();
|
|
if (failed(parser.parseColonType(functionType)))
|
|
return failure();
|
|
|
|
result.addTypes(functionType.getResults());
|
|
|
|
if (functionType.getNumInputs() != operands.size()) {
|
|
return parser.emitError(typeLoc)
|
|
<< "expected as many input types as operands "
|
|
<< "(expected " << operands.size() << " got "
|
|
<< functionType.getNumInputs() << ")";
|
|
}
|
|
|
|
// Resolve input operands.
|
|
if (failed(parser.resolveOperands(operands, functionType.getInputs(),
|
|
parser.getCurrentLocation(),
|
|
result.operands)))
|
|
return failure();
|
|
|
|
// Propagate the types into the region arguments.
|
|
for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
|
|
regionArgs[i].type = functionType.getInput(i);
|
|
|
|
return failure(parser.parseRegion(*cond, regionArgs) ||
|
|
parser.parseKeyword("do") || parser.parseRegion(*body) ||
|
|
parser.parseOptionalAttrDictWithKeyword(result.attributes));
|
|
}
|
|
|
|
static void printInitializationList(OpAsmPrinter &parser,
|
|
Block::BlockArgListType blocksArgs,
|
|
ValueRange initializers,
|
|
StringRef prefix = "") {
|
|
assert(blocksArgs.size() == initializers.size() &&
|
|
"expected same length of arguments and initializers");
|
|
if (initializers.empty())
|
|
return;
|
|
|
|
parser << prefix << '(';
|
|
llvm::interleaveComma(
|
|
llvm::zip(blocksArgs, initializers), parser,
|
|
[&](auto it) { parser << std::get<0>(it) << " = " << std::get<1>(it); });
|
|
parser << ")";
|
|
}
|
|
|
|
void WhileOp::print(OpAsmPrinter &parser) {
|
|
printInitializationList(parser, getCondGraph().front().getArguments(),
|
|
getInputList(), " ");
|
|
parser << " : ";
|
|
parser.printFunctionalType(getInputList().getTypes(),
|
|
getResults().getTypes());
|
|
parser << ' ';
|
|
parser.printRegion(getCondGraph(), /*printEntryBlockArgs=*/false);
|
|
parser << " do ";
|
|
parser.printRegion(getBodyGraph());
|
|
parser.printOptionalAttrDictWithKeyword((*this)->getAttrs());
|
|
}
|
|
|
|
// Create a rank-1 const tensor for zero point of the source tensor.
|
|
std::optional<Value> mlir::tosa::createZeroPointTensor(OpBuilder &builder,
|
|
Location loc,
|
|
Type srcElemType,
|
|
int64_t zp) {
|
|
srcElemType = getStorageElementTypeOrSelf(srcElemType);
|
|
auto zpType = mlir::RankedTensorType::get({1}, srcElemType);
|
|
if (llvm::isa<FloatType>(srcElemType)) {
|
|
auto zpAttr = DenseElementsAttr::get(
|
|
zpType, builder.getFloatAttr(srcElemType, static_cast<double>(zp)));
|
|
return builder.create<tosa::ConstOp>(loc, zpType, zpAttr);
|
|
}
|
|
if (llvm::isa<IntegerType>(srcElemType)) {
|
|
auto zpAttr =
|
|
DenseElementsAttr::get(zpType, builder.getIntegerAttr(srcElemType, zp));
|
|
return builder.create<tosa::ConstOp>(loc, zpType, zpAttr);
|
|
}
|
|
llvm::errs() << "zero point is not allowed for unsupported data types\n";
|
|
return std::nullopt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Shape and Shape Operators Helper functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool mlir::tosa::isa_tosa_shape_type(mlir::Type t) {
|
|
return mlir::isa<tosa::shapeType>(t);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::tosa::shapeType::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
int rank) {
|
|
if (rank < 0)
|
|
return emitError() << "invalid rank (must be >= 0): " << rank;
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::tosa::verifyTosaResolvableShapeOperands(Operation *op) {
|
|
for (auto v : op->getOperands()) {
|
|
if (mlir::isa<::mlir::tosa::shapeType>(v.getType())) {
|
|
Operation *definingOp = v.getDefiningOp();
|
|
if (!definingOp || !definingOp->hasTrait<TosaShapeOperator>()) {
|
|
return op->emitOpError("shape operand is not compile time resolvable");
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpTrait::tosa::verifyTosaShapeOperator(Operation *op) {
|
|
for (auto type : op->getOperandTypes()) {
|
|
if (!mlir::isa<mlir::tosa::shapeType>(type)) {
|
|
return op->emitOpError("must have operands with tosa shape type");
|
|
}
|
|
}
|
|
for (auto type : op->getResultTypes()) {
|
|
if (!mlir::isa<mlir::tosa::shapeType>(type)) {
|
|
return op->emitOpError("must have result with tosa shape type");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OpTrait::tosa::verifyTosaShapeOperatorWithSameRanks(Operation *op) {
|
|
if (failed(OpTrait::impl::verifyAtLeastNOperands(op, 1)) ||
|
|
failed(verifyTosaShapeOperator(op)))
|
|
return failure();
|
|
|
|
// delegate function that returns rank of shape type
|
|
auto getRank = [](const Type type) {
|
|
return mlir::cast<mlir::tosa::shapeType>(type).getRank();
|
|
};
|
|
auto operandTypes = op->getOperandTypes();
|
|
auto resultTypes = op->getResultTypes();
|
|
|
|
auto rank = getRank(*op->getOperandTypes().begin());
|
|
for (auto type : operandTypes) {
|
|
if (getRank(type) != rank) {
|
|
return op->emitOpError("operands don't have matching ranks");
|
|
}
|
|
}
|
|
for (auto type : resultTypes) {
|
|
if (getRank(type) != rank) {
|
|
return op->emitOpError("result shape has different rank than operands");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Shape Operators verify functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult tosa::ConstShapeOp::verify() {
|
|
// check one dimensional rank
|
|
auto valuesRank = getValues().getType().getRank();
|
|
if (valuesRank != 1)
|
|
return emitOpError("expect elements in attribute values with rank 1");
|
|
// check that number of elements in values attr equal to rank of result shape
|
|
auto count = getValues().getNumElements();
|
|
auto rank = (cast<tosa::shapeType>(getResult().getType())).getRank();
|
|
if (!(count == rank || (count == 1 && rank == 0))) {
|
|
return emitOpError("expect number of elements in attribute values (")
|
|
<< count << ") to be equal to the rank (" << rank
|
|
<< ") for the result shape type";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Attribute Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Type Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
#define GET_TYPEDEF_CLASSES
|
|
#include "mlir/Dialect/Tosa/IR/TosaOpsTypesBase.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TOSA Operator Definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"
|