
The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This patch updates all remaining uses of the deprecated functionality in mlir/. This was done with clang-tidy as described below and further modifications to GPUBase.td and OpenMPOpsInterfaces.td. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc ``` Differential Revision: https://reviews.llvm.org/D151542
1352 lines
51 KiB
C++
1352 lines
51 KiB
C++
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
|
|
|
|
#define GET_TYPEDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Additional convenience methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Gets the dimension-rank of the type of some `T`. (In particular
|
|
/// this is only used for `Value` and `TypedValue<RankedTensorType>`.)
|
|
template <typename T>
|
|
static inline Dimension getDimRank(T t) {
|
|
return getRankedTensorType(t).getRank();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StorageLayout
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static constexpr Level kInvalidLevel = -1u;
|
|
static constexpr Level kInvalidFieldIndex = -1u;
|
|
static constexpr FieldIndex kDataFieldStartingIdx = 0;
|
|
|
|
void StorageLayout::foreachField(
|
|
llvm::function_ref<bool(FieldIndex, SparseTensorFieldKind, Level,
|
|
DimLevelType)>
|
|
callback) const {
|
|
#define RETURN_ON_FALSE(fidx, kind, lvl, dlt) \
|
|
if (!(callback(fidx, kind, lvl, dlt))) \
|
|
return;
|
|
|
|
const auto lvlTypes = enc.getLvlTypes();
|
|
const Level lvlRank = enc.getLvlRank();
|
|
const Level cooStart = getCOOStart(enc);
|
|
const Level end = cooStart == lvlRank ? cooStart : cooStart + 1;
|
|
FieldIndex fieldIdx = kDataFieldStartingIdx;
|
|
// Per-level storage.
|
|
for (Level l = 0; l < end; l++) {
|
|
const auto dlt = lvlTypes[l];
|
|
if (isDLTWithPos(dlt)) {
|
|
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, dlt);
|
|
}
|
|
if (isDLTWithCrd(dlt)) {
|
|
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, dlt);
|
|
}
|
|
}
|
|
// The values array.
|
|
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::ValMemRef, kInvalidLevel,
|
|
DimLevelType::Undef);
|
|
|
|
// Put metadata at the end.
|
|
RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::StorageSpec, kInvalidLevel,
|
|
DimLevelType::Undef);
|
|
|
|
#undef RETURN_ON_FALSE
|
|
}
|
|
|
|
void sparse_tensor::foreachFieldAndTypeInSparseTensor(
|
|
SparseTensorType stt,
|
|
llvm::function_ref<bool(Type, FieldIndex, SparseTensorFieldKind, Level,
|
|
DimLevelType)>
|
|
callback) {
|
|
assert(stt.hasEncoding());
|
|
// Construct the basic types.
|
|
const Type crdType = stt.getCrdType();
|
|
const Type posType = stt.getPosType();
|
|
const Type eltType = stt.getElementType();
|
|
|
|
const Type specType = StorageSpecifierType::get(stt.getEncoding());
|
|
// memref<? x pos> positions
|
|
const Type posMemType = MemRefType::get({ShapedType::kDynamic}, posType);
|
|
// memref<? x crd> coordinates
|
|
const Type crdMemType = MemRefType::get({ShapedType::kDynamic}, crdType);
|
|
// memref<? x eltType> values
|
|
const Type valMemType = MemRefType::get({ShapedType::kDynamic}, eltType);
|
|
|
|
StorageLayout(stt).foreachField(
|
|
[specType, posMemType, crdMemType, valMemType,
|
|
callback](FieldIndex fieldIdx, SparseTensorFieldKind fieldKind,
|
|
Level lvl, DimLevelType dlt) -> bool {
|
|
switch (fieldKind) {
|
|
case SparseTensorFieldKind::StorageSpec:
|
|
return callback(specType, fieldIdx, fieldKind, lvl, dlt);
|
|
case SparseTensorFieldKind::PosMemRef:
|
|
return callback(posMemType, fieldIdx, fieldKind, lvl, dlt);
|
|
case SparseTensorFieldKind::CrdMemRef:
|
|
return callback(crdMemType, fieldIdx, fieldKind, lvl, dlt);
|
|
case SparseTensorFieldKind::ValMemRef:
|
|
return callback(valMemType, fieldIdx, fieldKind, lvl, dlt);
|
|
};
|
|
llvm_unreachable("unrecognized field kind");
|
|
});
|
|
}
|
|
|
|
unsigned StorageLayout::getNumFields() const {
|
|
unsigned numFields = 0;
|
|
foreachField([&numFields](FieldIndex, SparseTensorFieldKind, Level,
|
|
DimLevelType) -> bool {
|
|
numFields++;
|
|
return true;
|
|
});
|
|
return numFields;
|
|
}
|
|
|
|
unsigned StorageLayout::getNumDataFields() const {
|
|
unsigned numFields = 0; // one value memref
|
|
foreachField([&numFields](FieldIndex fidx, SparseTensorFieldKind, Level,
|
|
DimLevelType) -> bool {
|
|
if (fidx >= kDataFieldStartingIdx)
|
|
numFields++;
|
|
return true;
|
|
});
|
|
numFields -= 1; // the last field is StorageSpecifier
|
|
assert(numFields == getNumFields() - kDataFieldStartingIdx - 1);
|
|
return numFields;
|
|
}
|
|
|
|
std::pair<FieldIndex, unsigned>
|
|
StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
|
|
std::optional<Level> lvl) const {
|
|
FieldIndex fieldIdx = kInvalidFieldIndex;
|
|
unsigned stride = 1;
|
|
if (kind == SparseTensorFieldKind::CrdMemRef) {
|
|
assert(lvl.has_value());
|
|
const Level cooStart = getCOOStart(enc);
|
|
const Level lvlRank = enc.getLvlRank();
|
|
if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
|
|
lvl = cooStart;
|
|
stride = lvlRank - cooStart;
|
|
}
|
|
}
|
|
foreachField([lvl, kind, &fieldIdx](FieldIndex fIdx,
|
|
SparseTensorFieldKind fKind, Level fLvl,
|
|
DimLevelType dlt) -> bool {
|
|
if ((lvl && fLvl == lvl.value() && kind == fKind) ||
|
|
(kind == fKind && fKind == SparseTensorFieldKind::ValMemRef)) {
|
|
fieldIdx = fIdx;
|
|
// Returns false to break the iteration.
