1085 lines
41 KiB
C++

//===- XeGPUOps.cpp - MLIR XeGPU ops implementation -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/XeVMDialect.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "xegpu"
namespace mlir {
namespace xegpu {
bool isSharedMemory(const MemRefType &memrefTy) {
Attribute attr = memrefTy.getMemorySpace();
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(attr))
return intAttr.getInt() == 3;
if (auto memrefSpace = llvm::dyn_cast<MemorySpaceAttr>(attr))
return memrefSpace.getValue() == MemorySpace::SLM;
if (auto xevmSpace = llvm::dyn_cast<xevm::AddrSpaceAttr>(attr))
return xevmSpace.getValue() == xevm::AddrSpace::SHARED;
return gpu::GPUDialect::isWorkgroupMemoryAddressSpace(attr);
}
template <typename T>
static std::string makeString(T array, bool breakline = false) {
std::string buf;
buf.clear();
llvm::raw_string_ostream os(buf);
os << "[";
for (size_t i = 1; i < array.size(); i++) {
os << array[i - 1] << ", ";
if (breakline)
os << "\n\t\t";
}
os << array.back() << "]";
return buf;
}
static SmallVector<int64_t> getShapeOf(Type type) {
SmallVector<int64_t> shape;
if (auto ty = llvm::dyn_cast<ShapedType>(type))
shape = SmallVector<int64_t>(ty.getShape());
else
shape.push_back(1);
return shape;
}
static int64_t getRankOf(Value val) {
auto type = val.getType();
if (auto ty = llvm::dyn_cast<ShapedType>(type))
return ty.getRank();
return 0;
}
static bool isReadHintOrNone(const CachePolicyAttr &attr) {
if (!attr)
return true;
auto kind = attr.getValue();
return kind == CachePolicy::CACHED || kind == CachePolicy::UNCACHED ||
kind == CachePolicy::STREAMING || kind == CachePolicy::READ_INVALIDATE;
}
static bool isWriteHintOrNone(const CachePolicyAttr &attr) {
if (!attr)
return true;
auto kind = attr.getValue();
return kind == CachePolicy::CACHED || kind == CachePolicy::UNCACHED ||
kind == CachePolicy::WRITE_BACK || kind == CachePolicy::WRITE_THROUGH;
}
static LogicalResult
isValidGatherScatterParams(Type maskTy, VectorType valueTy,
TensorDescType tdescTy,
function_ref<InFlightDiagnostic()> emitError) {
if (!tdescTy.isScattered())
return emitError() << "Expects a scattered TensorDesc.";
if (!valueTy)
return emitError() << "Expecting a vector type result.";
auto maskShape = getShapeOf(maskTy);
auto valueShape = getShapeOf(valueTy);
auto tdescShape = getShapeOf(tdescTy);
auto chunkSize = tdescTy.getChunkSizeAsInt();
if (valueTy.getElementType() != tdescTy.getElementType())
return emitError()
<< "Value should have the same element type as TensorDesc.";
llvm::SmallVector<int64_t> expectedMaskShape(tdescShape);
if (chunkSize > 1)
expectedMaskShape.pop_back();
if (expectedMaskShape != maskShape)
return emitError()
<< "Mask should match TensorDesc except the chunk size dim.";
// a valid shape for SIMT case
if (valueTy.getRank() == 1 && valueTy.getNumElements() == chunkSize) {
if (tdescTy.getLayoutAttr())
return emitError() << "TensorDesc doesn't need LayoutAttr for SIMT code";
return success();
}
if (tdescShape != valueShape)
return emitError() << "Value shape " << makeString(valueShape)
<< " is neither a valid distribution for SIMT nor "
"consistent with the tensor descriptor for SIMD "
<< tdescTy;
return success();
}
static LogicalResult
isValidGatherScatterBufferParams(Type maskTy, VectorType valueTy,
int64_t chunkSize,
function_ref<InFlightDiagnostic()> emitError) {
if (!valueTy)
return emitError() << "Expecting a vector type result.";
auto maskShape = getShapeOf(maskTy);
auto valueShape = getShapeOf(valueTy);
auto maskVecTy = dyn_cast<VectorType>(maskTy);
if (!maskVecTy)
return emitError() << "Expecting a vector type mask.";
int64_t maskSize = maskVecTy.getNumElements();
auto valueSize = valueTy.getNumElements();
if (chunkSize > 1) {
if ((valueTy.getRank() == 1) && (valueSize != chunkSize))
return emitError() << "value elements must match chunk size "
<< chunkSize;
} else {
if (valueSize != maskSize)
return emitError()
<< "Mask should match value except the chunk size dim.";
}
llvm::SmallVector<int64_t> expectedMaskShape(valueShape);
