
The motivation is to avoid having to negate `isDynamic*` checks, avoid double negations, and allow for `ShapedType::isStaticDim` to be used in ADT functions without having to wrap it in a lambda performing the negation. Also add the new functions to C and Python bindings.
1633 lines
70 KiB
C++
1633 lines
70 KiB
C++
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pass that converts sparse tensor types and primitives to actual compiler
|
|
// visible buffers and actual compiler IR that implements these primitives on
|
|
// the selected sparse tensor storage schemes. This pass provides an alternative
|
|
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
|
|
// support library (other than for file I/O), and providing many more
|
|
// opportunities for subsequent compiler optimization of the generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Utils/CodegenUtils.h"
|
|
#include "Utils/SparseTensorDescriptor.h"
|
|
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Flatten the given value ranges into a single vector of values.
|
|
static SmallVector<Value> flattenValues(ArrayRef<ValueRange> values) {
|
|
SmallVector<Value> result;
|
|
for (const auto &vals : values)
|
|
llvm::append_range(result, vals);
|
|
return result;
|
|
}
|
|
|
|
/// Generates a load with proper `index` typing.
|
|
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
|
|
idx = genCast(builder, loc, idx, builder.getIndexType());
|
|
return builder.create<memref::LoadOp>(loc, mem, idx);
|
|
}
|
|
|
|
/// Generates a store with proper `index` typing and proper value.
|
|
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
|
|
Value idx) {
|
|
idx = genCast(builder, loc, idx, builder.getIndexType());
|
|
val = genCast(builder, loc, val,
|
|
cast<ShapedType>(mem.getType()).getElementType());
|
|
builder.create<memref::StoreOp>(loc, val, mem, idx);
|
|
}
|
|
|
|
/// Creates a straightforward counting for-loop.
|
|
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
|
|
MutableArrayRef<Value> fields,
|
|
Value lower = Value()) {
|
|
Type indexType = builder.getIndexType();
|
|
if (!lower)
|
|
lower = constantZero(builder, loc, indexType);
|
|
Value one = constantOne(builder, loc, indexType);
|
|
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
|
|
for (unsigned i = 0, e = fields.size(); i < e; i++)
|
|
fields[i] = forOp.getRegionIterArg(i);
|
|
builder.setInsertionPointToStart(forOp.getBody());
|
|
return forOp;
|
|
}
|
|
|
|
/// Creates a push back operation.
|
|
static void createPushback(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc,
|
|
SparseTensorFieldKind kind, std::optional<Level> lvl,
|
|
Value value, Value repeat = Value()) {
|
|
Type etp = desc.getMemRefElementType(kind, lvl);
|
|
Value field = desc.getMemRefField(kind, lvl);
|
|
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
|
|
|
|
auto pushBackOp = builder.create<PushBackOp>(
|
|
loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
|
|
genCast(builder, loc, value, etp), repeat);
|
|
|
|
desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
|
|
desc.setSpecifierField(builder, loc, specFieldKind, lvl,
|
|
pushBackOp.getNewSize());
|
|
}
|
|
|
|
/// Generates code that allocates a sparse storage scheme for given rank.
|
|
static void allocSchemeForRank(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc, Level startLvl) {
|
|
const SparseTensorType stt(desc.getRankedTensorType());
|
|
Value linear = constantIndex(builder, loc, 1);
|
|
const Level lvlRank = stt.getLvlRank();
|
|
for (Level lvl = startLvl; lvl < lvlRank; lvl++) {
|
|
const auto lt = stt.getLvlType(lvl);
|
|
if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
|
|
// Append linear x positions, initialized to zero. Since each compressed
|
|
// dimension initially already has a single zero entry, this maintains
|
|
// the desired "linear + 1" length property at all times. For loose
|
|
// compression, we multiply linear by two in order to append both the
|
|
// lo/hi positions.
|
|
Value posZero = constantZero(builder, loc, stt.getPosType());
|
|
if (isLooseCompressedLT(lt)) {
|
|
Value two = constantIndex(builder, loc, 2);
|
|
linear = builder.create<arith::MulIOp>(loc, linear, two);
|
|
}
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
|
|
/*value=*/posZero, /*repeat=*/linear);
|
|
return;
|
|
} else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
|
|
return; // nothing to do
|
|
}
|
|
// Keep compounding the size, but nothing needs to be initialized
|
|
// at this level. We will eventually reach a compressed level or
|
|
// otherwise the values array for the from-here "all-dense" case.
|
|
assert(isDenseLT(lt));
|
|
Value size = desc.getLvlSize(builder, loc, lvl);
|
|
linear = builder.create<arith::MulIOp>(loc, linear, size);
|
|
}
|
|
// Reached values array so prepare for an insertion.
|
|
Value valZero = constantZero(builder, loc, stt.getElementType());
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
|
|
std::nullopt, /*value=*/valZero, /*repeat=*/linear);
|
|
}
|
|
|
|
/// Creates allocation operation.
|
|
static Value createAllocation(OpBuilder &builder, Location loc,
|
|
MemRefType memRefType, Value sz,
|
|
bool enableInit) {
|
|
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
|
|
Type elemType = memRefType.getElementType();
|
|
if (enableInit) {
|
|
Value fillValue = constantZero(builder, loc, elemType);
|
|
builder.create<linalg::FillOp>(loc, fillValue, buffer);
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
/// Creates the dim sizes array, filling in from dynamic sizes.
|
|
static void createDimSizes(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt, ValueRange dynSizes,
|
|
/*out*/ SmallVectorImpl<Value> &dimSizesValues) {
|
|
const Dimension dimRank = stt.getDimRank();
|
|
dimSizesValues.clear();
|
|
dimSizesValues.reserve(dimRank);
|
|
unsigned i = 0;
|
|
for (const Size sz : stt.getDimShape())
|
|
dimSizesValues.push_back(ShapedType::isDynamic(sz)
|
|
? dynSizes[i++]
|
|
: constantIndex(builder, loc, sz));
|
|
}
|
|
|
|
/// Creates allocation for each field in sparse tensor type. Note that
|
|
/// for all dynamic memrefs in the sparse tensor stroage layout, the
|
|
/// memory size is really the capacity of the "vector", while the actual
|
|
/// size resides in the sizes array.
|
|
static void createAllocFields(OpBuilder &builder, Location loc,
|
|
SparseTensorType stt, bool enableInit,
|
|
Value sizeHint,
|
|
SmallVectorImpl<Value> &lvlSizesValues,
|
|
/*out*/ SmallVectorImpl<Value> &fields) {
|
|
Level lvlRank = stt.getLvlRank();
|
|
// Set up some heuristic sizes. We try to set the initial
|
|
// size based on available information. Otherwise we just
|
|
// initialize a few elements to start the reallocation chain.
|
|
// TODO: refine this
|
|
Value posHeuristic, crdHeuristic, valHeuristic;
|
|
if (stt.isAllDense()) {
|
|
valHeuristic = lvlSizesValues[0];
|
|
for (Level lvl = 1; lvl < lvlRank; lvl++)
|
|
valHeuristic =
|
|
builder.create<arith::MulIOp>(loc, valHeuristic, lvlSizesValues[lvl]);
|
|
} else if (sizeHint) {
|
|
if (stt.getAoSCOOStart() == 0) {
|
|
posHeuristic = constantIndex(builder, loc, 2);
|
|
crdHeuristic = builder.create<arith::MulIOp>(
|
|
loc, constantIndex(builder, loc, lvlRank), sizeHint); // AOS
|
|
} else if (lvlRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
|
|
posHeuristic = builder.create<arith::AddIOp>(
|
|
loc, sizeHint, constantIndex(builder, loc, 1));
|
|
crdHeuristic = sizeHint;
|
|
} else {
|
|
posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
|
|
}
|
|
valHeuristic = sizeHint;
|
|
} else {
|
|
posHeuristic = crdHeuristic = valHeuristic =
|
|
constantIndex(builder, loc, 16);
|
|
}
|
|
// Initializes all fields. An initial storage specifier and allocated
|
|
// positions/coordinates/values memrefs (with heuristic capacity).