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
assert(fieldIdx != kInvalidFieldIndex);
|
|
return std::pair<FieldIndex, unsigned>(fieldIdx, stride);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Attribute Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool acceptBitWidth(unsigned bitWidth) {
|
|
switch (bitWidth) {
|
|
case 0:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const {
|
|
printer << "(";
|
|
printer << (getStaticOffset() ? std::to_string(*getStaticOffset()) : "?");
|
|
printer << ", ";
|
|
printer << (getStaticSize() ? std::to_string(*getStaticSize()) : "?");
|
|
printer << ", ";
|
|
printer << (getStaticStride() ? std::to_string(*getStaticStride()) : "?");
|
|
printer << ")";
|
|
}
|
|
|
|
static ParseResult parseOptionalStaticSlice(int64_t &result,
|
|
AsmParser &parser) {
|
|
auto parseResult = parser.parseOptionalInteger(result);
|
|
if (parseResult.has_value()) {
|
|
if (parseResult.value().succeeded() && result < 0) {
|
|
parser.emitError(
|
|
parser.getCurrentLocation(),
|
|
"expect positive value or ? for slice offset/size/stride");
|
|
return failure();
|
|
}
|
|
return parseResult.value();
|
|
}
|
|
|
|
// Else, and '?' which represented dynamic slice
|
|
result = SparseTensorDimSliceAttr::kDynamic;
|
|
return parser.parseQuestion();
|
|
}
|
|
|
|
Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
|
|
int64_t offset = -1, size = -1, stride = -1;
|
|
|
|
if (failed(parser.parseLParen()) ||
|
|
failed(parseOptionalStaticSlice(offset, parser)) ||
|
|
failed(parser.parseComma()) ||
|
|
failed(parseOptionalStaticSlice(size, parser)) ||
|
|
failed(parser.parseComma()) ||
|
|
failed(parseOptionalStaticSlice(stride, parser)) ||
|
|
failed(parser.parseRParen()))
|
|
return {};
|
|
|
|
return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(),
|
|
offset, size, stride);
|
|
}
|
|
|
|
LogicalResult
|
|
SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
int64_t offset, int64_t size, int64_t stride) {
|
|
if ((offset == SparseTensorDimSliceAttr::kDynamic || offset >= 0) &&
|
|
(size == SparseTensorDimSliceAttr::kDynamic || size > 0) &&
|
|
(stride == SparseTensorDimSliceAttr::kDynamic || stride > 0)) {
|
|
return success();
|
|
}
|
|
return emitError()
|
|
<< "expect positive value or ? for slice offset/size/stride";
|
|
}
|
|
|
|
Type mlir::sparse_tensor::detail::getIntegerOrIndexType(MLIRContext *ctx,
|
|
unsigned bitwidth) {
|
|
if (bitwidth)
|
|
return IntegerType::get(ctx, bitwidth);
|
|
return IndexType::get(ctx);
|
|
}
|
|
|
|
Type SparseTensorEncodingAttr::getPosType() const {
|
|
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
|
|
return detail::getIntegerOrIndexType(getContext(), getPosWidth());
|
|
}
|
|
|
|
Type SparseTensorEncodingAttr::getCrdType() const {
|
|
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
|
|
return detail::getIntegerOrIndexType(getContext(), getCrdWidth());
|
|
}
|
|
|
|
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutOrdering() const {
|
|
return SparseTensorEncodingAttr::get(getContext(), getLvlTypes(), AffineMap(),
|
|
AffineMap(), getPosWidth(),
|
|
getCrdWidth());
|
|
}
|
|
|
|
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const {
|
|
return SparseTensorEncodingAttr::get(
|
|
getContext(), getLvlTypes(), getDimOrdering(), getHigherOrdering(), 0, 0);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::isAllDense() const {
|
|
return !getImpl() || llvm::all_of(getLvlTypes(), isDenseDLT);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::isAllOrdered() const {
|
|
return !getImpl() || llvm::all_of(getLvlTypes(), isOrderedDLT);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::hasIdDimOrdering() const {
|
|
return !getImpl() || !getDimOrdering() || getDimOrdering().isIdentity();
|
|
}
|
|
|
|
Level SparseTensorEncodingAttr::getLvlRank() const {
|
|
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
|
|
return getLvlTypes().size();
|
|
}
|
|
|
|
DimLevelType SparseTensorEncodingAttr::getLvlType(Level l) const {
|
|
if (!getImpl())
|
|
return DimLevelType::Dense;
|
|
assert(l < getLvlRank() && "Level is out of bounds");
|
|
return getLvlTypes()[l];
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::isSlice() const {
|
|
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
|
|
return !getDimSlices().empty();
|
|
}
|
|
|
|
SparseTensorDimSliceAttr
|
|
SparseTensorEncodingAttr::getDimSlice(Dimension dim) const {
|
|
assert(isSlice() && "Is not a slice");
|
|
const auto dimSlices = getDimSlices();
|
|
assert(dim < dimSlices.size() && "Dimension is out of bounds");
|
|
return dimSlices[dim];
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const {
|
|
return getDimSlice(dim).getStaticOffset();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceSize(Dimension dim) const {
|
|
return getDimSlice(dim).getStaticSize();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const {
|
|
return getDimSlice(dim).getStaticStride();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceOffset(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceSize(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceSize(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceStride(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
const static DimLevelType validDLTs[] = {DimLevelType::Dense,
|
|
DimLevelType::Compressed,
|
|
DimLevelType::CompressedNu,
|
|
DimLevelType::CompressedNo,
|
|
DimLevelType::CompressedNuNo,
|
|
DimLevelType::Singleton,
|
|
DimLevelType::SingletonNu,
|
|
DimLevelType::SingletonNo,
|
|
DimLevelType::SingletonNuNo,
|
|
DimLevelType::CompressedWithHi,
|
|
DimLevelType::CompressedWithHiNu,
|
|
DimLevelType::CompressedWithHiNo,
|
|
DimLevelType::CompressedWithHiNuNo};
|
|
|
|
static std::optional<DimLevelType> parseDLT(StringRef str) {
|
|
for (DimLevelType dlt : validDLTs)
|
|
if (str == toMLIRString(dlt))
|
|
return dlt;
|
|
return std::nullopt;
|
|
}
|
|
|
|
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
|
|
#define RETURN_ON_FAIL(stmt) \
|
|
if (failed(stmt)) { \
|
|
return {}; \
|
|
}
|
|
#define ERROR_IF(COND, MSG) \
|
|
if (COND) { \
|
|
parser.emitError(parser.getNameLoc(), MSG); \
|
|
return {}; \
|
|
}
|
|
|
|
RETURN_ON_FAIL(parser.parseLess())
|
|
RETURN_ON_FAIL(parser.parseLBrace())
|
|
|
|
// Process the data from the parsed dictionary value into struct-like data.