if (chunkSize > 1)
expectedMaskShape.pop_back();
if (expectedMaskShape != maskShape)
return emitError() << "Mask should match value except the chunk size dim.";
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_CreateNdDescOp
//===----------------------------------------------------------------------===//
void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
Type tdesc, TypedValue<MemRefType> source) {
[[maybe_unused]] auto ty = source.getType();
assert(ty.hasStaticShape() && "expecting a memref with static shape");
build(builder, state, tdesc, source, ValueRange({}) /* dynamic offsets */,
ValueRange({}) /* empty dynamic shape */,
ValueRange({}) /* empty dynamic strides */,
DenseI64ArrayAttr({}) /* const offsets */,
DenseI64ArrayAttr({}) /* empty const shape*/,
DenseI64ArrayAttr({}) /* empty const strides*/);
}
void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
Type tdesc, Value source,
llvm::ArrayRef<OpFoldResult> shape,
llvm::ArrayRef<OpFoldResult> strides) {
Type srcTy = source.getType();
assert((isa<IntegerType, MemRefType>(srcTy)) &&
"Source has to be either int or memref.");
llvm::SmallVector<Value> dynamicShape;
llvm::SmallVector<Value> dynamicStrides;
llvm::SmallVector<int64_t> staticShape;
llvm::SmallVector<int64_t> staticStrides;
dispatchIndexOpFoldResults(shape, dynamicShape, staticShape);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
auto staticShapeAttr = builder.getDenseI64ArrayAttr(staticShape);
auto staticStridesAttr = builder.getDenseI64ArrayAttr(staticStrides);
if (auto memrefTy = dyn_cast<MemRefType>(srcTy)) {
auto memrefShape = memrefTy.getShape();
auto [memrefStrides, _] = memrefTy.getStridesAndOffset();
// if shape and strides are from Memref, we don't need attributes for them
// to keep the IR print clean.
if (staticShape == memrefShape && staticStrides == memrefStrides) {
staticShapeAttr = DenseI64ArrayAttr();
staticStridesAttr = DenseI64ArrayAttr();
}
}
build(builder, state, tdesc, source, ValueRange({}), dynamicShape,
dynamicStrides, builder.getDenseI64ArrayAttr({}), staticShapeAttr,
staticStridesAttr);
}
void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
Type tdesc, TypedValue<MemRefType> source,
llvm::ArrayRef<OpFoldResult> offsets) {
[[maybe_unused]] auto ty = source.getType();
assert(ty.hasStaticShape() && offsets.size() == (size_t)ty.getRank());
llvm::SmallVector<int64_t> staticOffsets;
llvm::SmallVector<Value> dynamicOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
build(builder, state, tdesc, source, dynamicOffsets /* dynamic offsets */,
ValueRange({}) /* empty dynamic shape */,
ValueRange({}) /* empty dynamic strides */,
builder.getDenseI64ArrayAttr(staticOffsets) /* const offsets */,
{} /* empty const shape*/, {} /* empty const strides*/);
}
void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
Type tdesc, Value source,
llvm::ArrayRef<OpFoldResult> offsets,
llvm::ArrayRef<OpFoldResult> shape,
llvm::ArrayRef<OpFoldResult> strides) {
assert(shape.size() && offsets.size() && strides.size() &&
shape.size() == strides.size() && shape.size() == offsets.size());
Type srcTy = source.getType();
assert((isa<IntegerType, MemRefType>(srcTy)) &&
"Source has to be either int or memref.");
llvm::SmallVector<Value> dynamicOffsets;
llvm::SmallVector<Value> dynamicShape;
llvm::SmallVector<Value> dynamicStrides;
llvm::SmallVector<int64_t> staticOffsets;
llvm::SmallVector<int64_t> staticShape;
llvm::SmallVector<int64_t> staticStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(shape, dynamicShape, staticShape);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
auto staticShapeAttr = builder.getDenseI64ArrayAttr(staticShape);
auto staticStridesAttr = builder.getDenseI64ArrayAttr(staticStrides);
if (auto memrefTy = dyn_cast<MemRefType>(srcTy)) {
auto memrefShape = memrefTy.getShape();
auto [memrefStrides, _] = memrefTy.getStridesAndOffset();
// if shape and strides are from Memref, we don't need attributes for them
// to keep the IR print clean.
