
The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This patch updates all remaining uses of the deprecated functionality in mlir/. This was done with clang-tidy as described below and further modifications to GPUBase.td and OpenMPOpsInterfaces.td. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc ``` Differential Revision: https://reviews.llvm.org/D151542
897 lines
37 KiB
C++
897 lines
37 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Affine/LoopUtils.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/ValueRange.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <utility>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_LINALGTILINGPASS
|
|
#include "mlir/Dialect/Linalg/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::affine;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
static bool isZero(OpFoldResult v) {
|
|
if (!v)
|
|
return false;
|
|
if (auto attr = llvm::dyn_cast_if_present<Attribute>(v)) {
|
|
IntegerAttr intAttr = dyn_cast<IntegerAttr>(attr);
|
|
return intAttr && intAttr.getValue().isZero();
|
|
}
|
|
if (auto cst = v.get<Value>().getDefiningOp<arith::ConstantIndexOp>())
|
|
return cst.value() == 0;
|
|
return false;
|
|
}
|
|
|
|
std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
|
|
mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
|
|
ArrayRef<OpFoldResult> allShapeSizes,
|
|
ArrayRef<OpFoldResult> allTileSizes) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get shape sizes in loop order.
|
|
SmallVector<OpFoldResult> shapeSizes =
|
|
makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes);
|
|
SmallVector<OpFoldResult> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (isZero(tileSizes[idx - zerosCount])) {
|
|
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
|
|
res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]});
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
void mlir::linalg::transformIndexOps(
|
|
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
|
|
for (auto en : enumerate(allIvs)) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
en.value() = ivs[rangeIndex->second];
|
|
}
|
|
offsetIndices(b, op, getAsOpFoldResult(allIvs));
|
|
}
|
|
|
|
/// Asserts that the given index-typed value is strictly positive. If the value
|
|
/// is an attribute, asserts at compile time, otherwise emits an assertion
|
|
/// checked at runtime.
|
|
static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b,
|
|
OpFoldResult value) {
|
|
if (auto attr = llvm::dyn_cast_if_present<Attribute>(value)) {
|
|
assert(cast<IntegerAttr>(attr).getValue().isStrictlyPositive() &&
|
|
"expected strictly positive tile size and divisor");
|
|
return;
|
|
}
|
|
|
|
Value zero = b.create<arith::ConstantIndexOp>(0);
|
|
Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
|
|
value.get<Value>(), zero);
|
|
b.create<cf::AssertOp>(
|
|
condition,
|
|
b.getStringAttr("expected strictly positive tile size and divisor"));
|
|
}
|
|
|
|
FailureOr<StaticMultiSizeSpecification>
|
|
mlir::linalg::computeStaticMultiTileSizes(LinalgOp op, unsigned dimension,
|
|
int64_t targetSize, int64_t divisor) {
|
|
assert(!op.hasDynamicShape() &&
|
|
"cannot compute static multi-tile sizes for an op with dynamic shape");
|
|
assert(targetSize > 0 && "target size must be non-negative");
|
|
assert(divisor > 0 && "divisor must be non-negative");
|
|
assert(dimension < op.getNumLoops() && "dimension overflow");
|
|
|
|
StaticMultiSizeSpecification spec;
|
|
int64_t tripCount = op.getStaticLoopRanges()[dimension];
|
|
int64_t a = tripCount / divisor;
|
|
int64_t t = (targetSize + divisor - 1) / divisor;
|
|
int64_t totalTripCount = (a + t - 1) / t;
|
|
spec.lowTileSize = (a / totalTripCount) * divisor;
|
|
spec.highTileSize = spec.lowTileSize + divisor;
|
|
spec.highTripCount = a % totalTripCount;
|
|
spec.lowTripCount = totalTripCount - spec.highTripCount;
|
|
if (spec.lowTileSize * spec.lowTripCount +
|
|
spec.highTileSize * spec.highTripCount !=
|
|
tripCount) {
|
|
return failure();
|
|
}
|
|
return spec;
|
|
}
|
|
|
|
FailureOr<MultiSizeSpecification>
|
|
mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op,
|
|
unsigned dimension, OpFoldResult targetSize,
|
|
OpFoldResult divisor, bool emitAssertions) {
|
|
// Bail out on dimension overflow.
|
|
if (dimension >= op.getNumLoops())
|
|
return failure();
|
|
|
|
// The code below works only on values.
