
Unlike regular constant values, strings must be placed in some memory and referred to through a pointer to that memory. Until now, they were not supported in function-local constant declarations with `llvm.constant`. Introduce support for global strings using `llvm.global`, which would translate them into global arrays in LLVM IR and thus make sure they have some memory allocated for storage. PiperOrigin-RevId: 262569316
489 lines
19 KiB
C++
489 lines
19 KiB
C++
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements the translation between an MLIR LLVM dialect module and
|
|
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
|
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
|
|
namespace mlir {
|
|
namespace LLVM {
|
|
|
|
// Convert an MLIR function type to LLVM IR. Arguments of the function must of
|
|
// MLIR LLVM IR dialect types. Use `loc` as a location when reporting errors.
|
|
// Return nullptr on errors.
|
|
static llvm::FunctionType *convertFunctionType(llvm::LLVMContext &llvmContext,
|
|
FunctionType type, Location loc,
|
|
bool isVarArgs) {
|
|
assert(type && "expected non-null type");
|
|
if (type.getNumResults() > 1)
|
|
return emitError(loc, "LLVM functions can only have 0 or 1 result"),
|
|
nullptr;
|
|
|
|
SmallVector<llvm::Type *, 8> argTypes;
|
|
argTypes.reserve(type.getNumInputs());
|
|
for (auto t : type.getInputs()) {
|
|
auto wrappedLLVMType = t.dyn_cast<LLVM::LLVMType>();
|
|
if (!wrappedLLVMType)
|
|
return emitError(loc, "non-LLVM function argument type"), nullptr;
|
|
argTypes.push_back(wrappedLLVMType.getUnderlyingType());
|
|
}
|
|
|
|
if (type.getNumResults() == 0)
|
|
return llvm::FunctionType::get(llvm::Type::getVoidTy(llvmContext), argTypes,
|
|
isVarArgs);
|
|
|
|
auto wrappedResultType = type.getResult(0).dyn_cast<LLVM::LLVMType>();
|
|
if (!wrappedResultType)
|
|
return emitError(loc, "non-LLVM function result"), nullptr;
|
|
|
|
return llvm::FunctionType::get(wrappedResultType.getUnderlyingType(),
|
|
argTypes, isVarArgs);
|
|
}
|
|
|
|
// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
|
|
// This currently supports integer, floating point, splat and dense element
|
|
// attributes and combinations thereof. In case of error, report it to `loc`
|
|
// and return nullptr.
|
|
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
|
|
Attribute attr,
|
|
Location loc) {
|
|
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
|
|
return llvm::ConstantInt::get(llvmType, intAttr.getValue());
|
|
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
|
|
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
|
|
if (auto funcAttr = attr.dyn_cast<SymbolRefAttr>())
|
|
return functionMapping.lookup(funcAttr.getValue());
|
|
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
|
|
auto *vectorType = cast<llvm::VectorType>(llvmType);
|
|
auto *child = getLLVMConstant(vectorType->getElementType(),
|
|
splatAttr.getSplatValue(), loc);
|
|
return llvm::ConstantVector::getSplat(vectorType->getNumElements(), child);
|
|
}
|
|
if (auto denseAttr = attr.dyn_cast<DenseElementsAttr>()) {
|
|
auto *vectorType = cast<llvm::VectorType>(llvmType);
|
|
SmallVector<llvm::Constant *, 8> constants;
|
|