if (staticShape == memrefShape && staticStrides == memrefStrides) {
staticShapeAttr = DenseI64ArrayAttr();
staticStridesAttr = DenseI64ArrayAttr();
}
}
build(builder, state, tdesc, source, dynamicOffsets, dynamicShape,
dynamicStrides, staticOffsetsAttr, staticShapeAttr, staticStridesAttr);
}
LogicalResult CreateNdDescOp::verify() {
size_t rank = getMixedSizes().size();
bool invalidRank = rank != getMixedStrides().size();
bool invalidElemTy = false;
// Memory space of created TensorDesc should match with the source.
// Both source and TensorDesc are considered for global memory by default,
// if the memory scope attr is not specified. If source is an integer,
// it is considered as ptr to global memory.
auto srcMemorySpace = getSourceMemorySpace();
auto tdescMemorySpace = static_cast<unsigned>(getType().getMemorySpace());
if (srcMemorySpace != tdescMemorySpace)
return emitOpError("Memory space mismatch.")
<< " Source: " << srcMemorySpace
<< ", TensorDesc: " << tdescMemorySpace;
if (size_t offsetRank = getMixedOffsets().size())
invalidRank |= (offsetRank != rank);
// check source type matches the rank if it is a memref.
// It also should have the same ElementType as TensorDesc.
if (auto memrefTy = dyn_cast<MemRefType>(getSourceType()))
invalidElemTy |= memrefTy.getElementType() != getElementType();
if (llvm::isa<IntegerType>(getSourceType())) {
// strides and shape must present for integer source.
if (getMixedStrides().empty() || getMixedSizes().empty())
return emitOpError("expecting strides and shape to be present for "
"integer source.");
}
if (invalidRank)
return emitOpError(
"Expecting the rank of shape, strides, offsets, and source (if source "
"is a memref) should match with each other.");
// check result TensorDesc rank
if (getType().getRank() > (int64_t)rank)
return emitOpError(
"Expecting the TensorDesc rank is not greater than the "
"ranks of shape, strides, offsets or the memref source.");
if (invalidElemTy)
return emitOpError("TensorDesc should have the same element "
"type with the source if it is a memref.\n");
if (getType().isScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
return success();
}
ParseResult parseOptionalDynamicIndexList(
OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &values,
DenseI64ArrayAttr &integers, SmallVectorImpl<Type> *valueTypes = nullptr,
AsmParser::Delimiter delimiter = AsmParser::Delimiter::Square) {
SmallVector<int64_t, 4> integerVals;
auto parseIntegerOrValue = [&]() {
OpAsmParser::UnresolvedOperand operand;
auto res = parser.parseOptionalOperand(operand);
if (res.has_value() && succeeded(res.value())) {
values.push_back(operand);
integerVals.push_back(ShapedType::kDynamic);
if (valueTypes && parser.parseColonType(valueTypes->emplace_back()))
return failure();
} else {
int64_t integer;
if (failed(parser.parseInteger(integer)))
return failure();
integerVals.push_back(integer);
}
return success();
};
// If the optional values are given there must be left bracket
if (parser.parseOptionalLSquare().succeeded()) {
if (parser.parseCommaSeparatedList(parseIntegerOrValue) ||
parser.parseRSquare())
return parser.emitError(parser.getNameLoc())
<< "expected a list of SSA values or integers";
integers = parser.getBuilder().getDenseI64ArrayAttr(integerVals);
return success();
}
return success();
}
void printOptionalDynamicIndexList(OpAsmPrinter &printer, Operation *op,
OperandRange values,
DenseI64ArrayAttr integers) {
if (!integers || integers.empty())
return;
printDynamicIndexList(printer, op, values, integers,
/*scalableFlags=*/{}, {}, AsmParser::Delimiter::Square);
}
//===----------------------------------------------------------------------===//
// XeGPU_PrefetchNdOp
//===----------------------------------------------------------------------===//
void PrefetchNdOp::build(OpBuilder &builder, OperationState &state,
Value tensorDesc, xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
return build(builder, state, tensorDesc, ValueRange(), DenseI64ArrayAttr(),
l1_hint, l2_hint, l3_hint);
}
void PrefetchNdOp::build(OpBuilder &builder, OperationState &state,
Value tensorDesc, ArrayRef<OpFoldResult> offsets,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
SmallVector<Value> dynamicOffsets;
SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, tensorDesc, dynamicOffsets, staticOffsetsAttr, l1_hint,
l2_hint, l3_hint);
}
LogicalResult PrefetchNdOp::verify() {
auto tdescTy = getTensorDescType();