|
|
Location loc = op.getLoc();
|
|
ImplicitLocOpBuilder b(loc, builder);
|
|
if (emitAssertions) {
|
|
emitIsPositiveIndexAssertion(b, targetSize);
|
|
emitIsPositiveIndexAssertion(b, divisor);
|
|
}
|
|
Value targetSizeValue =
|
|
getValueOrCreateConstantIndexOp(builder, loc, targetSize);
|
|
Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor);
|
|
|
|
// Find the trip count of the iteration space dimension for which the tile
|
|
// sizes are computed.
|
|
SmallVector<OpFoldResult> allShapes =
|
|
op.createFlatListOfOperandDims(b, b.getLoc());
|
|
AffineMap shapesToLoops = op.getShapesToLoopsMap();
|
|
SmallVector<OpFoldResult> loopRanges =
|
|
makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops,
|
|
allShapes);
|
|
Value tripCount =
|
|
getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]);
|
|
|
|
// Compute the tile sizes and the respective numbers of tiles.
|
|
AffineExpr s0 = b.getAffineSymbolExpr(0);
|
|
AffineExpr s1 = b.getAffineSymbolExpr(1);
|
|
AffineExpr s2 = b.getAffineSymbolExpr(2);
|
|
auto apply = [&](AffineExpr expr, ValueRange values) -> Value {
|
|
return affine::makeComposedAffineApply(b, b.getLoc(), expr, values);
|
|
};
|
|
Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
|
|
Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
|
|
Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
|
|
Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
|
|
Value v = apply(s0 % s1, {a, d});
|
|
Value u = apply(s0 - s1, {d, v});
|
|
|
|
MultiSizeSpecification spec;
|
|
spec.lowTileSize = s;
|
|
spec.highTileSize = apply(s0 + s1, {s, divisorValue});
|
|
spec.lowTripCount = u;
|
|
spec.highTripCount = v;
|
|
|
|
// If requested, emit the check that the tile sizes are computed correctly.
|
|
// For example, for iteration dimension size of 15 and the target size 8 it is
|
|
// impossible to find two tile sizes both divisible by 8 that fully cover the
|
|
// original space dimension.
|
|
if (emitAssertions) {
|
|
AffineExpr s3 = builder.getAffineSymbolExpr(3);
|
|
Value coveredSize =
|
|
apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
|
|
spec.highTileSize, spec.highTripCount});
|
|
Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
|
|
coveredSize, tripCount);
|
|
b.create<cf::AssertOp>(
|
|
equals, builder.getStringAttr(
|
|
"could not compute dynamic multi-size tile shapes"));
|
|
}
|
|
|
|
return spec;
|
|
}
|
|
|
|
/// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
|
|
/// than `iterationSize`.
|
|
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
|
|
OpFoldResult numThreads,
|
|
OpFoldResult iterationSize) {
|
|
std::optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
|
|
std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
|
|
std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
|
|
if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
|
|
return false;
|
|
return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
|
|
}
|
|
|
|
/// Build an `affine_max` of all the `vals`.
|
|
static OpFoldResult buildMax(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
return affine::makeComposedFoldedAffineMax(
|
|
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
|
|
vals);
|
|
}
|
|
|
|
/// Build an `affine_min` of all the `vals`.
|
|
static OpFoldResult buildMin(OpBuilder &b, Location loc,
|
|
ArrayRef<OpFoldResult> vals) {
|
|
return affine::makeComposedFoldedAffineMin(
|
|
b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
|
|
vals);
|
|
}
|
|
|
|
/// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given
|
|
/// number of threads.
|
|
static void calculateTileOffsetsAndSizes(
|
|
RewriterBase &b, Location loc, scf::ForallOp forallOp,
|
|
ArrayRef<OpFoldResult> numThreads, SmallVector<Range> loopRanges,
|
|
bool omitTileOffsetBoundsCheck,
|
|
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
|
|
SmallVector<OpFoldResult> &tiledOffsets,
|
|
SmallVector<OpFoldResult> &tiledSizes) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPointToStart(forallOp.getBody(0));
|
|
|
|
ValueRange threadIds = forallOp.getInductionVars();
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
int64_t nLoops = loopRanges.size();
|
|
tiledOffsets.reserve(nLoops);
|
|
tiledSizes.reserve(nLoops);
|
|
for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
|
|
bool overflow = loopIdx >= numThreads.size();
|
|
bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
|
|
// Degenerate case: take the whole domain.