uint64_t numElements = vectorType->getNumElements();
|
|
constants.reserve(numElements);
|
|
for (auto n : denseAttr.getAttributeValues()) {
|
|
constants.push_back(
|
|
getLLVMConstant(vectorType->getElementType(), n, loc));
|
|
if (!constants.back())
|
|
return nullptr;
|
|
}
|
|
return llvm::ConstantVector::get(constants);
|
|
}
|
|
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
|
|
return llvm::ConstantDataArray::get(
|
|
llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
|
|
stringAttr.getValue().size()});
|
|
}
|
|
emitError(loc, "unsupported constant value");
|
|
return nullptr;
|
|
}
|
|
|
|
// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
|
|
static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
|
|
switch (p) {
|
|
case LLVM::ICmpPredicate::eq:
|
|
return llvm::CmpInst::Predicate::ICMP_EQ;
|
|
case LLVM::ICmpPredicate::ne:
|
|
return llvm::CmpInst::Predicate::ICMP_NE;
|
|
case LLVM::ICmpPredicate::slt:
|
|
return llvm::CmpInst::Predicate::ICMP_SLT;
|
|
case LLVM::ICmpPredicate::sle:
|
|
return llvm::CmpInst::Predicate::ICMP_SLE;
|
|
case LLVM::ICmpPredicate::sgt:
|
|
return llvm::CmpInst::Predicate::ICMP_SGT;
|
|
case LLVM::ICmpPredicate::sge:
|
|
return llvm::CmpInst::Predicate::ICMP_SGE;
|
|
case LLVM::ICmpPredicate::ult:
|
|
return llvm::CmpInst::Predicate::ICMP_ULT;
|
|
case LLVM::ICmpPredicate::ule:
|
|
return llvm::CmpInst::Predicate::ICMP_ULE;
|
|
case LLVM::ICmpPredicate::ugt:
|
|
return llvm::CmpInst::Predicate::ICMP_UGT;
|
|
case LLVM::ICmpPredicate::uge:
|
|
return llvm::CmpInst::Predicate::ICMP_UGE;
|
|
default:
|
|
llvm_unreachable("incorrect comparison predicate");
|
|
}
|
|
}
|
|
|
|
static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
|
|
switch (p) {
|
|
case LLVM::FCmpPredicate::_false:
|
|
return llvm::CmpInst::Predicate::FCMP_FALSE;
|
|
case LLVM::FCmpPredicate::oeq:
|
|
return llvm::CmpInst::Predicate::FCMP_OEQ;
|
|
case LLVM::FCmpPredicate::ogt:
|
|
return llvm::CmpInst::Predicate::FCMP_OGT;
|
|
case LLVM::FCmpPredicate::oge:
|
|
return llvm::CmpInst::Predicate::FCMP_OGE;
|
|
case LLVM::FCmpPredicate::olt:
|
|
return llvm::CmpInst::Predicate::FCMP_OLT;
|
|
case LLVM::FCmpPredicate::ole:
|
|
return llvm::CmpInst::Predicate::FCMP_OLE;
|
|
case LLVM::FCmpPredicate::one:
|
|
return llvm::CmpInst::Predicate::FCMP_ONE;
|
|
case LLVM::FCmpPredicate::ord:
|
|
return llvm::CmpInst::Predicate::FCMP_ORD;
|
|
case LLVM::FCmpPredicate::ueq:
|
|
return llvm::CmpInst::Predicate::FCMP_UEQ;
|
|
case LLVM::FCmpPredicate::ugt:
|
|
return llvm::CmpInst::Predicate::FCMP_UGT;
|
|
case LLVM::FCmpPredicate::uge:
|
|
return llvm::CmpInst::Predicate::FCMP_UGE;
|
|
case LLVM::FCmpPredicate::ult:
|
|
return llvm::CmpInst::Predicate::FCMP_ULT;
|
|
case LLVM::FCmpPredicate::ule:
|
|
return llvm::CmpInst::Predicate::FCMP_ULE;
|
|
case LLVM::FCmpPredicate::une:
|
|
return llvm::CmpInst::Predicate::FCMP_UNE;
|
|
case LLVM::FCmpPredicate::uno:
|
|
return llvm::CmpInst::Predicate::FCMP_UNO;
|
|
case LLVM::FCmpPredicate::_true:
|
|
return llvm::CmpInst::Predicate::FCMP_TRUE;
|
|
default:
|
|
llvm_unreachable("incorrect comparison predicate");
|
|
}
|
|
}
|
|
|
|
// A helper to look up remapped operands in the value remapping table.