|
|
foreachFieldAndTypeInSparseTensor(
|
|
stt,
|
|
[&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
|
|
enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
|
|
Level /*lvl*/, LevelType /*lt*/) -> bool {
|
|
assert(fields.size() == fIdx);
|
|
Value field;
|
|
switch (fKind) {
|
|
case SparseTensorFieldKind::StorageSpec:
|
|
field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
|
|
break;
|
|
case SparseTensorFieldKind::PosMemRef:
|
|
field = createAllocation(builder, loc, cast<MemRefType>(fType),
|
|
posHeuristic, enableInit);
|
|
break;
|
|
case SparseTensorFieldKind::CrdMemRef:
|
|
field = createAllocation(builder, loc, cast<MemRefType>(fType),
|
|
crdHeuristic, enableInit);
|
|
break;
|
|
case SparseTensorFieldKind::ValMemRef:
|
|
field = createAllocation(builder, loc, cast<MemRefType>(fType),
|
|
valHeuristic, enableInit);
|
|
break;
|
|
}
|
|
assert(field);
|
|
fields.push_back(field);
|
|
// Returns true to continue the iteration.
|
|
return true;
|
|
});
|
|
// Initialize the storage scheme to an empty tensor. Sets the lvlSizes
|
|
// and gives all position fields an initial zero entry, so that it is
|
|
// easier to maintain the "linear + 1" length property.
|
|
MutSparseTensorDescriptor desc(stt, fields);
|
|
Value posZero = constantZero(builder, loc, stt.getPosType());
|
|
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
|
|
desc.setLvlSize(builder, loc, lvl, lvlSizesValues[lvl]);
|
|
const auto lt = stt.getLvlType(lvl);
|
|
if (isCompressedLT(lt) || isLooseCompressedLT(lt))
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
|
|
/*value=*/posZero);
|
|
}
|
|
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
|
|
}
|
|
|
|
/// Helper method that generates block specific to compressed case:
|
|
///
|
|
/// // given: parentPos = posCursor[lvl-1]
|
|
/// pstart = desc.positions[lvl][parentPos]
|
|
/// pstop = desc.positions[lvl][parentPos+1]
|
|
/// plast = pstop - 1
|
|
/// msz = desc.coordinates[lvl].size()
|
|
/// if (pstart < pstop) {
|
|
/// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
|
|
/// } else { // first insertion
|
|
/// isPresent = false
|
|
/// desc.positions[lvl][parentPos] = msz
|
|
/// }
|
|
/// if (isPresent) { // coordinate is already present
|
|
/// pnext = plast
|
|
/// } else {
|
|
/// desc.coordinates[lvl].push_back(lvlCoords[lvl])
|
|
/// desc.positions[lvl][parentPos+1] = msz+1
|
|
/// pnext = msz
|
|
/// <prepare level lvl+1>
|
|
/// }
|
|
/// posCursor[lvl] = pnext
|
|
static Value genCompressed(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc, ValueRange lvlCoords,
|
|
Value /*unused*/, Value parentPos, Level lvl) {
|
|
const SparseTensorType stt(desc.getRankedTensorType());
|
|
const Level lvlRank = stt.getLvlRank();
|
|
assert(lvl < lvlRank && "Level is out of bounds");
|
|
assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
|
|
"Level-rank mismatch");
|
|
SmallVector<Type> types;
|
|
Type indexType = builder.getIndexType();
|
|
Type boolType = builder.getIntegerType(1);
|
|
unsigned crdFidx;
|
|
unsigned crdStride;
|
|
std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
|
|
const Value one = constantIndex(builder, loc, 1);
|
|
const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
|
|
const Value positionsAtLvl = desc.getPosMemRef(lvl);
|
|
const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
|
|
const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
|
|
const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
|
|
const Value crdStrideC =
|
|
crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
|
|
const Value msz =
|
|
crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
|
|
: crdMsz;
|
|
const Value plast = builder.create<arith::SubIOp>(
|
|
loc, genCast(builder, loc, pstop, indexType), one);
|
|
// Conditional expression.
|
|
Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
|
|
pstart, pstop);
|
|
types.push_back(boolType);
|
|
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
|
|
types.pop_back();
|
|
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
|
|
Value crd =
|
|
genLoad(builder, loc, desc.getMemRefField(crdFidx),
|
|
crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
|
|
: plast);
|
|
Value eq = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
|
|
lvlCoords[lvl]);
|
|
builder.create<scf::YieldOp>(loc, eq);
|
|
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
|
|
if (lvl > 0)
|
|
genStore(builder, loc, msz, positionsAtLvl, parentPos);
|
|
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
|
|
builder.setInsertionPointAfter(ifOp1);
|
|
// If present construct. Note that for a non-unique dimension level, we
|
|
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
|
|
//
|
|
// TODO: generate less temporary IR?
|
|
//
|
|
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
|
|
types.push_back(desc.getField(i).getType());
|
|
types.push_back(indexType);
|
|
const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
|
|
: constantI1(builder, loc, false);
|
|
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
|
|
// If present (fields unaffected, update pnext to plast).
|
|
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
|
|
|
|
// FIXME: This does not looks like a clean way, but probably the most
|
|
// efficient way.
|
|
desc.getFields().push_back(plast);
|
|
builder.create<scf::YieldOp>(loc, desc.getFields());
|
|
desc.getFields().pop_back();
|
|
|
|
// If !present (changes fields, update pnext).
|
|
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
|
|
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
|
|
genStore(builder, loc, mszp1, positionsAtLvl, pp1);
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
|
|
/*value=*/lvlCoords[lvl]);
|
|
// Prepare the next level "as needed".
|
|
if ((lvl + 1) < lvlRank)
|
|
allocSchemeForRank(builder, loc, desc, lvl + 1);
|
|
|
|
desc.getFields().push_back(msz);
|
|
builder.create<scf::YieldOp>(loc, desc.getFields());
|
|
desc.getFields().pop_back();
|
|
|
|
// Update fields and return next pos.
|
|
builder.setInsertionPointAfter(ifOp2);
|
|
unsigned o = 0;
|
|
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
|
|
desc.setField(i, ifOp2.getResult(o++));
|
|
return ifOp2.getResult(o);
|
|
}
|
|
|
|
/// Generates insertion finalization code.
|
|
static void genEndInsert(OpBuilder &builder, Location loc,
|
|
SparseTensorDescriptor desc) {
|
|
const SparseTensorType stt(desc.getRankedTensorType());
|
|
const Level lvlRank = stt.getLvlRank();
|
|
for (Level lvl = 0; lvl < lvlRank; lvl++) {
|
|
const auto lt = stt.getLvlType(lvl);
|
|
if (isCompressedLT(lt)) {
|
|
// Compressed dimensions need a position cleanup for all entries
|
|
// that were not visited during the insertion pass.
|
|
//
|
|
// TODO: avoid cleanup and keep compressed scheme consistent at all
|
|
// times?