|
|
if (overflow || isZero) {
|
|
tiledOffsets.push_back(loopRanges[loopIdx].offset);
|
|
tiledSizes.push_back(loopRanges[loopIdx].size);
|
|
continue;
|
|
}
|
|
|
|
// Tiled case: compute the offset and size.
|
|
AffineExpr i, j, m, n, o;
|
|
bindDims(b.getContext(), i, j);
|
|
bindSymbols(b.getContext(), m, n, o);
|
|
OpFoldResult size = loopRanges[loopIdx].size;
|
|
OpFoldResult offset = loopRanges[loopIdx].offset;
|
|
OpFoldResult threadId = threadIds[threadIdIdx];
|
|
// Symbolic fixed max size per thread.
|
|
// TODO: floor + 0/1 depending on case for better load-balancing.
|
|
OpFoldResult tileSizePerThread =
|
|
nominalTileSizes.has_value()
|
|
? (*nominalTileSizes)[loopIdx]
|
|
: makeComposedFoldedAffineApply(
|
|
b, loc, m.ceilDiv(n),
|
|
ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
|
|
|
|
// Dynamic offset shifted by threadId * maxSizePerThread.
|
|
OpFoldResult offsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * m, {offset, threadId, tileSizePerThread});
|
|
// Dynamic upper-bound depending on the threadId.
|
|
OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
|
|
b, loc, i + j * m - n,
|
|
{offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
|
|
if (!isConstantIntValue(residualTileSize, 0)) {
|
|
OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
|
|
b, loc, -i + m, {offsetPerThread, size});
|
|
tileSizePerThread =
|
|
buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread});
|
|
}
|
|
|
|
tiledOffsets.push_back(offsetPerThread);
|
|
// TODO: if tileSizePerThread <= 0 early exit.
|
|
if (!omitTileOffsetBoundsCheck &&
|
|
!canOmitTileOffsetInBoundsCheck(tileSizePerThread,
|
|
nonZeroNumThreads[threadIdIdx], size))
|
|
tileSizePerThread =
|
|
buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread});
|
|
|
|
tiledSizes.push_back(tileSizePerThread);
|
|
++threadIdIdx;
|
|
}
|
|
}
|
|
|
|
/// Rewrite a TilingInterface `op` to a tiled `scf.forall`. The
|
|
/// tiling is specified by the number of tiles/threads `numThreads` and the
|
|
/// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is
|
|
/// not specified, then it is derived from `numThreads` as `ceilDiv(dimSize[i],
|
|
/// numThreads[i])`. If non-empty, the `mapping` is added as an
|
|
/// attribute to the resulting `scf.forall`. A zero tile sizes indicate
|
|
/// that the dimension is not tiled, and can be thought of as tiling by the full
|
|
/// size of data.
|
|
/// It is the user's responsibility to ensure that `numThreads` is a valid
|
|
/// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the
|
|
/// Linalg case). If `omitTileOffsetBoundsCheck` is true, then the function will
|
|
/// assume that `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds.
|
|
static FailureOr<ForallTilingResult> tileToForallOpImpl(
|
|
RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> numThreads,
|
|
std::optional<ArrayRef<OpFoldResult>> nominalTileSizes,
|
|
std::optional<ArrayAttr> mapping, bool omitTileOffsetBoundsCheck) {
|
|
Location loc = op->getLoc();
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
if (loopRanges.empty())
|
|
return op->emitOpError("expected non-empty loop ranges");
|
|
auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); };
|
|
if (llvm::any_of(loopRanges, hasStrideOne))
|
|
return op->emitOpError("only stride-1 supported atm");
|
|
|
|
// Gather destination tensors.
|
|
SmallVector<Value> dest;
|
|
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
|
|
return op->emitOpError("failed to get destination tensors");
|
|
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
SmallVector<Value> materializedNonZeroNumThreads =
|
|
llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) {
|
|
return getValueOrCreateConstantIndexOp(b, loc, ofr);
|
|
}));
|
|
|
|
// 1. Create the ForallOp. We don't use the lambda body-builder
|
|
// version because we require the use of RewriterBase in the body, so we
|
|
// manually move the insertion point to the body below.
|
|
scf::ForallOp forallOp = b.create<scf::ForallOp>(
|
|
loc, getAsOpFoldResult((materializedNonZeroNumThreads)), dest, mapping);
|
|
|
|
// 2. Fill out the ForallOp body.