if (tdescTy.isScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isReadHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isReadHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
int64_t tDescRank = tdescTy.getRank();
int64_t offsetSize = static_cast<int64_t>(getOffsets().size());
int64_t constOffsetSize =
getConstOffsetsAttr() ? getConstOffsetsAttr().size() : 0;
if (((offsetSize != 0) && (offsetSize != tDescRank)) ||
((constOffsetSize != 0) && (constOffsetSize != tDescRank)))
return emitOpError(
"Mismatched ranks between offsets and tensor descriptor");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_LoadNdOp
//===----------------------------------------------------------------------===//
void LoadNdOp::build(OpBuilder &builder, OperationState &state, Type retType,
Value tensorDesc, UnitAttr packed,
DenseI64ArrayAttr transpose,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
return build(builder, state, retType, tensorDesc, ValueRange(),
DenseI64ArrayAttr(), packed, transpose, l1_hint, l2_hint,
l3_hint);
}
void LoadNdOp::build(OpBuilder &builder, OperationState &state, Type retType,
Value tensorDesc, ArrayRef<OpFoldResult> offsets,
UnitAttr packed, DenseI64ArrayAttr transpose,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
SmallVector<Value> dynamicOffsets;
SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, retType, tensorDesc, dynamicOffsets, staticOffsetsAttr,
packed, transpose, l1_hint, l2_hint, l3_hint);
}
LogicalResult LoadNdOp::verify() {
auto tdescTy = getTensorDescType();
auto valueTy = getType();
if (tdescTy.isScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (tdescTy.getRank() > 2)
return emitOpError("Expects a 1D or 2D TensorDesc.\n");
if (!valueTy)
return emitOpError("Invalid result, it should be a VectorType.\n");
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isReadHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isReadHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
int tdescElems = tdescTy.getNumElements() * tdescTy.getArrayLength();
int valueElems = valueTy.getNumElements();
// If the result vector is 1D and has less elements than the tensor
// descriptor, it is supposed to be a SIMT op. The layout attribute in
// tensor_desc is not needed.
if (valueElems < tdescElems && valueTy.getRank() == 1) {
// SIMT mode doesn't need LayoutAttr.
if (tdescTy.getLayoutAttr())
return emitOpError()
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
// For SIMT code, the load is evenly distributed across all lanes in a
// subgroup. Since subgroup size is arch dependent, we only check even
// distribution here.
if (tdescElems % valueElems)
return emitOpError()
<< "Result shape " << makeString(getShapeOf(valueTy))
<< " is not a valid distribution for tensor descriptor "
<< tdescTy;
return success();
}
// Check SIMD mode.
auto tdescShape = getShapeOf(tdescTy);
auto valueShape = getShapeOf(valueTy);
if (getTranspose()) {
auto trans = getTranspose().value();
// Make sure the transpose value is valid, and apply it
if (llvm::all_of(trans, [&](size_t s) { return s < tdescShape.size(); }))
tdescShape = applyPermutation(tdescShape, trans);
else
mlir::emitWarning(getLoc()) << "Invalid transpose attr. It is ignored.";
}
if (getPacked()) {
if (tdescTy.getRank() == 2) {
const int axis = 0;
auto vnni_factor = valueShape.back();
tdescShape[axis] /= vnni_factor;
tdescShape.push_back(vnni_factor);
} else {
mlir::emitWarning(getLoc())
<< "Invalid Packed Attr. It is ignored (available for 2D "
"TensorDesc only).";
}
}
auto array_len = tdescTy.getArrayLength();
if (array_len > 1)
tdescShape.insert(tdescShape.begin(), array_len);
if (tdescShape != valueShape)
return emitOpError() << "Result shape " << makeString(valueShape)
<< " is not consistent with tensor descriptor "
<< tdescTy;
int64_t tDescRank = tdescTy.getRank();
int64_t offsetSize = static_cast<int64_t>(getOffsets().size());
int64_t constOffsetSize =
getConstOffsetsAttr() ? getConstOffsetsAttr().size() : 0;
if (((offsetSize != 0) && (offsetSize != tDescRank)) ||
((constOffsetSize != 0) && (constOffsetSize != tDescRank)))
return emitOpError(
"Mismatched ranks between offsets and tensor descriptor");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_StoreNdOp
//===----------------------------------------------------------------------===//
void StoreNdOp::build(OpBuilder &builder, OperationState &state, Value value,
Value tensorDesc, xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
return build(builder, state, value, tensorDesc, ValueRange(),