|
|
//
|
|
if (lvl > 0) {
|
|
Type posType = stt.getPosType();
|
|
Value posMemRef = desc.getPosMemRef(lvl);
|
|
Value hi = desc.getPosMemSize(builder, loc, lvl);
|
|
Value zero = constantIndex(builder, loc, 0);
|
|
Value one = constantIndex(builder, loc, 1);
|
|
// Vector of only one, but needed by createFor's prototype.
|
|
SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
|
|
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
|
|
Value i = loop.getInductionVar();
|
|
Value oldv = loop.getRegionIterArg(0);
|
|
Value newv = genLoad(builder, loc, posMemRef, i);
|
|
Value posZero = constantZero(builder, loc, posType);
|
|
Value cond = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, newv, posZero);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
|
|
cond, /*else*/ true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
genStore(builder, loc, oldv, posMemRef, i);
|
|
builder.create<scf::YieldOp>(loc, oldv);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, newv);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointAfter(loop);
|
|
}
|
|
} else {
|
|
assert(isDenseLT(lt) || isLooseCompressedLT(lt) || isSingletonLT(lt) ||
|
|
isNOutOfMLT(lt));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generates a subview into the sizes.
|
|
static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem,
|
|
Value sz) {
|
|
auto memTp = llvm::cast<MemRefType>(mem.getType());
|
|
// For higher-dimensional memrefs, we assume that the innermost
|
|
// dimension is always of the right size.
|
|
// TODO: generate complex truncating view here too?
|
|
if (memTp.getRank() > 1)
|
|
return mem;
|
|
// Truncate linear memrefs to given size.
|
|
return builder
|
|
.create<memref::SubViewOp>(
|
|
loc, MemRefType::get({ShapedType::kDynamic}, memTp.getElementType()),
|
|
mem, ValueRange{}, ValueRange{sz}, ValueRange{},
|
|
ArrayRef<int64_t>{0}, // static offset
|
|
ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
|
|
ArrayRef<int64_t>{1}) // static stride
|
|
.getResult();
|
|
}
|
|
|
|
/// Creates the reassociation array.
|
|
static SmallVector<ReassociationIndices>
|
|
getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls) {
|
|
SmallVector<ReassociationIndices> ret(batchLvls + 1, {});
|
|
// Create reassociation in the form:
|
|
// {0}, {1}, ..., {batchLvl - 1}, {batchLvl, ..., rank}
|
|
for (unsigned i = 0; i < batchLvls; i++)
|
|
ret[i].push_back(i);
|
|
|
|
for (int i = batchLvls, e = srcTp.getRank(); i < e; i++)
|
|
ret.back().push_back(i);
|
|
|
|
return ret;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Codegen rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Helper class to help lowering sparse_tensor.insert operation.
|
|
class SparseInsertGenerator
|
|
: public FuncCallOrInlineGenerator<SparseInsertGenerator> {
|
|
public:
|
|
SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
|
|
bool genCall)
|
|
: FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
|
|
|
|
/// Generates code along an insertion path without the need for a "cursor".
|
|
/// This current insertion strategy comes at the expense of some testing
|
|
/// overhead for each insertion. The strategy will be optimized later for
|
|
/// common insertion patterns. The current insertion strategy also assumes
|
|
/// insertions occur in "a reasonable order" that enables building the
|
|
/// storage scheme in an appending/inserting kind of fashion (i.e. no
|
|
/// in-between insertions that need data movement). The implementation
|
|
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
|
|
///
|
|
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
|
|
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
|
|
OpBuilder &builder, Location loc) {
|
|
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
|
|
const Level lvlRank = stt.getLvlRank();
|
|
// Extract fields and coordinates from args.
|
|
SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
|
|
MutSparseTensorDescriptor desc(stt, fields);
|
|
const SmallVector<Value> coords =
|
|
llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
|
|
Value value = args.back();
|
|
Value parentPos = constantZero(builder, loc, builder.getIndexType());
|
|
// Generate code for every level.
|
|
for (Level lvl = 0; lvl < lvlRank; lvl++) {
|
|
const auto lt = stt.getLvlType(lvl);
|
|
if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
|
|
// Create:
|
|
// if (!present) {
|
|
// coordinates[lvl].push_back(coords[lvl])
|
|
// <update positions and prepare level lvl + 1>
|
|
// }
|
|
// positions[lvl] = coordinates.size() - 1
|
|
// <insert @ positions[lvl] at next level lvl + 1>
|
|
if (isLooseCompressedLT(lt)) {
|
|
Value two = constantIndex(builder, loc, 2);
|
|
parentPos = builder.create<arith::MulIOp>(loc, parentPos, two);
|
|
}
|
|
parentPos =
|
|
genCompressed(builder, loc, desc, coords, value, parentPos, lvl);
|
|
} else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
|
|
// Create:
|
|
// coordinates[lvl].push_back(coords[lvl])
|
|
// positions[lvl] = positions[lvl-1]
|
|
// <insert @ positions[lvl] at next level lvl + 1>
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef,
|
|
lvl, /*value=*/coords[lvl]);
|
|
} else {
|
|
assert(isDenseLT(lt));
|
|
// Construct the new position as:
|
|
// positions[lvl] = size * positions[lvl-1] + coords[lvl]
|
|
// <insert @ positions[lvl] at next level lvl + 1>
|
|
Value size = desc.getLvlSize(builder, loc, lvl);
|
|
Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
|
|
parentPos = builder.create<arith::AddIOp>(loc, mult, coords[lvl]);
|
|
}
|
|
}
|
|
// Reached the actual value append/insert.
|
|
if (!stt.isDenseLvl(lvlRank - 1))
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
|
|
std::nullopt, value);
|
|
else
|
|
genStore(builder, loc, value, desc.getValMemRef(), parentPos);
|
|
return fields;
|
|
}
|
|
|
|
std::string getMangledFuncName() {
|
|
// The mangled name of the function has this format:
|
|
// <namePrefix>_<LT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
|
|
constexpr const char kInsertFuncNamePrefix[] = "_insert_";
|
|
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
|
|
SmallString<32> nameBuffer;
|
|
llvm::raw_svector_ostream nameOstream(nameBuffer);
|
|
nameOstream << kInsertFuncNamePrefix;
|
|
const Level lvlRank = stt.getLvlRank();
|
|
for (Level l = 0; l < lvlRank; l++) {
|
|
std::string lvlType = toMLIRString(stt.getLvlType(l));
|
|
// Replace/remove punctuations in level properties.
|
|
std::replace_if(
|
|
lvlType.begin(), lvlType.end(),
|
|
[](char c) { return c == '(' || c == ','; }, '_');
|
|
llvm::erase_if(lvlType, [](char c) { return c == ')' || c == ' '; });
|
|
nameOstream << lvlType << "_";
|
|
}
|
|
// Static dim sizes are used in the generated code while dynamic sizes are
|
|
// loaded from the dimSizes buffer. This is the reason for adding the shape
|
|
// to the function name.
|
|
for (const auto sz : stt.getDimShape())
|
|
nameOstream << sz << "_";
|
|
// Permutation information is also used in generating insertion.
|
|
if (!stt.isIdentity())
|
|
nameOstream << stt.getDimToLvl() << "_";
|
|
nameOstream << stt.getElementType() << "_";
|
|
nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
|
|
return nameOstream.str().str();
|
|
}
|
|
|
|
private:
|
|
TensorType rtp;
|
|
};
|
|
|
|
/// Sparse tensor storage conversion rule for returns.
|
|
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Create a return with the flattened value extracted from sparse tensors.