|
|
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
|
|
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, loopRanges,
|
|
omitTileOffsetBoundsCheck, nominalTileSizes,
|
|
tiledOffsets, tiledSizes);
|
|
|
|
// 3. Clone the tileable op and update its destination operands to use the
|
|
// output bbArgs of the ForallOp.
|
|
ArrayRef<BlockArgument> destBbArgs = forallOp.getOutputBlockArguments();
|
|
Operation *tiledOp = nullptr;
|
|
SmallVector<Value> tiledValues;
|
|
{
|
|
// 3.a. RAII guard, inserting within forallOp, before terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
Operation *clonedOp = b.clone(*op.getOperation());
|
|
auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp);
|
|
if (destinationStyleOp) {
|
|
for (OpOperand *outOperand : destinationStyleOp.getDpsInitOperands()) {
|
|
auto *it = llvm::find(dest, outOperand->get());
|
|
if (it == dest.end())
|
|
return op->emitOpError("must have \"tensor semantic\" for tiling");
|
|
unsigned destNum = std::distance(dest.begin(), it);
|
|
outOperand->set(destBbArgs[destNum]);
|
|
}
|
|
}
|
|
|
|
// 4. Tile the cloned op and delete the clone.
|
|
FailureOr<TilingResult> tilingResult =
|
|
cast<TilingInterface>(clonedOp).getTiledImplementation(b, tiledOffsets,
|
|
tiledSizes);
|
|
b.eraseOp(clonedOp);
|
|
assert(tilingResult->tiledOps.size() == 1 &&
|
|
"expected a single produced tiled op");
|
|
tiledOp = tilingResult->tiledOps.front();
|
|
tiledValues = tilingResult->tiledValues;
|
|
}
|
|
|
|
// 5. Parallel insert back into the result tensor.
|
|
for (auto it : llvm::zip(llvm::seq(unsigned(0), unsigned(dest.size())),
|
|
tiledValues, destBbArgs)) {
|
|
// 5.a. Partial subset information is inserted just before the terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<OpFoldResult> resultOffsets, resultSizes;
|
|
if (failed(op.getResultTilePosition(b, std::get<0>(it), tiledOffsets,
|
|
tiledSizes, resultOffsets,
|
|
resultSizes)))
|
|
return op->emitOpError("output offsets couldn't be calculated");
|
|
SmallVector<OpFoldResult> strides(resultSizes.size(), b.getIndexAttr(1));
|
|
|
|
// 5.b. Parallel insertions are inserted at the end of the combining
|
|
// terminator.
|
|
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
|
|
b.create<tensor::ParallelInsertSliceOp>(loc, std::get<1>(it),
|
|
std::get<2>(it), resultOffsets,
|
|
resultSizes, strides);
|
|
}
|
|
return ForallTilingResult{forallOp, tiledOp};
|
|
}
|
|
|
|
FailureOr<ForallTilingResult>
|
|
linalg::tileToForallOp(RewriterBase &b, TilingInterface op,
|
|
ArrayRef<OpFoldResult> numThreads,
|
|
std::optional<ArrayAttr> mapping) {
|
|
return tileToForallOpImpl(b, op, numThreads,
|
|
/*nominalTileSizes=*/std::nullopt, mapping,
|
|
/*omitTileOffsetBoundsCheck=*/false);
|
|
}
|
|
|
|
FailureOr<ForallTilingResult>
|
|
linalg::tileToForallOpUsingTileSizes(RewriterBase &b, TilingInterface op,
|
|
ArrayRef<OpFoldResult> tileSizes,
|
|
std::optional<ArrayAttr> mapping) {
|
|
SmallVector<Range> loopRanges = op.getIterationDomain(b);
|
|
unsigned nLoops = loopRanges.size();
|
|
SmallVector<OpFoldResult> numThreads;
|
|
numThreads.reserve(nLoops);
|
|
AffineExpr s0, s1;
|
|
bindSymbols(b.getContext(), s0, s1);
|
|
AffineExpr divExpr = s0.ceilDiv(s1);
|
|
for (const auto &it : llvm::zip(tileSizes, loopRanges)) {
|
|
OpFoldResult numTiles = std::get<0>(it);
|
|
if (!isConstantIntValue(numTiles, 0))
|
|
numTiles = makeComposedFoldedAffineApply(
|
|
b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)});
|
|
numThreads.push_back(numTiles);
|
|
}
|
|
return tileToForallOpImpl(b, op, numThreads,
|
|
/*nominalTileSizes=*/tileSizes, mapping,
|
|
/*omitTileOffsetBoundsCheck=*/true);
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static FailureOr<TiledLinalgOp>
|
|
tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef<OpFoldResult> tileSizes,
|
|
const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
auto nLoops = op.getNumLoops();
|
|
// Initial tile sizes may be too big, only take the first nLoops.