DenseI64ArrayAttr(), l1_hint, l2_hint, l3_hint);
}
void StoreNdOp::build(OpBuilder &builder, OperationState &state, Value value,
Value tensorDesc, ArrayRef<OpFoldResult> offsets,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
SmallVector<Value> dynamicOffsets;
SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, value, tensorDesc, dynamicOffsets, staticOffsetsAttr,
l1_hint, l2_hint, l3_hint);
}
LogicalResult StoreNdOp::verify() {
auto dstTy = getTensorDescType(); // Tile
auto valTy = getValueType(); // Vector
if (dstTy.isScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (dstTy.getRank() > 2)
return emitOpError("Expects a 1D or 2D TensorDesc.\n");
if (!valTy)
return emitOpError("Expecting a VectorType result.\n");
if (!isWriteHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isWriteHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isWriteHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
auto array_len = dstTy.getArrayLength();
if (array_len > 1)
return emitOpError("array length is not supported by store_nd.\n");
auto tdescElems = dstTy.getNumElements();
auto valueElems = valTy.getNumElements();
// Similar to LoadNdOp, if the value vector is 1D and has less elements than
// the tensor descriptor, it is supposed to be a SIMT op. The layout attribute
// in tensor_desc is not needed.
if (valTy.getRank() == 1 && valueElems < tdescElems) {
// SIMT mode doesn't need LayoutAttr.
if (dstTy.getLayoutAttr())
return emitOpError()
<< "TensorDesc doesn't need LayoutAttr for SIMT code";
if (tdescElems % valueElems)
return emitOpError()
<< "Value shape " << makeString(getShapeOf(valTy))
<< " is not a valid distribution for tensor descriptor " << dstTy;
return success();
}
// SIMD code should have the same shape as the tensor descriptor.
auto tdescShape = getShapeOf(dstTy);
auto valueShape = getShapeOf(valTy);
if (tdescShape != valueShape)
return emitOpError() << "Value shape " << makeString(valueShape)
<< " is not consistent with tensor descriptor "
<< dstTy;
int64_t tDescRank = dstTy.getRank();
int64_t offsetSize = static_cast<int64_t>(getOffsets().size());
int64_t constOffsetSize =
getConstOffsetsAttr() ? getConstOffsetsAttr().size() : 0;
if (((offsetSize != 0) && (offsetSize != tDescRank)) ||
((constOffsetSize != 0) && (constOffsetSize != tDescRank)))
return emitOpError(
"Mismatched ranks between offsets and tensor descriptor");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_UpdateNDOffsetOp
//===----------------------------------------------------------------------===//
LogicalResult UpdateNdOffsetOp::verify() {
auto ty = getTensorDescType();
if (ty.isScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
// number of offsets specified must match the rank of the tensor descriptor
if (ty.getRank() != (int64_t)getNumOffsets()) {
return emitOpError("Invalid number of offsets.");
}
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_CreateDescOp
//===----------------------------------------------------------------------===//
void CreateDescOp::build(OpBuilder &builder, OperationState &state,
TensorDescType TensorDesc, Value source,
llvm::ArrayRef<OpFoldResult> offsets) {
auto loc = source.getLoc();
int64_t size = static_cast<int64_t>(offsets.size());
auto type = VectorType::get(size, builder.getIndexType());
auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
auto offset = vector::FromElementsOp::create(builder, loc, type, values);
build(builder, state, TensorDesc, source, offset);
}
void CreateDescOp::build(OpBuilder &builder, OperationState &state,
TensorDescType TensorDesc, Value source,
llvm::ArrayRef<int64_t> offsets) {
auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
build(builder, state, TensorDesc, source, ofrs);
}
LogicalResult CreateDescOp::verify() {
auto tdescTy = getTensorDescType();
if (getRankOf(getSource()) > 1)
return emitOpError(
"Expecting the source is a 1D memref or pointer (uint64_t).");
if (!tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
// Memory space of created TensorDesc should match with the source.
// Both source and TensorDesc are considered for global memory by default,
// if the memory scope attr is not specified. If source is an integer,
// it is considered as ptr to global memory.
auto srcMemorySpace = getSourceMemorySpace();
auto tdescMemorySpace = static_cast<unsigned>(tdescTy.getMemorySpace());
if (srcMemorySpace != tdescMemorySpace)
return emitOpError("Memory space mismatch.")