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(
|
|
op, flattenValues(adaptor.getOperands()));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse tensor storage conversion rule for calls.
|
|
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
|
|
public:
|
|
// The default CallOp converter can not handle 1:N type conversion.
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::CallOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// In case of:
|
|
// sparse_tensor, f, sparse_tensor = call @foo(...)
|
|
// ==>
|
|
// memref..., f, memref = call @foo(...) replace with
|
|
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
|
|
SmallVector<Type> finalRetTy;
|
|
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
|
|
return failure();
|
|
|
|
// (1) Generates new call with flattened return value.
|
|
auto newCall = rewriter.create<func::CallOp>(
|
|
loc, op.getCallee(), finalRetTy, flattenValues(adaptor.getOperands()));
|
|
// (2) Gather sparse tensor returns.
|
|
SmallVector<SmallVector<Value>> packedResultVals;
|
|
// Tracks the offset of current return value (of the original call)
|
|
// relative to the new call (after sparse tensor flattening);
|
|
unsigned retOffset = 0;
|
|
// Temporal buffer to hold the flattened list of type for
|
|
// a sparse tensor.
|
|
SmallVector<Type> sparseFlat;
|
|
for (auto ret : op.getResults()) {
|
|
assert(retOffset < newCall.getNumResults());
|
|
auto retType = ret.getType();
|
|
if (failed(typeConverter->convertType(retType, sparseFlat)))
|
|
llvm_unreachable("Failed to convert type in sparse tensor codegen");
|
|
|
|
// Converted types can not be empty when the type conversion succeed.
|
|
assert(!sparseFlat.empty());
|
|
if (sparseFlat.size() > 1) {
|
|
auto flatSize = sparseFlat.size();
|
|
packedResultVals.emplace_back();
|
|
llvm::append_range(packedResultVals.back(),
|
|
newCall.getResults().slice(retOffset, flatSize));
|
|
retOffset += flatSize;
|
|
} else {
|
|
// If this is an 1:1 conversion, no need for casting.
|
|
packedResultVals.emplace_back();
|
|
packedResultVals.back().push_back(newCall.getResult(retOffset));
|
|
retOffset++;
|
|
}
|
|
sparseFlat.clear();
|
|
}
|
|
|
|
assert(packedResultVals.size() == op.getNumResults());
|
|
rewriter.replaceOpWithMultiple(op, std::move(packedResultVals));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for level accesses.
|
|
class SparseLvlOpConverter : public OpConversionPattern<LvlOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LvlOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
std::optional<int64_t> lvl = op.getConstantLvlIndex();
|
|
RankedTensorType srcType = op.getSource().getType();
|
|
if (!lvl || !getSparseTensorEncoding(srcType))
|
|
return failure();
|
|
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getSource(), srcType);
|
|
auto sz = desc.getLvlSize(rewriter, op.getLoc(), *lvl);
|
|
|
|
rewriter.replaceOp(op, sz);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// TODO: use a new SortCOO operation here instead of reusing convert op.
|
|
struct SparseReorderCOOConverter : public OpConversionPattern<ReorderCOOOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ReorderCOOOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
MLIRContext *ctx = op.getContext();
|
|
|
|
SparseTensorType srcStt = getSparseTensorType(op.getInputCoo());
|
|
SparseTensorType dstStt = getSparseTensorType(op.getResultCoo());
|
|
|
|
// Should have been verified.
|
|
assert(dstStt.isAllOrdered() && !srcStt.isAllOrdered() &&
|
|
dstStt.isCOOType() && srcStt.isCOOType());
|
|
assert(dstStt.hasSameDimToLvl(srcStt));
|
|
|
|
// We don't need a mutable descriptor here as we perform sorting in-place.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getInputCoo(),
|
|
op.getInputCoo().getType());
|
|
auto nnz = desc.getValMemSize(rewriter, op.getLoc());
|
|
auto crd = desc.getAOSMemRef();
|
|
auto val = desc.getValMemRef();
|
|
|
|
// Otherwise we need another data shuffle and a non-identity map.
|
|
assert(dstStt.hasSameDimToLvl(srcStt));
|
|
(void)dstStt; // to silence warning when assertion is disabled
|
|
|
|
auto id = AffineMap::getMultiDimIdentityMap(srcStt.getLvlRank(), ctx);
|
|
|
|
rewriter.create<SortOp>(loc, nnz, crd, ValueRange{val}, id,
|
|
rewriter.getIndexAttr(0), op.getAlgorithm());
|
|
|
|
// Since we do in-place sorting, the destinate tensor will have the same set
|
|
// of memrefs as the source tensor.
|
|
rewriter.replaceOpWithMultiple(op, {adaptor.getInputCoo()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename Op, StorageSpecifierKind kind>
|
|
class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
|
|
public:
|
|
using OpConversionPattern<Op>::OpConversionPattern;
|
|
using typename OpConversionPattern<Op>::OneToNOpAdaptor;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(Op op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Simply lowers to specifer.get <field> operation.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getSlice(),
|
|
op.getSlice().getType());
|
|
auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
|
|
op.getDim().getZExtValue());
|
|
|
|
rewriter.replaceOp(op, v);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for trivial tensor casts.
|
|
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::CastOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite identically annotated source/dest.
|
|
auto encDst = getSparseTensorEncoding(op.getType());
|
|
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
|
|
if (!encDst || encDst != encSrc)
|
|
return failure();
|
|
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ReinterpretMapOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Simply fold the operation.
|
|
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the alloc operator.
|
|
class SparseTensorAllocConverter
|
|
: public OpConversionPattern<bufferization::AllocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorAllocConverter(const TypeConverter &typeConverter,
|
|
MLIRContext *context, bool enableInit)
|
|
: OpConversionPattern(typeConverter, context),
|
|
enableBufferInitialization(enableInit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::AllocTensorOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
const auto resType = getSparseTensorType(op);
|
|
if (!resType.hasEncoding())
|
|
return failure();
|
|
|
|
Location loc = op.getLoc();
|
|
// Deal with copy.
|
|
if (op.getCopy()) {
|
|
auto desc = getDescriptorFromTensorTuple(
|
|
adaptor.getCopy(), cast<RankedTensorType>(op.getCopy().getType()));
|
|
SmallVector<Value> fields;
|
|
fields.reserve(desc.getNumFields());
|
|
// Memcpy on memref fields.
|
|
for (auto field : desc.getMemRefFields()) {
|
|
auto memrefTp = cast<MemRefType>(field.getType());
|
|
auto size = rewriter.create<memref::DimOp>(loc, field, 0);
|
|
auto copied =
|
|
rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
|
|
rewriter.create<memref::CopyOp>(loc, field, copied);
|
|
fields.push_back(copied);
|
|
}
|
|
// Reuses specifier.
|
|
fields.push_back(desc.getSpecifier());
|
|
assert(fields.size() == desc.getNumFields());
|
|
rewriter.replaceOpWithMultiple(op, {fields});
|
|
return success();
|
|
}
|
|
|
|
if (!resType.isIdentity()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "try run --sparse-reinterpret-map before codegen");
|
|
}
|
|
// Level size equals to dimension size since lvl2dim map is an identity map.
|
|
SmallVector<Value> lvlSizesValues;
|
|
createDimSizes(rewriter, loc, resType,
|
|
flattenValues(adaptor.getDynamicSizes()),
|
|
/*dimSizesValues=*/lvlSizesValues);
|
|
|
|
// Construct allocation for each field.
