
Previously, llvm IR is hard to create a scalable vector splat with a specific vector length, so we use riscv.vmv.v.x and riscv.vmv.v.f to do this work. But the two rvv intrinsics needs strict type constraint which can not support fixed vector types and illegal vector types. Using vp.splat could preserve old functionality and also generate more optimized code for vector types and illegal vectors. This patch also fixes crash for getEVT not serving ptr types.
228 lines
7.1 KiB
C++
228 lines
7.1 KiB
C++
//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a RISC-V specific version of CodeGenPrepare.
|
|
// It munges the code in the input function to better prepare it for
|
|
// SelectionDAG-based code generation. This works around limitations in it's
|
|
// basic-block-at-a-time approach.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCV.h"
|
|
#include "RISCVTargetMachine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsRISCV.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "riscv-codegenprepare"
|
|
#define PASS_NAME "RISC-V CodeGenPrepare"
|
|
|
|
namespace {
|
|
|
|
class RISCVCodeGenPrepare : public FunctionPass,
|
|
public InstVisitor<RISCVCodeGenPrepare, bool> {
|
|
const DataLayout *DL;
|
|
const DominatorTree *DT;
|
|
const RISCVSubtarget *ST;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
RISCVCodeGenPrepare() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override { return PASS_NAME; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
|
|
bool visitInstruction(Instruction &I) { return false; }
|
|
bool visitAnd(BinaryOperator &BO);
|
|
bool visitIntrinsicInst(IntrinsicInst &I);
|
|
bool expandVPStrideLoad(IntrinsicInst &I);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
|
|
// but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill
|
|
// the upper 32 bits with ones.
|
|
bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
|
|
if (!ST->is64Bit())
|
|
return false;
|
|
|
|
if (!BO.getType()->isIntegerTy(64))
|
|
return false;
|
|
|
|
using namespace PatternMatch;
|
|
|
|
// Left hand side should be a zext nneg.
|
|
Value *LHSSrc;
|
|
if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc))))
|
|
return false;
|
|
|
|
if (!LHSSrc->getType()->isIntegerTy(32))
|
|
return false;
|
|
|
|
// Right hand side should be a constant.
|
|
Value *RHS = BO.getOperand(1);
|
|
|
|
auto *CI = dyn_cast<ConstantInt>(RHS);
|
|
if (!CI)
|
|
return false;
|
|
uint64_t C = CI->getZExtValue();
|
|
|
|
// Look for constants that fit in 32 bits but not simm12, and can be made
|
|
// into simm12 by sign extending bit 31. This will allow use of ANDI.
|
|
// TODO: Is worth making simm32?
|
|
if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
|
|
return false;
|
|
|
|
// Sign extend the constant and replace the And operand.
|
|
C = SignExtend64<32>(C);
|
|
BO.setOperand(1, ConstantInt::get(RHS->getType(), C));
|
|
|
|
return true;
|
|
}
|
|
|
|
// LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector
|
|
// reduction instructions write the result in the first element of a vector
|
|
// register. So when a reduction in a loop uses a scalar phi, we end up with
|
|
// unnecessary scalar moves:
|
|
//
|
|
// loop:
|
|
// vfmv.s.f v10, fa0
|
|
// vfredosum.vs v8, v8, v10
|
|
// vfmv.f.s fa0, v8
|
|
//
|
|
// This mainly affects ordered fadd reductions, since other types of reduction
|
|
// typically use element-wise vectorisation in the loop body. This tries to
|
|
// vectorize any scalar phis that feed into a fadd reduction:
|
|
//
|
|
// loop:
|
|
// %phi = phi <float> [ ..., %entry ], [ %acc, %loop ]
|
|
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi,
|
|
// <vscale x 2 x float> %vec)
|
|
//
|
|
// ->
|
|
//
|
|
// loop:
|
|
// %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ]
|
|
// %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0
|
|
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x,
|
|
// <vscale x 2 x float> %vec)
|
|
// %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0
|
|
//
|
|
// Which eliminates the scalar -> vector -> scalar crossing during instruction
|
|
// selection.
|
|
bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
|
|
if (expandVPStrideLoad(I))
|
|
return true;
|
|
|
|
if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd)
|
|
return false;
|
|
|
|
auto *PHI = dyn_cast<PHINode>(I.getOperand(0));
|
|
if (!PHI || !PHI->hasOneUse() ||
|
|
!llvm::is_contained(PHI->incoming_values(), &I))
|
|
return false;
|
|
|
|
Type *VecTy = I.getOperand(1)->getType();
|
|
IRBuilder<> Builder(PHI);
|
|
auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues());
|
|
|
|
for (auto *BB : PHI->blocks()) {
|
|
Builder.SetInsertPoint(BB->getTerminator());
|
|
Value *InsertElt = Builder.CreateInsertElement(
|
|
VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0);
|
|
VecPHI->addIncoming(InsertElt, BB);
|
|
}
|
|
|
|
Builder.SetInsertPoint(&I);
|
|
I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0));
|
|
|
|
PHI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Always expand zero strided loads so we match more .vx splat patterns, even if
|
|
// we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert
|
|
// it back to a strided load if it's optimized.
|
|
bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) {
|
|
Value *BasePtr, *VL;
|
|
|
|
using namespace PatternMatch;
|
|
if (!match(&II, m_Intrinsic<Intrinsic::experimental_vp_strided_load>(
|
|
m_Value(BasePtr), m_Zero(), m_AllOnes(), m_Value(VL))))
|
|
return false;
|
|
|
|
// If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so
|
|
// avoid expanding here.
|
|
if (II.getType()->getScalarSizeInBits() > ST->getXLen())
|
|
return false;
|
|
|
|
if (!isKnownNonZero(VL, {*DL, DT, nullptr, &II}))
|
|
return false;
|
|
|
|
auto *VTy = cast<VectorType>(II.getType());
|
|
|
|
IRBuilder<> Builder(&II);
|
|
Type *STy = VTy->getElementType();
|
|
Value *Val = Builder.CreateLoad(STy, BasePtr);
|
|
Value *Res = Builder.CreateIntrinsic(Intrinsic::experimental_vp_splat, {VTy},
|
|
{Val, II.getOperand(2), VL});
|
|
|
|
II.replaceAllUsesWith(Res);
|
|
II.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
auto &TM = TPC.getTM<RISCVTargetMachine>();
|
|
ST = &TM.getSubtarget<RISCVSubtarget>(F);
|
|
|
|
DL = &F.getDataLayout();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
bool MadeChange = false;
|
|
for (auto &BB : F)
|
|
for (Instruction &I : llvm::make_early_inc_range(BB))
|
|
MadeChange |= visit(I);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
|
|
|
|
char RISCVCodeGenPrepare::ID = 0;
|
|
|
|
FunctionPass *llvm::createRISCVCodeGenPreparePass() {
|
|
return new RISCVCodeGenPrepare();
|
|
}
|