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
|
|
if (llvm::all_of(tileSizes, isZero)) {
|
|
TiledLinalgOp tiledOp;
|
|
tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
|
|
tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
|
|
tiledOp.op->result_end());
|
|
return tiledOp;
|
|
}
|
|
|
|
// 1. Build the tiled loop ranges.
|
|
SmallVector<OpFoldResult> allShapeSizes =
|
|
op.createFlatListOfOperandDims(b, op.getLoc());
|
|
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
|
|
if (!shapeSizesToLoopsMap)
|
|
return failure();
|
|
|
|
auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges(
|
|
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
|
|
|
|
SmallVector<utils::IteratorType, 4> iteratorTypes;
|
|
for (const auto &attr : enumerate(op.getIteratorTypesArray())) {
|
|
if (loopIndexToRangeIndex.count(attr.index()))
|
|
iteratorTypes.push_back(attr.value());
|
|
}
|
|
// If interchangeVector is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap =
|
|
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
|
|
if (!options.interchangeVector.empty()) {
|
|
// Based on the pruned iterations (due to zero tile size), recompute the
|
|
// interchange vector.
|
|
SmallVector<unsigned, 4> interchangeVector;
|
|
interchangeVector.reserve(options.interchangeVector.size());
|
|
for (auto pos : options.interchangeVector) {
|
|
auto it = loopIndexToRangeIndex.find(pos);
|
|
if (it == loopIndexToRangeIndex.end())
|
|
continue;
|
|
interchangeVector.push_back(it->second);
|
|
}
|
|
// Interchange vector is guaranteed to be a permutation,
|
|
// `inversePermutation` must succeed.
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
|
|
assert(invPermutationMap);
|
|
SmallVector<int64_t> permutation(interchangeVector.begin(),
|
|
interchangeVector.end());
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
applyPermutationToVector(iteratorTypes, permutation);
|
|
}
|
|
|
|
// Handle distribution. Create a vector of the same size of loops that are to
|
|
// be tiled.
|
|
SmallVector<linalg::ProcInfo> procInfo;
|
|
if (options.distribution) {
|
|
procInfo.resize(
|
|
iteratorTypes.size(),
|
|
linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None});
|
|
// Collect loop ranges of tiled loopss, loops that are parallel.
|
|
SmallVector<Range> parallelLoopRanges;
|
|
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
|
|
if (!isParallelIterator(iteratorType.value()))
|
|
break;
|
|
parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
|
|
}
|
|
auto returnedProcInfo =
|
|
options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges);
|
|
unsigned procIdIdx = 0;
|
|
// Update the distribution information for the loops.
|
|
for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) {
|
|
if (!isParallelIterator(iteratorType.value()))
|
|
break;
|
|
procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++];
|
|
}
|
|
}
|
|
|
|
// 2. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
SmallVector<Value, 4> ivs, tensorResults;
|
|
auto tiledLoopBodyBuilder =
|
|
[&](OpBuilder &builder, Location loc, ValueRange localIvs,
|
|
ValueRange operandValuesToUse) -> scf::ValueVector {
|
|
ivs.assign(localIvs.begin(), localIvs.end());
|
|
|
|
// When an `interchangeVector` is present, it has been applied to the
|
|
// loop ranges and the iterator types. Apply its inverse to the
|
|
// resulting loop `ivs` to match the op definition.
|
|
SmallVector<Value, 4> interchangedIvs;
|
|
if (!options.interchangeVector.empty())
|
|
interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
|
|
else
|
|
interchangedIvs.assign(ivs.begin(), ivs.end());
|
|
|
|
// Tile the `operandValuesToUse` that either match the `op` operands
|
|
// themselves or the tile loop arguments forwarding them.