|
|
Value sizeHint = op.getSizeHint();
|
|
SmallVector<Value> fields;
|
|
createAllocFields(rewriter, loc, resType, enableBufferInitialization,
|
|
sizeHint, lvlSizesValues, fields);
|
|
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {fields});
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool enableBufferInitialization;
|
|
};
|
|
|
|
/// Sparse codegen rule for the empty tensor operator.
|
|
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorEmptyConverter(const TypeConverter &typeConverter,
|
|
MLIRContext *context, bool enableInit)
|
|
: OpConversionPattern(typeConverter, context),
|
|
enableBufferInitialization(enableInit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
const auto resType = getSparseTensorType(op);
|
|
if (!resType.hasEncoding())
|
|
return failure();
|
|
|
|
if (!resType.isIdentity()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "try run --sparse-reinterpret-map before codegen");
|
|
}
|
|
|
|
Location loc = op.getLoc();
|
|
// Level size equals to dimension size since lvl2dim map is an identity map.
|
|
SmallVector<Value> lvlSizesValues;
|
|
createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
|
|
/*dimSizesValues=*/lvlSizesValues);
|
|
// Construct allocation for each field.
|
|
Value sizeHint; // none
|
|
SmallVector<Value> fields;
|
|
createAllocFields(rewriter, loc, resType, enableBufferInitialization,
|
|
sizeHint, lvlSizesValues, fields);
|
|
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {fields});
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool enableBufferInitialization;
|
|
};
|
|
|
|
/// Sparse codegen rule for the dealloc operator.
|
|
class SparseTensorDeallocConverter
|
|
: public OpConversionPattern<bufferization::DeallocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorDeallocConverter(const TypeConverter &typeConverter,
|
|
MLIRContext *context, bool createDeallocs)
|
|
: OpConversionPattern(typeConverter, context),
|
|
createDeallocs(createDeallocs) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::DeallocTensorOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto enc = getSparseTensorEncoding(op.getTensor().getType());
|
|
if (!enc)
|
|
return failure();
|
|
|
|
// If user requests not to deallocate sparse tensors, simply erase the
|
|
// operation.
|
|
if (createDeallocs) {
|
|
// Replace the sparse tensor deallocation with field deallocations.
|
|
Location loc = op.getLoc();
|
|
auto desc = getDescriptorFromTensorTuple(
|
|
adaptor.getTensor(),
|
|
cast<RankedTensorType>(op.getTensor().getType()));
|
|
for (auto input : desc.getMemRefFields())
|
|
// Deallocate every buffer used to store the sparse tensor handler.
|
|
rewriter.create<memref::DeallocOp>(loc, input);
|
|
}
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
const bool createDeallocs;
|
|
};
|
|
|
|
/// Sparse codegen rule for tensor rematerialization.
|
|
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LoadOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Prepare descriptor.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
// Generate optional insertion finalization code.
|
|
if (op.getHasInserts())
|
|
genEndInsert(rewriter, op.getLoc(), desc);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the expand op.
|
|
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ExpandOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (!getSparseTensorEncoding(op.getTensor().getType()))
|
|
return failure();
|
|
Location loc = op->getLoc();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
const auto srcType = getSparseTensorType(op.getTensor());
|
|
Type eltType = srcType.getElementType();
|
|
Type boolType = rewriter.getIntegerType(1);
|
|
Type idxType = rewriter.getIndexType();
|
|
// All initialization should be done on entry of the loop nest.
|
|
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
|
|
|
|
// Determine the size for access expansion (always the innermost stored
|
|
// level size).
|
|
const auto sz = desc.getLvlSize(rewriter, loc, srcType.getLvlRank() - 1);
|
|
// Generate a memref for `sz` elements of type `t`.
|
|
const auto genAlloc = [&](Type t) {
|
|
const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
|
|
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
|
|
};
|
|
// Allocate temporary buffers for values/filled-switch and added.
|
|
// We do not use stack buffers for this, since the expanded size may
|
|
// be rather large (as it envelops a single expanded dense dimension).
|
|
Value values = genAlloc(eltType);
|
|
Value filled = genAlloc(boolType);
|
|
Value added = genAlloc(idxType);
|
|
Value zero = constantZero(rewriter, loc, idxType);
|
|
// Reset the values/filled-switch to all-zero/false. Note that this
|
|
// introduces an O(N) operation into the computation, but this reset
|
|
// operation is amortized over the innermost loops for the access
|
|
// pattern expansion. As noted in the operation doc, we would like
|
|
// to amortize this setup cost even between kernels.
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, eltType)},
|
|
ValueRange{values});
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, boolType)},
|
|
ValueRange{filled});
|
|
// Replace expansion op with these buffers and initial coordinate.
|
|
assert(op.getNumResults() == 4);
|
|
rewriter.replaceOp(op, {values, filled, added, zero});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the compress operator.
|
|
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(CompressOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields,
|
|
op.getTensor().getType());
|
|
Value values = llvm::getSingleElement(adaptor.getValues());
|
|
Value filled = llvm::getSingleElement(adaptor.getFilled());
|
|
Value added = llvm::getSingleElement(adaptor.getAdded());
|
|
Value count = llvm::getSingleElement(adaptor.getCount());
|
|
const SparseTensorType dstType(desc.getRankedTensorType());
|
|
Type eltType = dstType.getElementType();
|
|
|
|
// If the innermost level is ordered, we need to sort the coordinates
|
|
// in the "added" array prior to applying the compression.
|
|
if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
|
|
rewriter.create<SortOp>(
|
|
loc, count, added, ValueRange{}, rewriter.getMultiDimIdentityMap(1),
|
|
rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
|
|
// While performing the insertions, we also need to reset the elements
|
|
// of the values/filled-switch by only iterating over the set elements,
|
|
// to ensure that the runtime complexity remains proportional to the
|
|
// sparsity of the expanded access pattern.
|
|
//
|
|
// Generate
|
|
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
|
|
// crd = added[i];
|
|
// value = values[crd];
|
|
// insert({lvlCoords, crd}, value);
|
|
// new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
|
|
// values[crd] = 0;
|
|
// filled[crd] = false;
|
|
// yield new_memrefs
|
|
// }
|
|
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
|
|
Value i = loop.getInductionVar();
|
|
|
|
Value crd = genLoad(rewriter, loc, added, i);
|
|
Value value = genLoad(rewriter, loc, values, crd);
|
|
SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
|
|
SmallVector<Type> flatSpTensorTps = llvm::to_vector(
|
|
llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
|
|
SmallVector<Value> flatLvlCoords = flattenValues(adaptor.getLvlCoords());
|
|
params.append(flatLvlCoords.begin(), flatLvlCoords.end());
|
|
params.push_back(crd);
|
|
params.push_back(value);
|
|
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
|
|
params, /*genCall=*/true);
|
|
SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
|
|
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
|
|
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
|
|
rewriter.create<scf::YieldOp>(loc, insertRet);
|
|
|
|
rewriter.setInsertionPointAfter(loop);
|
|
// Deallocate the buffers on exit of the full loop nest.
|
|
Operation *parent = getTop(op);
|
|
rewriter.setInsertionPointAfter(parent);
|
|
rewriter.create<memref::DeallocOp>(loc, values);
|
|
rewriter.create<memref::DeallocOp>(loc, filled);
|
|
rewriter.create<memref::DeallocOp>(loc, added);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {loop->getResults()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the insert operator.