|
|
SmallVector<DimLevelType> lvlTypes;
|
|
SmallVector<SparseTensorDimSliceAttr> slices;
|
|
AffineMap dimOrd = {};
|
|
AffineMap higherOrd = {};
|
|
unsigned posWidth = 0;
|
|
unsigned crdWidth = 0;
|
|
|
|
StringRef attrName;
|
|
// Exactly 6 keys.
|
|
SmallVector<StringRef, 6> keys = {"lvlTypes", "dimOrdering", "higherOrdering",
|
|
"posWidth", "crdWidth", "slice"};
|
|
while (succeeded(parser.parseOptionalKeyword(&attrName))) {
|
|
if (!llvm::is_contained(keys, attrName)) {
|
|
parser.emitError(parser.getNameLoc(), "unexpected key: ") << attrName;
|
|
return {};
|
|
}
|
|
|
|
// Consume the `=` after keys
|
|
RETURN_ON_FAIL(parser.parseEqual())
|
|
// FIXME: using `operator==` below duplicates the string comparison
|
|
// cost of the `is_contained` check above. Should instead use some
|
|
// "find" function that returns the index into `keys` so that we can
|
|
// dispatch on that instead.
|
|
if (attrName == "lvlTypes") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr));
|
|
auto arrayAttr = llvm::dyn_cast<ArrayAttr>(attr);
|
|
ERROR_IF(!arrayAttr, "expected an array for lvlTypes")
|
|
for (auto i : arrayAttr) {
|
|
auto strAttr = llvm::dyn_cast<StringAttr>(i);
|
|
ERROR_IF(!strAttr, "expected a string value in lvlTypes")
|
|
auto strVal = strAttr.getValue();
|
|
if (auto optDLT = parseDLT(strVal)) {
|
|
lvlTypes.push_back(optDLT.value());
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(), "unexpected level-type: ")
|
|
<< strVal;
|
|
return {};
|
|
}
|
|
}
|
|
} else if (attrName == "dimOrdering") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto affineAttr = llvm::dyn_cast<AffineMapAttr>(attr);
|
|
ERROR_IF(!affineAttr, "expected an affine map for dimension ordering")
|
|
dimOrd = affineAttr.getValue();
|
|
} else if (attrName == "higherOrdering") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto affineAttr = llvm::dyn_cast<AffineMapAttr>(attr);
|
|
ERROR_IF(!affineAttr, "expected an affine map for higher ordering")
|
|
higherOrd = affineAttr.getValue();
|
|
} else if (attrName == "posWidth") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
|
|
ERROR_IF(!intAttr, "expected an integral position bitwidth")
|
|
posWidth = intAttr.getInt();
|
|
} else if (attrName == "crdWidth") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
|
|
ERROR_IF(!intAttr, "expected an integral index bitwidth")
|
|
crdWidth = intAttr.getInt();
|
|
} else if (attrName == "slice") {
|
|
RETURN_ON_FAIL(parser.parseLSquare())
|
|
// Dispatches to DimSliceAttr to skip mnemonic
|
|
bool finished = false;
|
|
while (auto attr = SparseTensorDimSliceAttr::parse(parser, nullptr)) {
|
|
auto sliceAttr = llvm::cast<SparseTensorDimSliceAttr>(attr);
|
|
slices.push_back(sliceAttr);
|
|
if (parser.parseOptionalComma().failed()) {
|
|
finished = true;
|
|
break;
|
|
}
|
|
}
|
|
// Wrong when parsing slices
|
|
if (!finished)
|
|
return {};
|
|
RETURN_ON_FAIL(parser.parseRSquare())
|
|
}
|
|
|
|
// Only the last item can omit the comma
|
|
if (parser.parseOptionalComma().failed())
|
|
break;
|
|
}
|
|
|
|
RETURN_ON_FAIL(parser.parseRBrace())
|
|
RETURN_ON_FAIL(parser.parseGreater())
|
|
#undef ERROR_IF
|
|
#undef RETURN_ON_FAIL
|
|
|
|
// Construct struct-like storage for attribute.
|
|
return parser.getChecked<SparseTensorEncodingAttr>(
|
|
parser.getContext(), lvlTypes, dimOrd, higherOrd, posWidth, crdWidth,
|
|
slices);
|
|
}
|
|
|
|
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
|
|
// Print the struct-like storage in dictionary fashion.
|
|
printer << "<{ lvlTypes = [ ";
|
|
llvm::interleaveComma(getLvlTypes(), printer, [&](DimLevelType dlt) {
|
|
printer << "\"" << toMLIRString(dlt) << "\"";
|
|
});
|
|
printer << " ]";
|
|
// Print remaining members only for non-default values.
|
|
if (!hasIdDimOrdering())
|
|
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
|
|
if (getHigherOrdering())
|
|
printer << ", higherOrdering = affine_map<" << getHigherOrdering() << ">";
|
|
if (getPosWidth())
|
|
printer << ", posWidth = " << getPosWidth();
|
|
if (getCrdWidth())
|
|
printer << ", crdWidth = " << getCrdWidth();
|
|
if (!getDimSlices().empty()) {
|
|
printer << ", slice = [ ";
|
|
llvm::interleaveComma(getDimSlices(), printer,
|
|
[&](SparseTensorDimSliceAttr attr) {
|
|
// Calls SparseTensorDimSliceAttr::print directly to
|
|
// skip mnemonic.