|
|
template <typename Range>
|
|
SmallVector<llvm::Value *, 8> ModuleTranslation::lookupValues(Range &&values) {
|
|
SmallVector<llvm::Value *, 8> remapped;
|
|
remapped.reserve(llvm::size(values));
|
|
for (Value *v : values) {
|
|
remapped.push_back(valueMapping.lookup(v));
|
|
}
|
|
return remapped;
|
|
}
|
|
|
|
// Given a single MLIR operation, create the corresponding LLVM IR operation
|
|
// using the `builder`. LLVM IR Builder does not have a generic interface so
|
|
// this has to be a long chain of `if`s calling different functions with a
|
|
// different number of arguments.
|
|
bool ModuleTranslation::convertOperation(Operation &opInst,
|
|
llvm::IRBuilder<> &builder) {
|
|
auto extractPosition = [](ArrayAttr attr) {
|
|
SmallVector<unsigned, 4> position;
|
|
position.reserve(attr.size());
|
|
for (Attribute v : attr)
|
|
position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
|
|
return position;
|
|
};
|
|
|
|
#include "mlir/LLVMIR/LLVMConversions.inc"
|
|
|
|
// Emit function calls. If the "callee" attribute is present, this is a
|
|
// direct function call and we also need to look up the remapped function
|
|
// itself. Otherwise, this is an indirect call and the callee is the first
|
|
// operand, look it up as a normal value. Return the llvm::Value representing
|
|
// the function result, which may be of llvm::VoidTy type.
|
|
auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
|
|
auto operands = lookupValues(op.getOperands());
|
|
ArrayRef<llvm::Value *> operandsRef(operands);
|
|
if (auto attr = op.getAttrOfType<SymbolRefAttr>("callee")) {
|
|
return builder.CreateCall(functionMapping.lookup(attr.getValue()),
|
|
operandsRef);
|
|
} else {
|
|
return builder.CreateCall(operandsRef.front(), operandsRef.drop_front());
|
|
}
|
|
};
|
|
|
|
// Emit calls. If the called function has a result, remap the corresponding
|
|
// value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
|
|
if (isa<LLVM::CallOp>(opInst)) {
|
|
llvm::Value *result = convertCall(opInst);
|
|
if (opInst.getNumResults() != 0) {
|
|
valueMapping[opInst.getResult(0)] = result;
|
|
return false;
|
|
}
|
|
// Check that LLVM call returns void for 0-result functions.
|
|
return !result->getType()->isVoidTy();
|
|
}
|
|
|
|
// Emit branches. We need to look up the remapped blocks and ignore the block
|
|
// arguments that were transformed into PHI nodes.
|
|
if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
|
|
builder.CreateBr(blockMapping[brOp.getSuccessor(0)]);
|
|
return false;
|
|
}
|
|
if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
|
|
builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
|
|
blockMapping[condbrOp.getSuccessor(0)],
|
|
blockMapping[condbrOp.getSuccessor(1)]);
|
|
return false;
|
|
}
|
|
|
|
opInst.emitError("unsupported or non-LLVM operation: ") << opInst.getName();
|
|
return true;
|
|
}
|
|
|
|
// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
|
|
// to define values corresponding to the MLIR block arguments. These nodes
|
|
// are not connected to the source basic blocks, which may not exist yet.
|
|
bool ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
|
|
llvm::IRBuilder<> builder(blockMapping[&bb]);
|
|
|
|
// Before traversing operations, make block arguments available through
|
|
// value remapping and PHI nodes, but do not add incoming edges for the PHI
|
|
// nodes just yet: those values may be defined by this or following blocks.
|
|
// This step is omitted if "ignoreArguments" is set. The arguments of the
|
|
// first block have been already made available through the remapping of
|
|
// LLVM function arguments.
|
|
if (!ignoreArguments) {
|
|
auto predecessors = bb.getPredecessors();
|
|
unsigned numPredecessors =
|
|
std::distance(predecessors.begin(), predecessors.end());
|
|
for (auto *arg : bb.getArguments()) {
|
|
auto wrappedType = arg->getType().dyn_cast<LLVM::LLVMType>();
|
|
if (!wrappedType) {
|
|
emitError(bb.front().getLoc(),
|
|
"block argument does not have an LLVM type");
|
|
return true;
|
|
}
|
|
llvm::Type *type = wrappedType.getUnderlyingType();
|
|
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
|
|
valueMapping[arg] = phi;
|
|
}
|
|
}
|
|
|
|
// Traverse operations.