|
|
assert(operandValuesToUse.size() ==
|
|
static_cast<size_t>(op->getNumOperands()) &&
|
|
"expect the number of operands and inputs and outputs to match");
|
|
SmallVector<Value> valuesToTile = operandValuesToUse;
|
|
SmallVector<OpFoldResult> sizeBounds =
|
|
makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap,
|
|
allShapeSizes);
|
|
SmallVector<Value> tiledOperands = makeTiledShapes(
|
|
b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes,
|
|
sizeBounds,
|
|
/*omitPartialTileCheck=*/false);
|
|
|
|
SmallVector<Type> resultTensorTypes =
|
|
getTensorOutputTypes(op, tiledOperands);
|
|
res = clone(b, op, resultTensorTypes, tiledOperands);
|
|
tensorResults =
|
|
insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
|
|
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
|
|
};
|
|
GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
|
|
tiledLoopBodyBuilder, procInfo);
|
|
|
|
// 3. Transform IndexOp results w.r.t. the tiling.
|
|
transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
|
|
|
|
// 4. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs) {
|
|
if (isa<BlockArgument>(iv)) {
|
|
loops.push_back(cast<BlockArgument>(iv).getOwner()->getParentOp());
|
|
assert(loops.back() && "no owner found for induction variable!");
|
|
} else {
|
|
// TODO: Instead of doing this, try to recover the ops used instead of the
|
|
// loop.
|
|
loops.push_back(nullptr);
|
|
}
|
|
}
|
|
|
|
// 5. Get the tensor results from the outermost loop if available. Otherwise
|
|
// use the previously captured `tensorResults`.
|
|
Operation *outermostLoop = nullptr;
|
|
for (Operation *loop : loops)
|
|
if ((outermostLoop = loop))
|
|
break;
|
|
|
|
return TiledLinalgOp{
|
|
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
|
|
}
|
|
|
|
FailureOr<linalg::ForallReductionTilingResult> linalg::tileReductionUsingForall(
|
|
RewriterBase &b, PartialReductionOpInterface op,
|
|
ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> tileSizes,
|
|
std::optional<ArrayAttr> mapping) {
|
|
Location loc = op.getLoc();
|
|
OpBuilder::InsertionGuard g(b);
|
|
|
|
// Ops implementing PartialReductionOpInterface are expected to implement
|
|
// TilingInterface.
|
|
// TODO: proper core mechanism to tie interfaces together.
|
|
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
|
|
|
|
// Ops implementing PartialReductionOpInterface are not necessarily expected
|
|
// to implement TilingInterface.. This cast is unsafe atm.
|
|
// TODO: proper core mechanism to tie interfaces together.
|
|
// TODO: this function requires a pair of interfaces ..
|
|
auto destinationStyleOp =
|
|
dyn_cast<DestinationStyleOpInterface>(op.getOperation());
|
|
if (!destinationStyleOp)
|
|
return b.notifyMatchFailure(op, "not a destination style op");
|
|
|
|
// Actually this only work for Linalg ops atm.
|
|
auto linalgOp = dyn_cast<linalg::LinalgOp>(op.getOperation());
|
|
if (!linalgOp)
|
|
return b.notifyMatchFailure(op, "not a linalg op");
|
|
|
|
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
|
|
if (op->getNumResults() != 1)
|
|
return b.notifyMatchFailure(
|
|
op, "don't support ops with multiple results for now");
|
|
|
|
SmallVector<utils::IteratorType> iterators =
|
|
tilingInterfaceOp.getLoopIteratorTypes();
|
|
SmallVector<unsigned> redDims;
|
|
linalgOp.getReductionDims(redDims);
|
|
if (redDims.size() != 1)
|
|
return b.notifyMatchFailure(
|
|
op, "only support ops with one reduction dimension.");
|
|
if (!tileSizes.empty() && tileSizes.size() != numThreads.size())
|
|
return b.notifyMatchFailure(op, "if tile sizes are present it must have as "
|
|
"many elements as number of threads");
|
|
int reductionDim = static_cast<int>(redDims.front());
|
|
|
|
if (redDims.front() >= numThreads.size())
|
|
return b.notifyMatchFailure(
|
|
op, "reduction dimension must be mapped to threads");
|
|
|
|
// 1. Create the inital tensor value.
|
|
FailureOr<Operation *> identityTensor =
|
|
op.generateInitialTensorForPartialReduction(b, loc, numThreads,
|
|
reductionDim);
|
|
if (failed(identityTensor))
|
|
return b.notifyMatchFailure(op,
|
|
"cannot create a tensor of identity value.");
|
|
|
|
// Gather destination tensors.