|
|
attr.print(printer);
|
|
});
|
|
printer << " ]";
|
|
}
|
|
|
|
printer << " }>";
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verify(
|
|
function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<DimLevelType> lvlTypes, AffineMap dimOrdering,
|
|
AffineMap higherOrdering, unsigned posWidth, unsigned crdWidth,
|
|
ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
|
|
if (!acceptBitWidth(posWidth))
|
|
return emitError() << "unexpected position bitwidth: " << posWidth;
|
|
if (!acceptBitWidth(crdWidth))
|
|
return emitError() << "unexpected coordinate bitwidth: " << crdWidth;
|
|
// Before we can check that the level-rank is consistent/coherent
|
|
// across all fields, we need to define it. The source-of-truth for
|
|
// the `getLvlRank` method is the length of the level-types array,
|
|
// since it must always be provided and have full rank; therefore we
|
|
// use that same source-of-truth here.
|
|
const Level lvlRank = lvlTypes.size();
|
|
if (lvlRank == 0)
|
|
return emitError() << "expected a non-empty array for lvlTypes";
|
|
if (dimOrdering) {
|
|
if (!dimOrdering.isPermutation())
|
|
return emitError()
|
|
<< "expected a permutation affine map for dimension ordering";
|
|
if (dimOrdering.getNumResults() != lvlRank)
|
|
return emitError()
|
|
<< "level-rank mismatch between dimOrdering and lvlTypes";
|
|
}
|
|
if (higherOrdering) {
|
|
if (higherOrdering.getNumDims() >= higherOrdering.getNumResults())
|
|
return emitError() << "unexpected higher ordering mapping from "
|
|
<< higherOrdering.getNumDims() << " to "
|
|
<< higherOrdering.getNumResults();
|
|
if (higherOrdering.getNumResults() != lvlRank)
|
|
return emitError()
|
|
<< "level-rank mismatch between higherOrdering and lvlTypes";
|
|
}
|
|
if (!dimSlices.empty() && dimSlices.size() != lvlRank) {
|
|
return emitError() << "level-rank mismatch between dimSlices and lvlTypes";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
#define RETURN_FAILURE_IF_FAILED(X) \
|
|
if (failed(X)) { \
|
|
return failure(); \
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
|
|
ArrayRef<DynSize> dimShape, Type elementType,
|
|
function_ref<InFlightDiagnostic()> emitError) const {
|
|
// Check structural integrity. In particular, this ensures that the
|
|
// level-rank is coherent across all the fields.
|
|
RETURN_FAILURE_IF_FAILED(verify(emitError, getLvlTypes(), getDimOrdering(),
|
|
getHigherOrdering(), getPosWidth(),
|
|
getCrdWidth(), getDimSlices()))
|
|
// Check integrity with tensor type specifics. In particular, we
|
|
// need only check that the dimension-rank of the tensor agrees with
|
|
// the dimension-rank of the encoding.
|
|
const Dimension dimRank = dimShape.size();
|
|
if (dimRank == 0)
|
|
return emitError() << "expected non-scalar sparse tensor";
|
|
if (const auto higherOrdering = getHigherOrdering()) {
|
|
if (higherOrdering.getNumDims() != dimRank)
|
|
return emitError() << "expected an affine map with " << dimRank
|
|
<< " dimensions for higher ordering";
|
|
// TODO: verification of higher ordering contents
|
|
} else if (dimRank != getLvlRank()) {
|
|
return emitError() << "expected an array of size " << dimRank
|
|
<< " for lvlTypes";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convenience Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SparseTensorEncodingAttr
|
|
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
|
|
if (auto ttp = llvm::dyn_cast<RankedTensorType>(type))
|
|
return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
|
|
if (auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
|
|
return mdtp.getEncoding();
|
|
return nullptr;
|
|
}
|
|
|
|
bool mlir::sparse_tensor::isCOOType(SparseTensorEncodingAttr enc,
|
|
Level startLvl, bool isUnique) {
|
|
if (!enc ||
|
|
!(enc.isCompressedLvl(startLvl) || enc.isCompressedWithHiLvl(startLvl)))
|
|
return false;
|
|
const Level lvlRank = enc.getLvlRank();
|
|
for (Level l = startLvl + 1; l < lvlRank; ++l)
|
|
if (!enc.isSingletonLvl(l))
|
|
return false;
|
|
// If isUnique is true, then make sure that the last level is unique,
|
|
// that is, lvlRank == 1 (unique the only compressed) and lvlRank > 1
|
|
// (unique on the last singleton).
|
|
return !isUnique || enc.isUniqueLvl(lvlRank - 1);
|
|
}
|
|
|
|
bool mlir::sparse_tensor::isUniqueCOOType(Type tp) {
|
|
return isCOOType(getSparseTensorEncoding(tp), 0, /*isUnique=*/true);
|
|
}
|
|
|
|
Level mlir::sparse_tensor::getCOOStart(SparseTensorEncodingAttr enc) {
|
|
// We only consider COO region with at least two levels for the purpose
|
|
// of AOS storage optimization.
|
|
const Level lvlRank = enc.getLvlRank();
|
|
if (lvlRank > 1)
|
|
for (Level l = 0; l < lvlRank - 1; l++)
|
|
if (isCOOType(enc, l, /*isUnique=*/false))
|
|
return l;
|
|
return lvlRank;
|
|
}
|
|
|
|
// Helpers to setup a COO type.
|
|
RankedTensorType sparse_tensor::getCOOFromTypeWithOrdering(RankedTensorType rtt,
|
|
AffineMap lvlPerm,
|
|
bool ordered) {
|
|
const SparseTensorType src(rtt);
|
|
// The dim-rank of the source `RankedTensorType` is used as the lvl-rank
|
|
// of the result `RankedTensorType`. This follows from the fact that the
|
|
// result's encoding has the default higher-ordering (hence the result's
|
|
// lvl-rank equals its dim-rank). We don't need to assert that `lvlRank`
|
|
// agrees with the size of `lvlPerm` because that will be verified by
|
|
// `STEA::get`.
|
|
const Level lvlRank = src.getDimRank();
|
|
SmallVector<DimLevelType> lvlTypes;
|
|
|
|
// An unordered and non-unique compressed level at beginning.
|
|
// If this is also the last level, then it is unique.
|
|
lvlTypes.push_back(
|
|
*buildLevelType(LevelFormat::Compressed, ordered, lvlRank == 1));
|
|
if (lvlRank > 1) {
|
|
// TODO: it is actually ordered at the level for ordered input.
