llvm-project/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp
Tres Popp 68f58812e3 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This patch updates all remaining uses of the deprecated functionality in
mlir/. This was done with clang-tidy as described below and further
modifications to GPUBase.td and OpenMPOpsInterfaces.td.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```

Differential Revision: https://reviews.llvm.org/D151542
2023-05-26 10:29:55 +02:00

481 lines
19 KiB
C++

//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Module Bufferization is an extension of One-Shot Bufferize that
// bufferizes function boundaries. It provides `BufferizableOpInterface`
// implementations for FuncOp, CallOp and ReturnOp.
//
// Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
// This function analyzes the given module and determines the order of analysis
// and bufferization: Functions that are called are processed before their
// respective callers.
//
// After analyzing a FuncOp, additional information about its bbArgs is
// gathered and stored in `FuncAnalysisState`.
//
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
// for
// each tensor return value (if any).
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
// read/written.
//
// Module Bufferization implements the following calling convention.
//
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
// be written to in-place.
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
// the CallOp must bufferize out-of-place.
//
// Example: The tensor.insert op bufferizes in-place because it is allowed to
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
// out-of-place because `%t0` is modified by the callee but read by the
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
// ```
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
// %f = ... : f32
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
//
// func @caller() -> () {
// %t0 = ... : tensor<?xf32>
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
// %2 = tensor.extract %1[...] : tensor<?xf32>
// }
// ```
//
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
// analyze the function body. In such a case, the CallOp analysis conservatively
// assumes that each tensor OpOperand is both read and written.
//
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
// as "not reading" and/or "not writing".
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::bufferization::func_ext;
/// A mapping of FuncOps to their callers.
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
/// Get or create FuncAnalysisState.
static FuncAnalysisState &
getOrCreateFuncAnalysisState(OneShotAnalysisState &state) {
auto *result = state.getExtension<FuncAnalysisState>();
if (result)
return *result;
return state.addExtension<FuncAnalysisState>();
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
namespace {
/// Annotate IR with the results of the analysis. For testing purposes only.
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
BlockArgument bbArg) {
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
Operation *op = returnVal.getOwner();
SmallVector<int64_t> equivBbArgs;
if (op->hasAttr(kEquivalentArgsAttr)) {
auto attr = cast<ArrayAttr>(op->getAttr(kEquivalentArgsAttr));
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
return cast<IntegerAttr>(a).getValue().getSExtValue();
}));
} else {
equivBbArgs.append(op->getNumOperands(), -1);
}
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
OpBuilder b(op->getContext());
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
}
/// Store function BlockArguments that are equivalent to/aliasing a returned
/// value in FuncAnalysisState.
static LogicalResult
aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
if (funcOp.getBody().empty()) {
// No function body available. Conservatively assume that every tensor
// return value may alias with any tensor bbArg.
FunctionType type = funcOp.getFunctionType();
for (const auto &inputIt : llvm::enumerate(type.getInputs())) {
if (!isa<TensorType>(inputIt.value()))
continue;
for (const auto &resultIt : llvm::enumerate(type.getResults())) {
if (!isa<TensorType>(resultIt.value()))
continue;
int64_t returnIdx = resultIt.index();
int64_t bbArgIdx = inputIt.index();
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
}
return success();
}
// Support only single return-terminated block in the function.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
for (OpOperand &returnVal : returnOp->getOpOperands())
if (isa<RankedTensorType>(returnVal.get().getType()))
for (BlockArgument bbArg : funcOp.getArguments())
if (isa<RankedTensorType>(bbArg.getType())) {
int64_t returnIdx = returnVal.getOperandNumber();
int64_t bbArgIdx = bbArg.getArgNumber();
if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
if (state.getOptions().testAnalysisOnly)
annotateEquivalentReturnBbArg(returnVal, bbArg);
}
if (state.areAliasingBufferizedValues(returnVal.get(), bbArg))
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
return success();
}
static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead,
bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(idx, BufferizationDialect::kBufferAccessAttrName,
accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. When run on a
/// function with unknown ops, we conservatively assume that such ops bufferize
/// to a read + write.
static LogicalResult
funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e;
++idx) {
// Skip non-tensor arguments.
if (!isa<TensorType>(funcOp.getFunctionType().getInput(idx)))
continue;
bool isRead;
bool isWritten;
if (auto accessAttr = funcOp.getArgAttrOfType<StringAttr>(
idx, BufferizationDialect::kBufferAccessAttrName)) {
// Buffer access behavior is specified on the function. Skip the analysis.
StringRef str = accessAttr.getValue();
isRead = str == "read" || str == "read-write";
isWritten = str == "write" || str == "read-write";
} else if (funcOp.getBody().empty()) {
// If the function has no body, conservatively assume that all args are
// read + written.
isRead = true;
isWritten = true;
} else {
// Analyze the body of the function.
BlockArgument bbArg = funcOp.getArgument(idx);
isRead = state.isValueRead(bbArg);