|
|
class SparseInsertConverter : public OpConversionPattern<tensor::InsertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::InsertOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto stt = getSparseTensorType(op.getDest());
|
|
if (!stt.hasEncoding())
|
|
return failure();
|
|
assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
|
|
|
|
Location loc = op.getLoc();
|
|
auto desc =
|
|
getDescriptorFromTensorTuple(adaptor.getDest(), op.getDest().getType());
|
|
TypeRange flatSpTensorTps = desc.getFields().getTypes();
|
|
SmallVector<Value> params = llvm::to_vector(desc.getFields());
|
|
SmallVector<Value> flatIndices = flattenValues(adaptor.getIndices());
|
|
params.append(flatIndices.begin(), flatIndices.end());
|
|
params.push_back(llvm::getSingleElement(adaptor.getScalar()));
|
|
SparseInsertGenerator insertGen(op.getDest().getType(), flatSpTensorTps,
|
|
params, /*genCall=*/true);
|
|
SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {ret});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for position accesses.
|
|
class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
|
|
public:
|
|
using OpAdaptor = typename ToPositionsOp::Adaptor;
|
|
using OpConversionPattern<ToPositionsOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToPositionsOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested position access with corresponding field.
|
|
// The view is restricted to the actual size to ensure clients
|
|
// of this operation truly observe size, not capacity!
|
|
Location loc = op.getLoc();
|
|
Level lvl = op.getLevel();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
auto mem = desc.getPosMemRef(lvl);
|
|
auto size = desc.getPosMemSize(rewriter, loc, lvl);
|
|
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for accessing the coordinates arrays.
|
|
class SparseToCoordinatesConverter
|
|
: public OpConversionPattern<ToCoordinatesOp> {
|
|
public:
|
|
using OpAdaptor = typename ToCoordinatesOp::Adaptor;
|
|
using OpConversionPattern<ToCoordinatesOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToCoordinatesOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested coordinates access with corresponding field.
|
|
// The view is restricted to the actual size to ensure clients
|
|
// of this operation truly observe size, not capacity!
|
|
Location loc = op.getLoc();
|
|
Level lvl = op.getLevel();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
auto mem = desc.getCrdMemRefOrView(rewriter, loc, lvl);
|
|
if (lvl < getSparseTensorType(op.getTensor()).getAoSCOOStart()) {
|
|
auto size = desc.getCrdMemSize(rewriter, loc, lvl);
|
|
mem = genSliceToSize(rewriter, loc, mem, size);
|
|
}
|
|
rewriter.replaceOp(op, mem);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for accessing the linear coordinates buffer.
|
|
class SparseToCoordinatesBufferConverter
|
|
: public OpConversionPattern<ToCoordinatesBufferOp> {
|
|
public:
|
|
using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
|
|
using OpConversionPattern<ToCoordinatesBufferOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToCoordinatesBufferOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested coordinates access with corresponding field.
|
|
// The view is restricted to the actual size to ensure clients
|
|
// of this operation truly observe size, not capacity!
|
|
Location loc = op.getLoc();
|
|
Level lvl = getSparseTensorType(op.getTensor()).getAoSCOOStart();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
auto mem = desc.getAOSMemRef();
|
|
auto size = desc.getCrdMemSize(rewriter, loc, lvl);
|
|
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for value accesses.
|
|
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
|
|
public:
|
|
using OpAdaptor = typename ToValuesOp::Adaptor;
|
|
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToValuesOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested values access with corresponding field.
|
|
// The view is restricted to the actual size to ensure clients
|
|
// of this operation truly observe size, not capacity!
|
|
Location loc = op.getLoc();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
auto mem = desc.getValMemRef();
|
|
auto size = desc.getValMemSize(rewriter, loc);
|
|
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the convert operator.
|
|
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ConvertOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
|
|
SparseTensorEncodingAttr encSrc =
|
|
getSparseTensorEncoding(op.getSource().getType());
|
|
// The output tensor can not be a slice and those cases should have been
|
|
// rejected by ConvertOp::verify() already.
|
|
assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
|
|
// Different encoding (except for different bitwidth) should be handled by
|
|
// rewriting.
|
|
// We need further rewrites if the input tensor is a slice too.
|
|
if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
|
|
encSrc.isSlice()) {
|
|
return failure();
|
|
}
|
|
|
|
Type retElemTp = op.getResult().getType().getElementType();
|
|
Type srcElemTp = op.getSource().getType().getElementType();
|
|
// Fold the trivial cases.
|
|
if (retElemTp == srcElemTp && encDst == encSrc) {
|
|
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
|
|
return success();
|
|
}
|
|
//
|
|
// Do element-wise type conversion without using InsertOp.
|
|
//
|
|
// for each memref in srcTensor:
|
|
// dst = memref.alloc
|
|
// if srcMemRefType != dstMemRefType:
|
|
// for every dst[i] = cast(src[i])
|
|
// else:
|
|
// dst = memref.copy(src)
|
|
Location loc = op.getLoc();
|
|
auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource(),
|
|
op.getSource().getType());
|
|
SmallVector<Value> fields;
|
|
foreachFieldAndTypeInSparseTensor(
|
|
SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
|
|
[&rewriter, &fields, srcDesc,
|
|
loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
|
|
LevelType /*lt*/) -> bool {
|
|
// Simply reuses the storage specifier as it is an SSA value.
|
|
if (fKind == SparseTensorFieldKind::StorageSpec) {
|
|
fields.push_back(srcDesc.getSpecifier());
|
|
} else {
|
|
// Allocates new memrefs
|
|
Value srcMem = srcDesc.getMemRefField(fIdx);
|
|
// TODO: We can instead use the actual memSize in specifier, that
|
|
// would require a subViewOp to avoid overflow when copying
|
|
// values.
|
|
Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
|
|
auto dstMem = rewriter.create<memref::AllocOp>(
|
|
loc, cast<MemRefType>(fTp), sz);
|
|
if (fTp != srcMem.getType()) {
|
|
// Converts elements type.
|
|
scf::buildLoopNest(
|
|
rewriter, loc, constantIndex(rewriter, loc, 0), sz,
|
|
constantIndex(rewriter, loc, 1),
|
|
[srcMem, &dstMem](OpBuilder &builder, Location loc,
|
|
ValueRange ivs) {
|
|
Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
|
|
Value casted = genCast(builder, loc, v,
|
|
dstMem.getType().getElementType());
|
|
builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
|
|
});
|
|
} else {
|
|
// TODO: We can even reuse the same memref for the new tensor,
|
|
// but that requires a `ref-counting` based memory management
|
|
// for shared memrefs between multiple sparse tensors.
|
|
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
|
|
}
|
|
fields.push_back(dstMem);
|
|
}
|
|
return true;
|
|
});
|
|
|
|
rewriter.replaceOpWithMultiple(op, {fields});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class SparseExtractSliceConverter
|
|
: public OpConversionPattern<tensor::ExtractSliceOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::ExtractSliceOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
MLIRContext *ctx = op.getContext();
|
|
auto srcEnc = getSparseTensorEncoding(op.getSourceType());
|
|
auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
|
|
// TODO: We should check these in ExtractSliceOp::verify.
|
|
if (!srcEnc || !dstEnc || !dstEnc.isSlice())
|
|
return failure();
|
|
assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());
|
|
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields,
|
|
op.getSource().getType());
|
|
|
|
auto newSpec = rewriter.create<StorageSpecifierInitOp>(
|
|
loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
|
|
desc.setSpecifier(newSpec);
|
|
|
|
// Fills in slice information.