|
|
// Followed by unordered non-unique n-2 singleton levels.
|
|
std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
|
|
*buildLevelType(LevelFormat::Singleton, ordered, false));
|
|
// Ends by a unique singleton level unless the lvlRank is 1.
|
|
lvlTypes.push_back(*buildLevelType(LevelFormat::Singleton, ordered, true));
|
|
}
|
|
|
|
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
|
|
// largest one among them) in the original operation instead of using the
|
|
// default value.
|
|
unsigned posWidth = src.getPosWidth();
|
|
unsigned crdWidth = src.getCrdWidth();
|
|
auto enc = SparseTensorEncodingAttr::get(src.getContext(), lvlTypes, lvlPerm,
|
|
AffineMap(), posWidth, crdWidth);
|
|
return RankedTensorType::get(src.getDimShape(), src.getElementType(), enc);
|
|
}
|
|
|
|
RankedTensorType sparse_tensor::getCOOFromType(RankedTensorType src,
|
|
bool ordered) {
|
|
return getCOOFromTypeWithOrdering(
|
|
src, AffineMap::getMultiDimIdentityMap(src.getRank(), src.getContext()),
|
|
ordered);
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Dimension mlir::sparse_tensor::toOrigDim(SparseTensorEncodingAttr enc,
|
|
Level l) {
|
|
if (enc) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
return order.getDimPosition(l);
|
|
}
|
|
}
|
|
return l;
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Level mlir::sparse_tensor::toStoredDim(SparseTensorEncodingAttr enc,
|
|
Dimension d) {
|
|
if (enc) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
auto maybePos =
|
|
order.getResultPosition(getAffineDimExpr(d, enc.getContext()));
|
|
assert(maybePos.has_value());
|
|
return *maybePos;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Dimension mlir::sparse_tensor::toOrigDim(RankedTensorType type, Level l) {
|
|
const auto enc = getSparseTensorEncoding(type);
|
|
assert(l < enc.getLvlRank());
|
|
return toOrigDim(enc, l);
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Level mlir::sparse_tensor::toStoredDim(RankedTensorType type, Dimension d) {
|
|
assert(d < static_cast<Dimension>(type.getRank()));
|
|
return toStoredDim(getSparseTensorEncoding(type), d);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseTensorDialect Types.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// We normalized sparse tensor encoding attribute by always using
|
|
/// ordered/unique DLT such that "compressed-nu-no" and "compressed-nu" (as well
|
|
/// as other variants) lead to the same storage specifier type, and stripping
|
|
/// irrelevant fields that do not alter the sparse tensor memory layout.
|
|
static SparseTensorEncodingAttr
|
|
getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) {
|
|
SmallVector<DimLevelType> dlts;
|
|
for (auto dlt : enc.getLvlTypes())
|
|
dlts.push_back(*buildLevelType(*getLevelFormat(dlt), true, true));
|
|
|
|
return SparseTensorEncodingAttr::get(
|
|
enc.getContext(), dlts,
|
|
AffineMap(), // dimOrdering (irrelavant to storage speicifer)
|
|
AffineMap(), // highLvlOrdering (irrelavant to storage specifer)
|
|
// Always use `index` for memSize and lvlSize instead of reusing
|
|
// `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA
|
|
// value for different bitwidth, it also avoids casting between index and
|
|
// integer (returned by DimOp)
|
|
0, 0, enc.getDimSlices());
|
|
}
|
|
|
|
StorageSpecifierType
|
|
StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
|
|
return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseTensorDialect Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult lvlIsInBounds(Level lvl, Value tensor) {
|
|
return success(lvl < getSparseTensorType(tensor).getLvlRank());
|
|
}
|
|
|
|
static LogicalResult isMatchingWidth(Value mem, unsigned width) {
|
|
const Type etp = getMemRefType(mem).getElementType();
|
|
return success(width == 0 ? etp.isIndex() : etp.isInteger(width));
|
|
}
|
|
|
|
static LogicalResult verifySparsifierGetterSetter(
|
|
StorageSpecifierKind mdKind, std::optional<Level> lvl,
|
|
TypedValue<StorageSpecifierType> md, Operation *op) {
|
|
if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
|
|
return op->emitError(
|
|
"redundant level argument for querying value memory size");
|
|
}
|
|
|
|
const auto enc = md.getType().getEncoding();
|
|
const Level lvlRank = enc.getLvlRank();
|
|
|
|
if (mdKind == StorageSpecifierKind::DimOffset ||
|
|
mdKind == StorageSpecifierKind::DimStride)
|
|
if (!enc.isSlice())
|
|
return op->emitError("requested slice data on non-slice tensor");
|
|
|
|
if (mdKind != StorageSpecifierKind::ValMemSize) {
|
|
if (!lvl)
|
|
return op->emitError("missing level argument");
|
|
|
|
const Level l = lvl.value();
|
|
if (l >= lvlRank)
|
|
return op->emitError("requested level is out of bounds");
|
|
|
|
if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
|
|
return op->emitError(
|
|
"requested position memory size on a singleton level");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind) {
|
|
switch (kind) {
|
|
case SparseTensorFieldKind::CrdMemRef:
|
|
return stt.getCrdType();
|
|
case SparseTensorFieldKind::PosMemRef:
|
|
return stt.getPosType();
|
|
case SparseTensorFieldKind::ValMemRef:
|
|
return stt.getElementType();
|
|
case SparseTensorFieldKind::StorageSpec:
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("Unrecognizable FieldKind");
|
|
}
|
|
|
|
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
|
|
SparseTensorType stt,
|
|
RankedTensorType valTp,
|
|
TypeRange lvlTps) {
|
|
if (requiresStaticShape && !stt.hasStaticDimShape())
|
|
return op->emitError("the sparse-tensor must have static shape");
|
|
if (!stt.hasEncoding())
|
|
return op->emitError("the sparse-tensor must have an encoding attribute");
|
|
if (!stt.isIdentity())
|
|
return op->emitError("the sparse-tensor must have the identity mapping");
|
|
|
|
// Verifies the trailing COO.
|
|
Level cooStartLvl = getCOOStart(stt.getEncoding());
|
|
if (cooStartLvl < stt.getLvlRank()) {
|
|
// We only supports trailing COO for now, must be the last input.