<< " Source: " << srcMemorySpace
<< ", TensorDesc: " << tdescMemorySpace;
// check total size
auto chunkSize = tdescTy.getChunkSizeAsInt();
SmallVector<int64_t> shape(getOffsetsType().getShape());
if (chunkSize != 1)
shape.push_back(chunkSize);
auto tdescShape = getShapeOf(tdescTy);
if (shape != tdescShape)
return emitOpError("Incorrect TensorDesc shape. ")
<< "Expected is " << makeString(shape) << "\n";
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_PrefetchOp
//===----------------------------------------------------------------------===//
LogicalResult PrefetchOp::verify() {
auto tdescTy = getTensorDescType();
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
if (!tdescTy && getRankOf(getSource()) > 1)
return emitOpError(
"Expecting the source is a 1D memref or pointer (uint64_t).");
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isReadHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isReadHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
return success();
}
void PrefetchOp::build(OpBuilder &builder, OperationState &state, Value source,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
build(builder, state, source, Value(), l1_hint, l2_hint, l3_hint);
}
//===----------------------------------------------------------------------===//
// XeGPU_LoadGatherOp
//===----------------------------------------------------------------------===//
LogicalResult LoadGatherOp::verify() {
auto tdescTy = getTensorDescType();
auto maskTy = getMaskType();
auto valueTy = getValueType();
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
if (!tdescTy && getRankOf(getSource()) > 1)
return emitOpError(
"Expecting the source is a 1D memref or pointer (uint64_t).");
if (!isReadHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isReadHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isReadHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
if (tdescTy)
return isValidGatherScatterParams(maskTy, valueTy, tdescTy,
[&]() { return emitOpError(); });
auto srcTy = getSourceType();
uint64_t chunkSize = static_cast<int64_t>(getChunkSize().value_or(1));
auto memTy = dyn_cast<MemRefType>(srcTy);
if (memTy && (valueTy.getElementType() != memTy.getElementType()))
return emitError() << "Value should have the same element type as MemRef.";
return isValidGatherScatterBufferParams(maskTy, valueTy, chunkSize,
[&]() { return emitOpError(); });
}
void LoadGatherOp::build(OpBuilder &builder, OperationState &state,
Type valueType, Value source, Value mask,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
build(builder, state, valueType, source, Value(), mask, IntegerAttr(),
l1_hint, l2_hint, l3_hint);
}
//===----------------------------------------------------------------------===//
// XeGPU_StoreScatterOp
//===----------------------------------------------------------------------===//
LogicalResult StoreScatterOp::verify() {
auto tdescTy = getTensorDescType();
auto maskTy = getMaskType();
auto valueTy = getValueType();
if (tdescTy && !tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.");
if (!tdescTy && getRankOf(getDest()) > 1)
return emitOpError(
"Expecting the dest is a 1D memref or pointer (uint64_t).");
if (!isWriteHintOrNone(getL1HintAttr()))
return emitOpError("invalid l1_hint: ") << getL1HintAttr();
if (!isWriteHintOrNone(getL2HintAttr()))
return emitOpError("invalid l2_hint: ") << getL2HintAttr();
if (!isWriteHintOrNone(getL3HintAttr()))
return emitOpError("invalid l3_hint: ") << getL3HintAttr();
if (tdescTy)
return isValidGatherScatterParams(maskTy, valueTy, tdescTy,
[&]() { return emitOpError(); });
auto destTy = getDestType();
uint64_t chunkSize = static_cast<int64_t>(getChunkSize().value_or(1));
auto memTy = dyn_cast<MemRefType>(destTy);
if (memTy && (valueTy.getElementType() != memTy.getElementType()))
return emitError() << "Value should have the same element type as MemRef.";