|
|
for (auto &op : bb) {
|
|
if (convertOperation(op, builder))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Create named global variables that correspond to llvm.global definitions.
|
|
void ModuleTranslation::convertGlobals() {
|
|
for (auto op : mlirModule.getOps<LLVM::GlobalOp>()) {
|
|
// String attributes are treated separately because they cannot appear as
|
|
// in-function constants and are thus not supported by getLLVMConstant.
|
|
if (auto strAttr = op.value().dyn_cast<StringAttr>()) {
|
|
llvm::Constant *cst = llvm::ConstantDataArray::getString(
|
|
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
|
|
new llvm::GlobalVariable(*llvmModule, cst->getType(), op.constant(),
|
|
llvm::GlobalValue::InternalLinkage, cst,
|
|
op.sym_name());
|
|
return;
|
|
}
|
|
|
|
llvm::Type *type = op.getType().getUnderlyingType();
|
|
new llvm::GlobalVariable(
|
|
*llvmModule, type, op.constant(), llvm::GlobalValue::InternalLinkage,
|
|
getLLVMConstant(type, op.value(), op.getLoc()), op.sym_name());
|
|
}
|
|
}
|
|
|
|
// Get the SSA value passed to the current block from the terminator operation
|
|
// of its predecessor.
|
|
static Value *getPHISourceValue(Block *current, Block *pred,
|
|
unsigned numArguments, unsigned index) {
|
|
auto &terminator = *pred->getTerminator();
|
|
if (isa<LLVM::BrOp>(terminator)) {
|
|
return terminator.getOperand(index);
|
|
}
|
|
|
|
// For conditional branches, we need to check if the current block is reached
|
|
// through the "true" or the "false" branch and take the relevant operands.
|
|
auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
|
|
assert(condBranchOp &&
|
|
"only branch operations can be terminators of a block that "
|
|
"has successors");
|
|
assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
|
|
"successors with arguments in LLVM conditional branches must be "
|
|
"different blocks");
|
|
|
|
return condBranchOp.getSuccessor(0) == current
|
|
? terminator.getSuccessorOperand(0, index)
|
|
: terminator.getSuccessorOperand(1, index);
|
|
}
|
|
|
|
void ModuleTranslation::connectPHINodes(FuncOp func) {
|
|
// Skip the first block, it cannot be branched to and its arguments correspond
|
|
// to the arguments of the LLVM function.
|
|
for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
|
|
Block *bb = &*it;
|
|
llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
|
|
auto phis = llvmBB->phis();
|
|
auto numArguments = bb->getNumArguments();
|
|
assert(numArguments == std::distance(phis.begin(), phis.end()));
|
|
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
|
|
auto &phiNode = numberedPhiNode.value();
|
|
unsigned index = numberedPhiNode.index();
|
|
for (auto *pred : bb->getPredecessors()) {
|
|
phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
|
|
bb, pred, numArguments, index)),
|
|
blockMapping.lookup(pred));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(mlir-team): implement an iterative version
|
|
static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
|
|
blocks.insert(b);
|
|
for (Block *bb : b->getSuccessors()) {
|
|
if (blocks.count(bb) == 0)
|
|
topologicalSortImpl(blocks, bb);
|
|
}
|
|
}
|
|
|
|
// Sort function blocks topologically.
|
|
static llvm::SetVector<Block *> topologicalSort(FuncOp f) {
|
|
// For each blocks that has not been visited yet (i.e. that has no
|
|
// predecessors), add it to the list and traverse its successors in DFS
|
|
// preorder.
|
|
llvm::SetVector<Block *> blocks;
|
|
for (Block &b : f.getBlocks()) {
|
|
if (blocks.count(&b) == 0)
|
|
topologicalSortImpl(blocks, &b);
|
|
}
|
|
assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
|
|
|
|
return blocks;
|
|
}
|
|
|
|
bool ModuleTranslation::convertOneFunction(FuncOp func) {
|
|
// Clear the block and value mappings, they are only relevant within one
|
|
// function.