|
|
for (auto [idx, offset, size, stride] : llvm::enumerate(
|
|
op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
|
|
Dimension dim = idx;
|
|
|
|
Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
|
|
Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
|
|
Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
|
|
// TODO: We could probably only set dynamic value here. But it would
|
|
// requires us to fill the hole when casting a static slice to dynamic
|
|
// slice.
|
|
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
|
|
dim, offsetV);
|
|
|
|
// FIXME: we need to distinguish level sizes and dimension size for slices
|
|
// here. Maybe we should store slice level sizes in a different array
|
|
// instead of reusing it.
|
|
assert(srcEnc.isIdentity());
|
|
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
|
|
sizeV);
|
|
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
|
|
dim, strideV);
|
|
}
|
|
|
|
// NOTE: we can not generate tuples directly from descriptor here, as the
|
|
// descriptor is holding the original type, yet we want the slice type
|
|
// here (they shared every memref but with an updated specifier).
|
|
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for number of entries operator.
|
|
class SparseNumberOfEntriesConverter
|
|
: public OpConversionPattern<NumberOfEntriesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NumberOfEntriesOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Query memSizes for the actually stored values.
|
|
// FIXME: the nse value computed in this way might be wrong when there is
|
|
// any "loose_compressed" level.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
rewriter.replaceOp(op, desc.getValMemSize(rewriter, op.getLoc()));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct SparseAssembleOpConverter : public OpConversionPattern<AssembleOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
const auto stt = getSparseTensorType(op.getResult());
|
|
|
|
SmallVector<Value> fields;
|
|
|
|
foreachFieldAndTypeInSparseTensor(
|
|
stt,
|
|
[&rewriter, &fields, &op, &stt,
|
|
loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
|
|
Level /*lvl*/, LevelType lt) -> bool {
|
|
assert(fields.size() == fIdx);
|
|
if (fKind == SparseTensorFieldKind::StorageSpec) {
|
|
fields.push_back(
|
|
SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
|
|
} else {
|
|
// Else simply takes the inputs.
|
|
Value tensor = fKind == SparseTensorFieldKind::ValMemRef
|
|
? op.getValues()
|
|
: op.getLevels()[fIdx];
|
|
// TODO: handle batch.
|
|
TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
|
|
if (mem.getType().getRank() > stt.getBatchLvlRank() + 1) {
|
|
// Flattens the buffer to batchLvlRank.
|
|
auto reassoc = getReassociationForFlattening(
|
|
mem.getType(), stt.getBatchLvlRank());
|
|
mem = rewriter.create<memref::CastOp>(
|
|
loc, fType,
|
|
rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
|
|
} else {
|
|
mem = rewriter.create<memref::CastOp>(loc, fType, mem);
|
|
}
|
|
fields.push_back(mem);
|
|
}
|
|
return true;
|
|
});
|
|
|
|
MutSparseTensorDescriptor desc(stt, fields);
|
|
Value c0 = constantIndex(rewriter, loc, 0);
|
|
Value c1 = constantIndex(rewriter, loc, 1);
|
|
Value c2 = constantIndex(rewriter, loc, 2);
|
|
Value posBack = c0; // index to the last value in the position array
|
|
Value memSize = c1; // memory size for current array
|
|
|
|
Level trailCOOStart = stt.getAoSCOOStart();
|
|
Level trailCOORank = stt.getLvlRank() - trailCOOStart;
|
|
// Sets up SparseTensorSpecifier.
|
|
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
|
|
assert(ShapedType::isStatic(stt.getDimShape()[lvl]));
|
|
|
|
// Sets up the level size.
|
|
auto lvlSize = constantIndex(rewriter, loc, stt.getLvlShape()[lvl]);
|
|
desc.setLvlSize(rewriter, loc, lvl, lvlSize);
|
|
// We use a single AOS array to store the trailing COO, so there is only
|
|
// one memory size to set for the entire COO section.
|
|
if (lvl > trailCOOStart)
|
|
continue;
|
|
|
|
// Sets up the memory size by reading the last value in position array.
|
|
LevelType lt = stt.getLvlType(lvl);
|
|
// Simply forwards the position index when this is a dense level.
|
|
if (lt.isa<LevelFormat::Dense>()) {
|
|
memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
|
|
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
|
|
continue;
|
|
}
|
|
if (lt.isa<LevelFormat::Batch>()) {
|
|
// Skips batch levels as it is not linearized.
|
|
// FIXME: this assumes that every batch has the same number of nse, need
|
|
// to be generalized to handle varied-size batches.
|
|
continue;
|
|
}
|
|
|
|
if (isWithPosLT(lt)) {
|
|
assert(isCompressedLT(lt) || isLooseCompressedLT(lt));
|
|
if (isLooseCompressedLT(lt)) {
|
|
memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
|
|
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
|
|
} else {
|
|
assert(isCompressedLT(lt));
|
|
posBack = memSize;
|
|
memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
|
|
}
|
|
desc.setPosMemSize(rewriter, loc, lvl, memSize);
|
|
// The last value in position array is the memory size for next level.
|
|
// FIXME: this assumes that every batch has the same number of nse, need
|
|
// to be generalized to handle varied-size batches.
|
|
SmallVector<Value> batched(stt.getBatchLvlRank(),
|
|
constantIndex(rewriter, loc, 0));
|
|
batched.push_back(posBack);
|
|
memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), batched);
|
|
posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
|
|
}
|
|
assert(isWithCrdLT(lt) && lvl <= trailCOOStart);
|
|
// FIXME: This seems to be unnecessarily complex, can we simplify it?
|
|
if (lvl == trailCOOStart) {
|
|
Value cooSz = rewriter.create<arith::MulIOp>(
|
|
loc, memSize, constantIndex(rewriter, loc, trailCOORank));
|
|
desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
|
|
} else {
|
|
desc.setCrdMemSize(rewriter, loc, lvl, memSize);
|
|
}
|
|
}
|
|
desc.setValMemSize(rewriter, loc, memSize);
|
|
|
|
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct SparseDisassembleOpConverter
|
|
: public OpConversionPattern<DisassembleOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseDisassembleOpConverter(const TypeConverter &typeConverter,
|
|
MLIRContext *context)
|
|
: OpConversionPattern(typeConverter, context) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(DisassembleOp op, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
|
|
op.getTensor().getType());
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value> retMem;
|
|
SmallVector<Value> retLen;
|
|
desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem,
|
|
&retLen](FieldIndex fid,
|
|
SparseTensorFieldKind fKind,
|
|
Level lvl, LevelType lt) -> bool {
|
|
if (fKind == SparseTensorFieldKind::StorageSpec)
|
|
return true;
|
|
SparseTensorType stt(desc.getRankedTensorType());
|
|
Value sz, src;
|
|
TypedValue<BaseMemRefType> dst;
|
|
if (fKind == SparseTensorFieldKind::ValMemRef) {
|
|
sz = desc.getValMemSize(rewriter, loc);
|
|
src = desc.getValMemRef();
|
|
dst = genToMemref(rewriter, loc, op.getOutValues());
|
|
|
|
retMem.push_back(dst);
|
|
Type valLenTp = op.getValLen().getType();
|
|
retLen.push_back(genScalarToTensor(rewriter, loc, sz, valLenTp));
|
|
} else {
|
|
assert(fKind == SparseTensorFieldKind::PosMemRef ||
|
|
fKind == SparseTensorFieldKind::CrdMemRef);
|
|
|
|
sz = fKind == SparseTensorFieldKind::PosMemRef
|
|
? desc.getPosMemSize(rewriter, loc, lvl)
|
|
: desc.getCrdMemSize(rewriter, loc, lvl);
|
|
src = desc.getMemRefField(fid);
|
|
dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
|
|
retMem.push_back(dst);
|
|
// Retrieves the corresponding level length type.