return isValidGatherScatterBufferParams(maskTy, valueTy, chunkSize,
[&]() { return emitOpError(); });
}
void StoreScatterOp::build(OpBuilder &builder, OperationState &state,
Value value, Value dest, Value mask,
xegpu::CachePolicyAttr l1_hint,
xegpu::CachePolicyAttr l2_hint,
xegpu::CachePolicyAttr l3_hint) {
build(builder, state, value, dest, Value(), mask, IntegerAttr(), l1_hint,
l2_hint, l3_hint);
}
//===----------------------------------------------------------------------===//
// XeGPU_UpdateOffsetOp
//===----------------------------------------------------------------------===//
void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
mlir::Value tensorDesc,
llvm::ArrayRef<OpFoldResult> offsets) {
auto tdescTy = mlir::dyn_cast<TensorDescType>(tensorDesc.getType());
assert(tdescTy && "Expecting the source is a TensorDescType value.");
auto loc = tensorDesc.getLoc();
int64_t size = static_cast<int64_t>(offsets.size());
auto type = VectorType::get({size}, builder.getIndexType());
auto values = getValueOrCreateConstantIndexOp(builder, loc, offsets);
auto offset = vector::FromElementsOp::create(builder, loc, type, values);
build(builder, state, tdescTy, tensorDesc, offset);
}
void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
Value tensorDesc, llvm::ArrayRef<int64_t> offsets) {
auto ofrs = getAsIndexOpFoldResult(builder.getContext(), offsets);
build(builder, state, tensorDesc, ofrs);
}
LogicalResult UpdateOffsetOp::verify() {
auto tdescTy = getTensorDescType();
if (!tdescTy.isScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
SmallVector<int64_t> expectedOffsetShape = getShapeOf(tdescTy);
SmallVector<int64_t> offsetShape = getShapeOf(getOffsetsType());
if (tdescTy.getChunkSizeAsInt() > 1)
expectedOffsetShape.pop_back();
if (expectedOffsetShape != offsetShape)
return emitOpError(
"Offsets should match TensorDesc except the chunk size dim.");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_DpasOp
//===----------------------------------------------------------------------===//
LogicalResult DpasOp::verify() {
int64_t lhsRank = getLhsType().getRank();
int64_t rhsRank = getRhsType().getRank();
int64_t resRank = getResultType().getRank();
auto lhsShape = getLhsType().getShape();
auto rhsShape = getRhsType().getShape();
auto resShape = getResultType().getShape();
if (getAcc() && getAcc().getType() != getResultType())
return emitOpError("Expecting the acc type to be the same as result.");
// SIMT code: the size of the B operand has to be a multiple of 32 bits.
// It skips the semantic check since lack of architecture information.
// Users need to ensure the correctness.
if (lhsRank == 1 && rhsRank == 1 && resRank == 1) {
auto numElems = getRhsType().getNumElements();
auto elemTy = getRhsType().getElementType();
auto factor = 32 / elemTy.getIntOrFloatBitWidth();
if (numElems % factor != 0)
return emitOpError("Expecting B operand to be a multiple of 32 bits.");
return success();
}
// SIMD code
if (lhsRank != 2 || (rhsRank != 2 && rhsRank != 3) || resRank != 2)
return emitOpError(
"expecting lhs and result to be a 2D vector, and rhs to be either "
"2D or 3D (packed) vector.");
auto bK = rhsRank == 3 ? rhsShape[0] * rhsShape[2] : rhsShape[0];
if (bK != lhsShape[1])
return emitOpError("K-dimension mismatch.");
if (lhsShape[0] != resShape[0])
return emitOpError("M-dimension mismatch.");
if (rhsShape[1] != resShape[1])
return emitOpError("N-dimension mismatch.");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_ConvertLayoutOp
//===----------------------------------------------------------------------===//
LogicalResult ConvertLayoutOp::verify() {
auto srcLayout = getInputLayout();
auto resLayout = getTargetLayout();
if (!srcLayout)
return emitOpError("expected input layout.");
if (!resLayout)
return emitOpError("expected target layout.");
// both input and target layouts should be WgLayout or SgLayout at the same
// time.