isWritten = state.isValueWritten(bbArg);
}
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, idx, isRead, isWritten);
if (isRead)
funcState.readBbArgs[funcOp].insert(idx);
if (isWritten)
funcState.writtenBbArgs[funcOp].insert(idx);
}
return success();
}
} // namespace
/// Remove bufferization attributes on FuncOp arguments.
static void removeBufferizationAttributes(BlockArgument bbArg) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kWritableAttrName);
}
/// Return the func::FuncOp called by `callOp`.
static func::FuncOp getCalledFunction(func::CallOp callOp) {
SymbolRefAttr sym = llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee());
if (!sym)
return nullptr;
return dyn_cast_or_null<func::FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Gather equivalence info of CallOps.
/// Note: This only adds new equivalence info if the called function was already
/// analyzed.
// TODO: This does not handle cyclic function call graphs etc.
static void equivalenceAnalysis(func::FuncOp funcOp,
OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
funcOp->walk([&](func::CallOp callOp) {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// No equivalence info available for the called function.
if (!funcState.equivalentFuncArgs.count(calledFunction))
return WalkResult::skip();
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
int64_t returnIdx = it.first;
int64_t bbargIdx = it.second;
if (!state.isInPlace(callOp->getOpOperand(bbargIdx)))
continue;
Value returnVal = callOp.getResult(returnIdx);
Value argVal = callOp->getOperand(bbargIdx);
state.unionEquivalenceClasses(returnVal, argVal);
}
return WalkResult::advance();
});
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any func::CallOp.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<func::FuncOp> &orderedFuncOps,
FuncCallerMap &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested func::CallOp).
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
// For each FuncOp, the number of func::CallOp it contains.
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
if (!funcOp.getBody().empty()) {
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](func::CallOp callOp) -> WalkResult {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
callerMap[calledFunction].insert(callOp);
if (calledBy[calledFunction].insert(funcOp).second) {
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
/// Fold return values that are memref casts and update function return types.
///
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
/// is not known yet. Therefore, the bufferization uses memref types with the
/// most generic layout map as function return types. After bufferizing the
/// entire function body, a more concise memref type can potentially be used for
/// the return type of the function.
static void foldMemRefCasts(func::FuncOp funcOp) {
if (funcOp.getBody().empty())
return;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
SmallVector<Type> resultTypes;
for (OpOperand &operand : returnOp->getOpOperands()) {
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
operand.set(castOp.getSource());
resultTypes.push_back(castOp.getSource().getType());
} else {
resultTypes.push_back(operand.get().getType());
}
}
auto newFuncType = FunctionType::get(
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
funcOp.setType(newFuncType);
}
LogicalResult
mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp,
OneShotAnalysisState &state,
BufferizationStatistics *statistics) {
assert(state.getOptions().bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state);
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Analyze ops.
for (func::FuncOp funcOp : orderedFuncOps) {
if (!state.getOptions().isOpAllowed(funcOp))
continue;
// Now analyzing function.
funcState.startFunctionAnalysis(funcOp);
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, state, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, state, statistics)))
return failure();
// Run some extra function analyses.
if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) ||
failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState)))
return failure();
// Mark op as fully analyzed.
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
}
return success();
}
void mlir::bufferization::removeBufferizationAttributesInModule(
ModuleOp moduleOp) {
moduleOp.walk([&](func::FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationAttributes(bbArg);
});
}
LogicalResult mlir::bufferization::bufferizeModuleOp(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
IRRewriter rewriter(moduleOp.getContext());
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Bufferize functions.
for (func::FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
bool copyBeforeWrite =
options.copyBeforeWrite ||
llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName());
if (failed(bufferizeOp(funcOp, options, copyBeforeWrite,
/*opFilter=*/nullptr, statistics)))
return failure();
// Change buffer return types to more precise layout maps.
if (options.inferFunctionResultLayout)
foldMemRefCasts(funcOp);
}
// Post-pass cleanup of function argument attributes.
removeBufferizationAttributesInModule(moduleOp);
return success();
}
LogicalResult mlir::bufferization::runOneShotModuleBufferize(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
if (options.noAnalysisFuncFilter.empty()) {
if (failed(insertTensorCopies(moduleOp, options, statistics)))
return failure();
} else {
// FuncOps whose names are specified in options.noAnalysisFuncFilter will
// not be analyzed. Ops in these FuncOps will not be analyzed as well.
OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) {
auto func = dyn_cast<func::FuncOp>(op);
if (!func)
func = op->getParentOfType<func::FuncOp>();
if (func)
return llvm::is_contained(options.noAnalysisFuncFilter,
func.getSymName());
return false;
};
OneShotBufferizationOptions updatedOptions(options);
updatedOptions.opFilter.denyOperation(analysisFilterFn);
if (failed(insertTensorCopies(moduleOp, updatedOptions, statistics)))
return failure();
}
}
if (options.testAnalysisOnly)
return success();
if (failed(bufferizeModuleOp(moduleOp, options, statistics)))
return failure();
return success();
}