|
|
auto cooTp = llvm::cast<ShapedType>(lvlTps.back());
|
|
// The coordinates should be in shape of <? x rank>
|
|
unsigned expCOORank = stt.getLvlRank() - cooStartLvl;
|
|
if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) {
|
|
op->emitError("input/output trailing COO level-ranks don't match");
|
|
}
|
|
}
|
|
|
|
// Verifies that all types match.
|
|
StorageLayout layout(stt.getEncoding());
|
|
if (layout.getNumDataFields() != lvlTps.size() + 1) // plus one value memref
|
|
return op->emitError("inconsistent number of fields between input/output");
|
|
|
|
unsigned idx = 0;
|
|
bool misMatch = false;
|
|
layout.foreachField([&idx, &misMatch, stt, valTp,
|
|
lvlTps](FieldIndex fid, SparseTensorFieldKind fKind,
|
|
Level lvl, DimLevelType dlt) -> bool {
|
|
if (fKind == SparseTensorFieldKind::StorageSpec)
|
|
return true;
|
|
|
|
Type inputTp = nullptr;
|
|
if (fKind == SparseTensorFieldKind::ValMemRef) {
|
|
inputTp = valTp;
|
|
} else {
|
|
assert(fid == idx && stt.getLvlType(lvl) == dlt);
|
|
inputTp = lvlTps[idx++];
|
|
}
|
|
// The input element type and expected element type should match.
|
|
Type inpElemTp = llvm::cast<TensorType>(inputTp).getElementType();
|
|
Type expElemTp = getFieldElemType(stt, fKind);
|
|
if (inpElemTp != expElemTp) {
|
|
misMatch = true;
|
|
return false; // to terminate the iteration
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (misMatch)
|
|
return op->emitError("input/output element-types don't match");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult PackOp::verify() {
|
|
const auto valuesTp = getRankedTensorType(getValues());
|
|
const auto lvlsTp = getLevels().getTypes();
|
|
const auto resTp = getSparseTensorType(getResult());
|
|
return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp);
|
|
}
|
|
|
|
LogicalResult UnpackOp::verify() {
|
|
if (getOutValues().getType() != getRetValues().getType())
|
|
return emitError("output values and return value type mismatch");
|
|
|
|
for (auto [ot, rt] : llvm::zip_equal(getOutLevels(), getRetLevels()))
|
|
if (ot.getType() != rt.getType())
|
|
return emitError("output levels and return levels type mismatch");
|
|
|
|
const auto valuesTp = getRankedTensorType(getRetValues());
|
|
const auto lvlsTp = getRetLevels().getTypes();
|
|
const auto srcTp = getSparseTensorType(getTensor());
|
|
return verifyPackUnPack(*this, false, srcTp, valuesTp, lvlsTp);
|
|
}
|
|
|
|
LogicalResult ConvertOp::verify() {
|
|
if (auto tp1 = llvm::dyn_cast<RankedTensorType>(getSource().getType())) {
|
|
if (auto tp2 = llvm::dyn_cast<RankedTensorType>(getDest().getType())) {
|
|
if (tp1.getRank() != tp2.getRank())
|
|
return emitError("unexpected conversion mismatch in rank");
|
|
auto dstEnc =
|
|
llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
|
|
if (dstEnc && dstEnc.isSlice())
|
|
return emitError("cannot convert to a sparse tensor slice");
|
|
|
|
auto shape1 = tp1.getShape();
|
|
auto shape2 = tp2.getShape();
|
|
// Accept size matches between the source and the destination type
|
|
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
|
|
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
|
|
for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
|
|
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
|
|
return emitError("unexpected conversion mismatch in dimension ") << d;
|
|
return success();
|
|
}
|
|
}
|
|
return emitError("unexpected type in convert");
|
|
}
|
|
|
|
OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
|
|
Type dstType = getType();
|
|
// Fold trivial dense-to-dense convert and leave trivial sparse-to-sparse
|
|
// convert for codegen to remove. This is because we use trivial
|
|
// sparse-to-sparse convert to tell bufferization that the sparse codegen
|
|
// will expand the tensor buffer into sparse tensor storage.
|
|
if (!getSparseTensorEncoding(dstType) && dstType == getSource().getType())
|
|
return getSource();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult ToPositionsOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(lvlIsInBounds(getLevel(), getTensor())))
|
|
return emitError("requested level is out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getPosWidth())))
|
|
return emitError("unexpected type for positions");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToCoordinatesOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(lvlIsInBounds(getLevel(), getTensor())))
|
|
return emitError("requested level is out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getCrdWidth())))
|
|
return emitError("unexpected type for coordinates");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToCoordinatesBufferOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (getCOOStart(e) >= e.getLvlRank())
|
|
return emitError("expected sparse tensor with a COO region");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToValuesOp::verify() {
|
|
auto ttp = getRankedTensorType(getTensor());
|
|
auto mtp = getMemRefType(getResult());
|
|
if (ttp.getElementType() != mtp.getElementType())
|
|
return emitError("unexpected mismatch in element types");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToSliceOffsetOp::verify() {
|
|
auto rank = getRankedTensorType(getSlice()).getRank();
|
|
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
|
|
return emitError("requested dimension out of bound");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToSliceStrideOp::verify() {
|
|
auto rank = getRankedTensorType(getSlice()).getRank();
|
|
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
|
|
return emitError("requested dimension out of bound");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GetStorageSpecifierOp::verify() {
|
|
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
|
|
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
|
|
return success();
|
|
}
|
|
|
|
template <typename SpecifierOp>
|
|
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) {
|
|
return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
|
|
}
|
|
|
|
OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
|
|
const StorageSpecifierKind kind = getSpecifierKind();
|
|
const auto lvl = getLevel();
|
|
for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op))
|
|
if (kind == op.getSpecifierKind() && lvl == op.getLevel())
|
|
return op.getValue();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult SetStorageSpecifierOp::verify() {
|
|
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
|
|