|
|
SmallVector<Value> dest;
|
|
if (failed(tensor::getOrCreateDestinations(b, loc, op, dest)))
|
|
return b.notifyMatchFailure(op, "failed to get destination tensors");
|
|
|
|
Operation *tiledOp = nullptr;
|
|
|
|
SmallVector<OpFoldResult> nonZeroNumThreads =
|
|
llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
|
|
return !isConstantIntValue(ofr, 0);
|
|
}));
|
|
SmallVector<Value> materializedNonZeroNumThreads =
|
|
getValueOrCreateConstantIndexOp(b, loc, nonZeroNumThreads);
|
|
|
|
// 2. Create the ForallOp with an empty region.
|
|
scf::ForallOp forallOp = b.create<scf::ForallOp>(
|
|
loc, getAsOpFoldResult(materializedNonZeroNumThreads),
|
|
(*identityTensor)->getResults(), mapping);
|
|
|
|
// 3. Calculate the tile offsets and sizes for the subsequent loop that will
|
|
// be nested under `forallOp`.
|
|
SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
|
|
calculateTileOffsetsAndSizes(b, loc, forallOp, numThreads, iterationDomain,
|
|
/*omitTileOffsetBoundsCheck =*/false,
|
|
/*nominalTileSizes=*/std::nullopt, tiledOffsets,
|
|
tiledSizes);
|
|
|
|
// 4. Clone the tileable op and update its destination operands to use the
|
|
// output bbArgs of the ForallOp.
|
|
SmallVector<Value> tilingResults;
|
|
ArrayRef<BlockArgument> destBbArgs = forallOp.getOutputBlockArguments();
|
|
{
|
|
// 4.a. RAII guard, inserting within forallOp, before terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<Value> tiledDpsInitOperands;
|
|
for (OpOperand *initOperand : destinationStyleOp.getDpsInitOperands()) {
|
|
auto *it = llvm::find(dest, initOperand->get());
|
|
assert(it != dest.end() && "dest operand not found in dest");
|
|
unsigned destNum = std::distance(dest.begin(), it);
|
|
SmallVector<OpFoldResult> strides(numThreads.size(), b.getIndexAttr(1));
|
|
SmallVector<OpFoldResult> outOffsets(numThreads.size(),
|
|
b.getIndexAttr(0));
|
|
SmallVector<OpFoldResult> sizes = tiledSizes;
|
|
sizes[reductionDim] = b.getIndexAttr(1);
|
|
outOffsets[reductionDim] = forallOp.getInductionVars().front();
|
|
// TODO: use SubsetExtractOpInterface once it is available.
|
|
tiledDpsInitOperands.push_back(b.create<tensor::ExtractSliceOp>(
|
|
loc, cast<RankedTensorType>(initOperand->get().getType()),
|
|
destBbArgs[destNum], outOffsets, sizes, strides));
|
|
}
|
|
|
|
// 4.b. Clone the op and update init operands.
|
|
// We cannot use a IRMapping here because it can replace
|
|
// different OpOperands with the same value.
|
|
Operation *clonedOp = b.clone(*op.getOperation());
|
|
b.updateRootInPlace(clonedOp, [&]() {
|
|
for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal(
|
|
cast<DestinationStyleOpInterface>(clonedOp).getDpsInitOperands(),
|
|
tiledDpsInitOperands)) {
|
|
initOperandPtr->set(tiledInitValue);
|
|
}
|
|
});
|
|
|
|
// 5. Tile the cloned op and delete the clone.
|
|
if (tileSizes.empty()) {
|
|
FailureOr<TilingResult> tilingResult =
|
|
cast<TilingInterface>(clonedOp).getTiledImplementation(
|
|
b, tiledOffsets, tiledSizes);
|
|
assert(tilingResult->tiledOps.size() == 1 &&
|
|
"expected a single produced tiled op");
|
|
tiledOp = tilingResult->tiledOps.front();
|
|
tilingResults = tilingResult->tiledValues;
|
|
} else {
|
|
LinalgTilingOptions options;
|
|
FailureOr<TiledLinalgOp> maybeTiled = tileLinalgOpImpl<scf::ForOp>(
|
|
b, cast<LinalgOp>(clonedOp), tileSizes, options);
|
|
if (failed(maybeTiled))
|
|
return b.notifyMatchFailure(op, "failed tileLinalgOpImpl");
|
|
|
|
SmallVector<Value> ids = forallOp.getInductionVars();
|
|
mapLoopToProcessorIds(cast<scf::ForOp>(maybeTiled->loops.back()), ids,
|
|
materializedNonZeroNumThreads);
|
|
assert(maybeTiled->loops.size() == 1 &&
|
|
"expected a single produced loop");
|
|
tiledOp = maybeTiled->op;
|
|
tilingResults = maybeTiled->loops.front()->getResults();
|
|
}
|
|
|
|
b.eraseOp(clonedOp);
|
|
}
|
|
|
|
// 6. Insert the partial reductions back into a new tensor.