|
|
blockMapping.clear();
|
|
valueMapping.clear();
|
|
llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
|
|
// Add function arguments to the value remapping table.
|
|
// If there was noalias info then we decorate each argument accordingly.
|
|
unsigned int argIdx = 0;
|
|
for (const auto &kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
|
|
llvm::Argument &llvmArg = std::get<1>(kvp);
|
|
BlockArgument *mlirArg = std::get<0>(kvp);
|
|
|
|
if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
|
|
// NB: Attribute already verified to be boolean, so check if we can indeed
|
|
// attach the attribute to this argument, based on its type.
|
|
auto argTy = mlirArg->getType().dyn_cast<LLVM::LLVMType>();
|
|
if (!argTy.getUnderlyingType()->isPointerTy()) {
|
|
func.emitError(
|
|
"llvm.noalias attribute attached to LLVM non-pointer argument");
|
|
return true;
|
|
}
|
|
if (attr.getValue())
|
|
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
|
|
}
|
|
valueMapping[mlirArg] = &llvmArg;
|
|
argIdx++;
|
|
}
|
|
|
|
// First, create all blocks so we can jump to them.
|
|
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
|
|
for (auto &bb : func) {
|
|
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
|
|
llvmBB->insertInto(llvmFunc);
|
|
blockMapping[&bb] = llvmBB;
|
|
}
|
|
|
|
// Then, convert blocks one by one in topological order to ensure defs are
|
|
// converted before uses.
|
|
auto blocks = topologicalSort(func);
|
|
for (auto indexedBB : llvm::enumerate(blocks)) {
|
|
auto *bb = indexedBB.value();
|
|
if (convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))
|
|
return true;
|
|
}
|
|
|
|
// Finally, after all blocks have been traversed and values mapped, connect
|
|
// the PHI nodes to the results of preceding blocks.
|
|
connectPHINodes(func);
|
|
return false;
|
|
}
|
|
|
|
bool ModuleTranslation::convertFunctions() {
|
|
// Declare all functions first because there may be function calls that form a
|
|
// call graph with cycles.
|
|
for (FuncOp function : mlirModule.getOps<FuncOp>()) {
|
|
mlir::BoolAttr isVarArgsAttr =
|
|
function.getAttrOfType<BoolAttr>("std.varargs");
|
|
bool isVarArgs = isVarArgsAttr && isVarArgsAttr.getValue();
|
|
llvm::FunctionType *functionType =
|
|
convertFunctionType(llvmModule->getContext(), function.getType(),
|
|
function.getLoc(), isVarArgs);
|
|
if (!functionType)
|
|
return true;
|
|
llvm::FunctionCallee llvmFuncCst =
|
|
llvmModule->getOrInsertFunction(function.getName(), functionType);
|
|
assert(isa<llvm::Function>(llvmFuncCst.getCallee()));
|
|
functionMapping[function.getName()] =
|
|
cast<llvm::Function>(llvmFuncCst.getCallee());
|
|
}
|
|
|
|
// Convert functions.
|
|
for (FuncOp function : mlirModule.getOps<FuncOp>()) {
|
|
// Ignore external functions.
|
|
if (function.isExternal())
|
|
continue;
|
|
|
|
if (convertOneFunction(function))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(ModuleOp m) {
|
|
auto *dialect = m.getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
|
|
assert(dialect && "LLVM dialect must be registered");
|
|
|
|
auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
|
|
if (!llvmModule)
|
|
return nullptr;
|
|
|
|
llvm::LLVMContext &llvmContext = llvmModule->getContext();
|
|
llvm::IRBuilder<> builder(llvmContext);
|
|
|
|
// Inject declarations for `malloc` and `free` functions that can be used in
|
|
// memref allocation/deallocation coming from standard ops lowering.
|
|
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
|
|
builder.getInt64Ty());
|
|
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
|
|
builder.getInt8PtrTy());
|
|
|
|
return llvmModule;
|
|
}
|
|
|
|
} // namespace LLVM
|
|
} // namespace mlir
|