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Linalg.Generic Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class T>
|
|
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
|
|
const char *regionName,
|
|
TypeRange inputTypes, Type outputType) {
|
|
unsigned numArgs = region.getNumArguments();
|
|
unsigned expectedNum = inputTypes.size();
|
|
if (numArgs != expectedNum)
|
|
return op->emitError() << regionName << " region must have exactly "
|
|
<< expectedNum << " arguments";
|
|
|
|
for (unsigned i = 0; i < numArgs; i++) {
|
|
Type typ = region.getArgument(i).getType();
|
|
if (typ != inputTypes[i])
|
|
return op->emitError() << regionName << " region argument " << (i + 1)
|
|
<< " type mismatch";
|
|
}
|
|
Operation *term = region.front().getTerminator();
|
|
YieldOp yield = dyn_cast<YieldOp>(term);
|
|
if (!yield)
|
|
return op->emitError() << regionName
|
|
<< " region must end with sparse_tensor.yield";
|
|
if (!yield.getResult() || yield.getResult().getType() != outputType)
|
|
return op->emitError() << regionName << " region yield type mismatch";
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult BinaryOp::verify() {
|
|
NamedAttrList attrs = (*this)->getAttrs();
|
|
Type leftType = getX().getType();
|
|
Type rightType = getY().getType();
|
|
Type outputType = getOutput().getType();
|
|
Region &overlap = getOverlapRegion();
|
|
Region &left = getLeftRegion();
|
|
Region &right = getRightRegion();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
if (!overlap.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType))
|
|
}
|
|
if (!left.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(
|
|
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType))
|
|
} else if (getLeftIdentity()) {
|
|
if (leftType != outputType)
|
|
return emitError("left=identity requires first argument to have the same "
|
|
"type as the output");
|
|
}
|
|
if (!right.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, right, "right", TypeRange{rightType}, outputType))
|
|
} else if (getRightIdentity()) {
|
|
if (rightType != outputType)
|
|
return emitError("right=identity requires second argument to have the "
|
|
"same type as the output");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult UnaryOp::verify() {
|
|
Type inputType = getX().getType();
|
|
Type outputType = getOutput().getType();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
Region &present = getPresentRegion();
|
|
if (!present.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, present, "present", TypeRange{inputType}, outputType))
|
|
}
|
|
Region &absent = getAbsentRegion();
|
|
if (!absent.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(
|
|
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType))
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ConcatenateOp::verify() {
|
|
const auto dstTp = getSparseTensorType(*this);
|
|
const Dimension concatDim = getDimension();
|
|
const Dimension dimRank = dstTp.getDimRank();
|
|
|
|
if (getInputs().size() <= 1)
|
|
return emitError("Need at least two tensors to concatenate.");
|
|
|
|
if (concatDim >= dimRank)
|
|
return emitError(llvm::formatv(
|
|
"Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
|
|
concatDim, dimRank));
|
|
|
|
for (const auto &it : llvm::enumerate(getInputs())) {
|
|
const auto i = it.index();
|
|
const auto srcTp = getSparseTensorType(it.value());
|
|
if (srcTp.hasDynamicDimShape())
|
|
return emitError(llvm::formatv("Input tensor ${0} has dynamic shape", i));
|
|
const Dimension srcDimRank = srcTp.getDimRank();
|
|
if (srcDimRank != dimRank)
|
|
return emitError(
|
|
llvm::formatv("Input tensor ${0} has a different rank (rank={1}) "
|
|
"from the output tensor (rank={2}).",
|
|
i, srcDimRank, dimRank));
|
|
}
|
|
|
|
for (Dimension d = 0; d < dimRank; d++) {
|
|
const DynSize dstSh = dstTp.getDimShape()[d];
|
|
if (d == concatDim) {
|
|
if (!ShapedType::isDynamic(dstSh)) {
|
|
// If we reach here, then all inputs have static shapes. So we
|
|
// can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)`
|
|
// to avoid redundant assertions in the loop.
|
|
StaticSize sumSz = 0;
|
|
for (const auto src : getInputs())
|
|
sumSz += getSparseTensorType(src).getDimShape()[d];
|
|
// If all dimension are statically known, the sum of all the input
|
|
// dimensions should be equal to the output dimension.
|
|
if (sumSz != dstSh)
|
|
return emitError(
|
|
"The concatenation dimension of the output tensor should be the "
|
|
"sum of all the concatenation dimensions of the input tensors.");
|
|
}
|
|
} else {
|
|
DynSize prev = dstSh;
|
|
for (const auto src : getInputs()) {
|
|
const auto sh = getSparseTensorType(src).getDimShape()[d];
|
|
if (!ShapedType::isDynamic(prev) && sh != prev)
|
|
return emitError("All dimensions (expect for the concatenating one) "
|
|
"should be equal.");
|
|
prev = sh;
|
|
}
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult InsertOp::verify() {
|
|
const auto stt = getSparseTensorType(getTensor());
|
|
if (stt.getLvlRank() != static_cast<Level>(getLvlCoords().size()))
|
|
return emitOpError("incorrect number of coordinates");
|
|
return success();
|
|
}
|
|
|
|
void PushBackOp::build(OpBuilder &builder, OperationState &result,
|
|
Value curSize, Value inBuffer, Value value) {
|
|
build(builder, result, curSize, inBuffer, value, Value());
|
|
}
|
|
|
|
LogicalResult PushBackOp::verify() {
|
|
if (Value n = getN()) {
|
|
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
|
|
if (nValue && nValue.value() < 1)
|
|
return emitOpError("n must be not less than 1");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult CompressOp::verify() {
|
|
const auto stt = getSparseTensorType(getTensor());
|
|
if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size()))
|
|
return emitOpError("incorrect number of coordinates");
|
|
return success();
|
|
}
|
|
|
|
void ForeachOp::build(
|
|
OpBuilder &builder, OperationState &result, Value tensor,
|
|
ValueRange initArgs, AffineMapAttr order,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
|
|
bodyBuilder) {
|
|
build(builder, result, initArgs.getTypes(), tensor, initArgs, order);
|
|
// Builds foreach body.
|
|
if (!bodyBuilder)
|
|
return;
|
|
const auto stt = getSparseTensorType(tensor);
|
|
const Dimension dimRank = stt.getDimRank();
|
|
|
|
// Starts with `dimRank`-many coordinates.
|
|
SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType());
|
|
// Followed by one value.
|
|
blockArgTypes.push_back(stt.getElementType());
|
|
// Followed by the reduction variables.