|
|
Type lvlLenTp = op.getLvlLens().getTypes()[retLen.size()];
|
|
retLen.push_back(genScalarToTensor(rewriter, loc, sz, lvlLenTp));
|
|
}
|
|
Value flatOut = dst;
|
|
if (dst.getType().getRank() > stt.getBatchLvlRank() + 1) {
|
|
auto reassoc =
|
|
getReassociationForFlattening(dst.getType(), stt.getBatchLvlRank());
|
|
flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
|
|
}
|
|
Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
|
|
Value srcMem = genSliceToSize(rewriter, loc, src, sz);
|
|
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
|
|
return true;
|
|
});
|
|
|
|
// Converts MemRefs back to Tensors.
|
|
SmallVector<Value> retValues = llvm::to_vector(
|
|
llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
|
|
return rewriter.create<bufferization::ToTensorOp>(
|
|
loc, memref::getTensorTypeFromMemRefType(v.getType()), v);
|
|
}));
|
|
// Appends the actual memory length used in each buffer returned.
|
|
retValues.append(retLen.begin(), retLen.end());
|
|
rewriter.replaceOp(op, retValues);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct SparseNewConverter : public OpConversionPattern<NewOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NewOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
const auto dstTp = getSparseTensorType(op.getResult());
|
|
// Creating COO with NewOp is handled by direct IR codegen. All other cases
|
|
// are handled by rewriting.
|
|
if (!dstTp.hasEncoding() || dstTp.getAoSCOOStart() != 0)
|
|
return failure();
|
|
|
|
// Implement as follows:
|
|
// %reader = @createCheckedSparseTensorReader(%filename)
|
|
// %nse = @getSparseTensorNSE(%reader)
|
|
// %coo = bufferization.alloc_tensor an ordered COO with
|
|
// dst dim ordering, size_hint = %nse
|
|
// %coordinates = sparse_tensor.coordinates_buffer(%coo)
|
|
// %values = sparse_tensor.values(%coo)
|
|
// %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
|
|
// if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
|
|
// update storage specifier
|
|
// @delSparseTensorReader(%reader)
|
|
SmallVector<Value> dimSizesValues;
|
|
Value dimSizesBuffer;
|
|
Value reader = genReader(rewriter, loc, dstTp, adaptor.getOperands()[0],
|
|
dimSizesValues, dimSizesBuffer);
|
|
|
|
// Get the number of stored entries.
|
|
const Type indexTp = rewriter.getIndexType();
|
|
Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
|
|
{indexTp}, {reader}, EmitCInterface::Off)
|
|
.getResult(0);
|
|
|
|
// Construct the lvl sizes and the dim2lvl/lvl2dim buffers.
|
|
SmallVector<Value> lvlSizesValues;
|
|
Value dim2lvlBuffer;
|
|
Value lvl2dimBuffer;
|
|
genMapBuffers(rewriter, loc, dstTp, dimSizesValues, dimSizesBuffer,
|
|
lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
|
|
|
|
// Construct allocation for each field.
|
|
Value sizeHint = nse;
|
|
SmallVector<Value> fields;
|
|
createAllocFields(rewriter, loc, dstTp, /*enableInit=*/false, sizeHint,
|
|
lvlSizesValues, fields);
|
|
|
|
// Read the COO tensor data.
|
|
MutSparseTensorDescriptor desc(dstTp, fields);
|
|
Value xs = desc.getAOSMemRef();
|
|
Value ys = desc.getValMemRef();
|
|
const Type boolTp = rewriter.getIntegerType(1);
|
|
const Type elemTp = dstTp.getElementType();
|
|
const Type crdTp = dstTp.getCrdType();
|
|
SmallString<32> readToBuffersFuncName{"getSparseTensorReaderReadToBuffers",
|
|
overheadTypeFunctionSuffix(crdTp),
|
|
primaryTypeFunctionSuffix(elemTp)};
|
|
Value isSorted =
|
|
createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
|
|
{reader, dim2lvlBuffer, lvl2dimBuffer, xs, ys},
|
|
EmitCInterface::On)
|
|
.getResult(0);
|
|
|
|
// If the destination tensor is a sorted COO, we need to sort the COO tensor
|
|
// data if the input elements aren't sorted yet.
|
|
const Level lvlRank = dstTp.getLvlRank();
|
|
if (dstTp.isOrderedLvl(lvlRank - 1)) {
|
|
Value kFalse = constantI1(rewriter, loc, false);
|
|
Value notSorted = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, isSorted, kFalse);
|
|
scf::IfOp ifOp =
|
|
rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
|
|
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
auto xPerm = rewriter.getMultiDimIdentityMap(lvlRank);
|
|
rewriter.create<SortOp>(loc, nse, xs, ValueRange{ys}, xPerm,
|
|
rewriter.getIndexAttr(0),
|
|
SparseTensorSortKind::HybridQuickSort);
|
|
rewriter.setInsertionPointAfter(ifOp);
|
|
}
|
|
|
|
// Set PosMemRef0[1] = nse.
|
|
const Value c1 = constantIndex(rewriter, loc, 1);
|
|
const Value posMemref0 = desc.getPosMemRef(0);
|
|
const Type posTp = dstTp.getPosType();
|
|
const Value posNse = genCast(rewriter, loc, nse, posTp);
|
|
rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
|
|
|
|
// Update storage specifier.
|
|
Value coordinatesSize = rewriter.create<arith::MulIOp>(
|
|
loc, nse, constantIndex(rewriter, loc, lvlRank));
|
|
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
|
|
coordinatesSize);
|
|
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
|
|
std::nullopt, nse);
|
|
|
|
// Release the sparse tensor reader.
|
|
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
|
|
EmitCInterface::Off);
|
|
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOpWithMultiple(op, {fields});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct SparseHasRuntimeLibraryConverter
|
|
: public OpConversionPattern<HasRuntimeLibraryOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto i1Type = rewriter.getI1Type();
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
|
op, i1Type, rewriter.getIntegerAttr(i1Type, 0));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with conversion rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparseTensorCodegenPatterns(
|
|
const TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
bool createSparseDeallocs, bool enableBufferInitialization) {
|
|
patterns.add<
|
|
SparseAssembleOpConverter, SparseDisassembleOpConverter,
|
|
SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
|
|
SparseCastConverter, SparseExtractSliceConverter,
|
|
SparseTensorLoadConverter, SparseExpandConverter, SparseCompressConverter,
|
|
SparseInsertConverter, SparseReorderCOOConverter, SparseReMapConverter,
|
|
SparseSliceGetterOpConverter<ToSliceOffsetOp,
|
|
StorageSpecifierKind::DimOffset>,
|
|
SparseSliceGetterOpConverter<ToSliceStrideOp,
|
|
StorageSpecifierKind::DimStride>,
|
|
SparseToPositionsConverter, SparseToCoordinatesConverter,
|
|
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
|
|
SparseConvertConverter, SparseNewConverter,
|
|
SparseNumberOfEntriesConverter, SparseHasRuntimeLibraryConverter>(
|
|
typeConverter, patterns.getContext());
|
|
patterns.add<SparseTensorDeallocConverter>(
|
|
typeConverter, patterns.getContext(), createSparseDeallocs);
|
|
patterns.add<SparseTensorAllocConverter, SparseTensorEmptyConverter>(
|
|
typeConverter, patterns.getContext(), enableBufferInitialization);
|
|
}
|