if ((!srcLayout.isForWorkgroup() || !resLayout.isForWorkgroup()) &&
(!srcLayout.isForSubgroup() || !resLayout.isForSubgroup()))
return emitOpError("expected input layout and target layout be WgLayout or "
"SgLayout at the same time.");
auto shape = getSource().getType().getShape();
if (!XeGPUDialect::isEvenlyDistributable(shape, srcLayout))
return emitOpError(
"invalid input layout, data cannot be evenly distributed.");
if (!XeGPUDialect::isEvenlyDistributable(shape, resLayout))
return emitOpError(
"invalid target layout, data cannot be evenly distributed.");
return mlir::success();
}
OpFoldResult ConvertLayoutOp::fold(FoldAdaptor adaptor) {
if (getInputLayout() == getTargetLayout())
return getSource();
return {};
}
struct FoldConvertLayoutOp : public OpRewritePattern<xegpu::ConvertLayoutOp> {
using OpRewritePattern<xegpu::ConvertLayoutOp>::OpRewritePattern;
LogicalResult matchAndRewrite(xegpu::ConvertLayoutOp op,
PatternRewriter &rewriter) const override {
if (op.getInputLayout() == op.getTargetLayout()) {
rewriter.replaceOp(op, op.getSource());
return success();
}
return failure();
}
};
void ConvertLayoutOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<FoldConvertLayoutOp>(context);
}
//===----------------------------------------------------------------------===//
// XeGPU_LoadMatrixOp
//===----------------------------------------------------------------------===//
void LoadMatrixOp::build(OpBuilder &builder, OperationState &state, Type res,
TypedValue<MemDescType> memDesc,
llvm::ArrayRef<OpFoldResult> offsets,
DistributeLayoutAttr layout) {
llvm::SmallVector<Value> dynamicOffsets;
llvm::SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, res, memDesc, dynamicOffsets, staticOffsetsAttr,
layout);
}
LogicalResult LoadMatrixOp::verify() {
VectorType resTy = getRes().getType();
MemDescType mdescTy = getMemDesc().getType();
if (mdescTy.getRank() != 2)
return emitOpError("mem_desc must be 2D.");
ArrayRef<int64_t> valueShape = resTy.getShape();
ArrayRef<int64_t> mdescShape = mdescTy.getShape();
if (llvm::any_of(llvm::zip_equal(valueShape, mdescShape),
[](auto p) { return std::get<0>(p) > std::get<1>(p); }))
return emitOpError("result shape must not exceed mem_desc shape.");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_StoreMatrixOp
//===----------------------------------------------------------------------===//
void StoreMatrixOp::build(OpBuilder &builder, OperationState &state, Value data,
TypedValue<MemDescType> memDesc,
llvm::ArrayRef<OpFoldResult> offsets,
DistributeLayoutAttr layout) {
llvm::SmallVector<Value> dynamicOffsets;
llvm::SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, data, memDesc, dynamicOffsets, staticOffsetsAttr,
layout);
}
LogicalResult StoreMatrixOp::verify() {
VectorType dataTy = getData().getType();
MemDescType mdescTy = getMemDesc().getType();
if (mdescTy.getRank() != 2)
return emitOpError("mem_desc must be 2D.");
ArrayRef<int64_t> dataShape = dataTy.getShape();
ArrayRef<int64_t> mdescShape = mdescTy.getShape();
if (llvm::any_of(llvm::zip_equal(dataShape, mdescShape),
[](auto p) { return std::get<0>(p) > std::get<1>(p); }))
return emitOpError("data shape must not exceed mem_desc shape.");
return success();
}
//===----------------------------------------------------------------------===//
// XeGPU_MemDescSubviewOp
//===----------------------------------------------------------------------===//
void MemDescSubviewOp::build(OpBuilder &builder, OperationState &state,
Type resTy, Value src,
llvm::ArrayRef<OpFoldResult> offsets) {
llvm::SmallVector<Value> dynamicOffsets;
llvm::SmallVector<int64_t> staticOffsets;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
auto staticOffsetsAttr = builder.getDenseI64ArrayAttr(staticOffsets);
build(builder, state, resTy, src, dynamicOffsets, staticOffsetsAttr);
}
LogicalResult MemDescSubviewOp::verify() {
MemDescType srcTy = getSrc().getType();
MemDescType resTy = getRes().getType();
ArrayRef<int64_t> srcShape = srcTy.getShape();
ArrayRef<int64_t> resShape = resTy.getShape();
if (srcTy.getRank() < resTy.getRank())
return emitOpError("result rank must not exceed source rank.");
if (llvm::any_of(
llvm::zip_equal(resShape, srcShape.take_back(resShape.size())),
[](auto p) { return std::get<0>(p) > std::get<1>(p); }))
return emitOpError("result shape must not exceed source shape.");
if (srcTy.getStrides() != resTy.getStrides())
return emitOpError("result must inherit the source strides.");
return success();
}
} // namespace xegpu
} // namespace mlir
namespace mlir {
#include <mlir/Dialect/XeGPU/IR/XeGPUAttrInterface.cpp.inc>
} // namespace mlir
#include <mlir/Dialect/XeGPU/IR/XeGPUEnums.cpp.inc>
#define GET_OP_CLASSES
#include <mlir/Dialect/XeGPU/IR/XeGPU.cpp.inc>