|
|
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
|
|
|
|
SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc());
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ®ion = *result.regions.front();
|
|
Block *bodyBlock =
|
|
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
|
|
bodyBuilder(builder, result.location,
|
|
bodyBlock->getArguments().slice(0, dimRank),
|
|
bodyBlock->getArguments()[dimRank],
|
|
bodyBlock->getArguments().drop_front(dimRank + 1));
|
|
}
|
|
|
|
LogicalResult ForeachOp::verify() {
|
|
const auto t = getSparseTensorType(getTensor());
|
|
const Dimension dimRank = t.getDimRank();
|
|
const auto args = getBody()->getArguments();
|
|
|
|
if (getOrder().has_value() &&
|
|
(t.getEncoding() || !getOrder()->isPermutation()))
|
|
return emitError("Only support permuted order on non encoded dense tensor");
|
|
|
|
if (static_cast<size_t>(dimRank) + 1 + getInitArgs().size() != args.size())
|
|
return emitError("Unmatched number of arguments in the block");
|
|
|
|
if (getNumResults() != getInitArgs().size())
|
|
return emitError("Mismatch in number of init arguments and results");
|
|
|
|
if (getResultTypes() != getInitArgs().getTypes())
|
|
return emitError("Mismatch in types of init arguments and results");
|
|
|
|
// Cannot mark this const, because the getters aren't.
|
|
auto yield = cast<YieldOp>(getBody()->getTerminator());
|
|
if (yield.getNumOperands() != getNumResults() ||
|
|
yield.getOperands().getTypes() != getResultTypes())
|
|
return emitError("Mismatch in types of yield values and results");
|
|
|
|
const auto iTp = IndexType::get(getContext());
|
|
for (Dimension d = 0; d < dimRank; d++)
|
|
if (args[d].getType() != iTp)
|
|
emitError(
|
|
llvm::formatv("Expecting Index type for argument at index {0}", d));
|
|
|
|
const auto elemTp = t.getElementType();
|
|
const auto valueTp = args[dimRank].getType();
|
|
if (elemTp != valueTp)
|
|
emitError(llvm::formatv("Unmatched element type between input tensor and "
|
|
"block argument, expected:{0}, got: {1}",
|
|
elemTp, valueTp));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ReduceOp::verify() {
|
|
Type inputType = getX().getType();
|
|
// Check correct number of block arguments and return type.
|
|
Region &formula = getRegion();
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, formula, "reduce", TypeRange{inputType, inputType}, inputType))
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SelectOp::verify() {
|
|
Builder b(getContext());
|
|
Type inputType = getX().getType();
|
|
Type boolType = b.getI1Type();
|
|
// Check correct number of block arguments and return type.
|
|
Region &formula = getRegion();
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(this, formula, "select",
|
|
TypeRange{inputType}, boolType))
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SortOp::verify() {
|
|
if (getXs().empty())
|
|
return emitError("need at least one xs buffer.");
|
|
|
|
auto n = getN().getDefiningOp<arith::ConstantIndexOp>();
|
|
|
|
Type xtp = getMemRefType(getXs().front()).getElementType();
|
|
auto checkTypes = [&](ValueRange operands,
|
|
bool checkEleType = true) -> LogicalResult {
|
|
for (Value opnd : operands) {
|
|
auto mtp = getMemRefType(opnd);
|
|
const DynSize sh = mtp.getShape()[0];
|
|
// We can't check the size of dynamic dimension at compile-time, but all
|
|
// xs and ys should have a dimension not less than n at runtime.
|
|
if (n && !ShapedType::isDynamic(sh) && sh < n.value())
|
|
return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
|
|
": {0} < {1}",
|
|
sh, n.value()));
|
|
|
|
if (checkEleType && xtp != mtp.getElementType())
|
|
return emitError("mismatch xs element types");
|
|
}
|
|
return success();
|
|
};
|
|
RETURN_FAILURE_IF_FAILED(checkTypes(getXs()))
|
|
return n ? checkTypes(getYs(), false) : success();
|
|
}
|
|
|
|
LogicalResult SortCooOp::verify() {
|
|
auto cn = getN().getDefiningOp<arith::ConstantIndexOp>();
|
|
// We can't check the size of the buffers when n or buffer dimensions aren't
|
|
// compile-time constants.
|
|
if (!cn)
|
|
return success();
|
|
|
|
uint64_t n = cn.value();
|
|
uint64_t nx = 1;
|
|
if (auto nxAttr = getNxAttr()) {
|
|
nx = nxAttr.getInt();
|
|
if (nx < 1)
|
|
emitError(llvm::formatv("Expected nx > 1, got {0}", nx));
|
|
}
|
|
uint64_t ny = 0;
|
|
if (auto nyAttr = getNyAttr()) {
|
|
ny = nyAttr.getInt();
|
|
}
|
|
|
|
// FIXME: update the types of variables used in expressions bassed as
|
|
// the `minSize` argument, to avoid implicit casting at the callsites
|
|
// of this lambda.
|
|
const auto checkDim = [&](Value v, StaticSize minSize, const char *message) {
|
|
const DynSize sh = getMemRefType(v).getShape()[0];
|
|
if (!ShapedType::isDynamic(sh) && sh < minSize)
|
|
emitError(llvm::formatv("{0} got {1} < {2}", message, sh, minSize));
|
|
};
|
|
|
|
checkDim(getXy(), n * (nx + ny), "Expected dimension(xy) >= n * (nx + ny)");
|
|
|
|
for (Value opnd : getYs()) {
|
|
checkDim(opnd, n, "Expected dimension(y) >= n");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult YieldOp::verify() {
|
|
// Check for compatible parent.
|
|
auto *parentOp = (*this)->getParentOp();
|
|
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
|
|
isa<ReduceOp>(parentOp) || isa<SelectOp>(parentOp) ||
|
|
isa<ForeachOp>(parentOp))
|
|
return success();
|
|
|
|
return emitOpError("expected parent op to be sparse_tensor unary, binary, "
|
|
"reduce, select or foreach");
|
|
}
|
|
|
|
#undef RETURN_FAILURE_IF_FAILED
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SparseTensorDialect::initialize() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
>();
|
|
addTypes<
|
|
#define GET_TYPEDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
|
|
>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|