|
|
for (auto [index, result, bbArg] : llvm::zip(
|
|
llvm::seq<unsigned>(0, dest.size()), tilingResults, destBbArgs)) {
|
|
// 6.a. Partial subset information is inserted just before the terminator.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(forallOp.getTerminator());
|
|
|
|
SmallVector<OpFoldResult> resultOffsets, resultSizes;
|
|
if (failed(tilingInterfaceOp.getResultTilePosition(
|
|
b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes)))
|
|
return op->emitOpError("output offsets couldn't be calculated");
|
|
SmallVector<OpFoldResult> resultOffsetsRank, resultSizesRank;
|
|
int64_t offIdx = 0;
|
|
int64_t sizeIdx = 0;
|
|
for (int64_t i = 0, e = numThreads.size(); i < e; ++i) {
|
|
if (i == reductionDim) {
|
|
resultOffsetsRank.push_back(forallOp.getInductionVars().front());
|
|
resultSizesRank.push_back(b.getIndexAttr(1));
|
|
continue;
|
|
}
|
|
resultOffsetsRank.push_back(resultOffsets[offIdx++]);
|
|
resultSizesRank.push_back(resultSizes[sizeIdx++]);
|
|
}
|
|
SmallVector<OpFoldResult> strides(resultSizesRank.size(),
|
|
b.getIndexAttr(1));
|
|
|
|
// 6.b. Parallel insertions are inserted at the end of the combining
|
|
// terminator.
|
|
b.setInsertionPointToEnd(forallOp.getTerminator().getBody());
|
|
b.create<tensor::ParallelInsertSliceOp>(
|
|
loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides);
|
|
}
|
|
|
|
// 7. Merge the partial reductions.
|
|
b.setInsertionPointAfter(forallOp);
|
|
Operation *mergeOp =
|
|
op.mergeReductions(b, loc, forallOp->getResults(), reductionDim);
|
|
b.replaceOp(op, mergeOp->getResults());
|
|
|
|
// 8. Return.
|
|
ForallReductionTilingResult results;
|
|
results.initialOp = *identityTensor;
|
|
results.loops = forallOp;
|
|
results.parallelTiledOp = tiledOp;
|
|
results.mergeOp = mergeOp;
|
|
return results;
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
|
|
RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
|
|
if (!options.tileSizeComputationFunction)
|
|
return failure();
|
|
|
|
// Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumLoops();
|
|
SmallVector<OpFoldResult> tileSizeVector =
|
|
getAsOpFoldResult(options.tileSizeComputationFunction(b, op));
|
|
if (tileSizeVector.size() < nLoops) {
|
|
tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0));
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
|
|
}
|
|
|
|
FailureOr<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
|
|
const LinalgTilingOptions &options) {
|
|
switch (options.loopType) {
|
|
case LinalgTilingLoopType::Loops:
|
|
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
|
|
case LinalgTilingLoopType::ParallelLoops:
|
|
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
|
|
default:;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
namespace {
|
|
/// Helper classes for type list expansion.
|
|
template <typename... OpTypes>
|
|
class CanonicalizationPatternList;
|
|
|
|
template <>
|
|
class CanonicalizationPatternList<> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {}
|
|
};
|
|
|
|
template <typename OpTy, typename... OpTypes>
|
|
class CanonicalizationPatternList<OpTy, OpTypes...> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {
|
|
OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
|
|
CanonicalizationPatternList<OpTypes...>::insert(patterns);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
RewritePatternSet
|
|
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
|
|
RewritePatternSet patterns(ctx);
|
|
populateLinalgTilingCanonicalizationPatterns(patterns);
|
|
return patterns;
|
|
}
|
|
|
|
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
auto *ctx = patterns.getContext();
|
|
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
|
|
affine::AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
|
|
arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
|
|
ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
|
|
|
|
CanonicalizationPatternList<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns);
|
|
}
|